• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
6
0
0

Teks penuh

(1)

MULTIPLE HAMILTONIAN STRUCTURES FOR THE ISHII’S EQUATION

Ionel Mos¸

Abstract.The Ishii’s equation is considered and some aspects of its Poisson geometry are pointed out.

2000 Mathematics Subject Classification: 53D17, 37J35. 1. Introduction

The dynamics of Ishii’s equation using an Hamilton-Poisson formulation was studied in [1]. The authors show that the system

 

 ˙

x1 = x2

˙

x2 = x3

˙

x3 = x1x2,

(1)

has the Hamilton-Poisson realization (R3

,{·,·}1, H1),where the Poisson

struc-ture {·,·}1 is generated by the matrix

Π1(x1, x2, x3) =

 01 −10 x01

0 −x1 0

, (2)

and the HamiltonianH1 is given by

H1(x1, x2, x3) =x1x3−

1 2x

2 2−

1 3x

3

1. (3)

Also, the function H2 ∈C

∞ (R3

, R) given by

H2(x1, x2, x3) =x3−

1 2x

2

1 (4)

is a Casimir of the configuration (R3

,{·,·}1).

(2)

2.Multi-Hamiltonian realization of the system (1)

Let C∞ (R3

, R) be the space of smooth real valued functions defined on R3

and the bracket {·,·}2 onC

∞ (R3

, R) defined by

{f, g}2 = (∇f)tΠ2(∇g), (5)

where the matrix Π2 is given by

Π2(x1, x2, x3) =

 

0 x1 x2

−x1 0 x3−x21

−x2 x21−x3 0

. (6)

Proposition 1. The bracket (5) defines a Poisson structure on R3

.

Proof. It is easy to see that the bracket (5) is bilinear, skew-symmetric and satisfies Leibniz’ rule. The Jacobi identity reduces in the three dimensional case to the following single relation

π12

∂π31

∂x1

− ∂π23 ∂x2

+π13

∂π12

∂x1

− ∂π23 ∂x3

+π23

∂π12

∂x2

− ∂π31 ∂x3

= 0, which is, also, easily verified.

Proposition 2. The Poisson structures {·,·}1, {·,·}2 are compatible. Proof. It is well known that {·,·}1, {·,·}2 are compatible if and only if

[Π1,Π2]S = 0, where [·,·]S is the Schouten bracket. Computing the

compo-nents in local coordinates of [Π1,Π2]S given by (see [2])

[Π1,Π2]ijkS =− 3

X

m=1

Πmk 2

∂Πij1

∂xm

+ Πmk 1

∂Πij2

∂xm

+cycle(i, j, k) !

we obtain the desired result.

Proposition 3. The system (1) is a bi-Hamiltonian system.

Proof. Indeed, the Poisson structures{·,·}1,{·,·}2 are not constant multiples

of each other, compatible and ˙

x= Π1(x)· ∇H1(x) = Π2(x)· ∇H2(x), x∈R 3

.

Remark 1. Let us observe that Π1 · ∇H2 = 0 and Π2 · ∇H1 = 0, so the

functionH2 is a Casimir of the configuration (R3,{·,·}1) andH1 is a Casimir

of the configuration (R3

(3)

The fact that the Poisson structures {·,·}1, {·,·}2 are compatible i.e.

a{·,·}1 +b{·,·}2 is a Poisson structure for all a, b ∈ R, helps us show that

the system (1) may be realized as a Hamilton-Poisson system in an infinite number of different ways. More exactly, we can prove

Proposition 4. The system (1)has the following Hamilton-Poisson realiza-tions:

(R3

,Πab, Hcd),

where Πab =aΠ1+bΠ2, Hcd =cH1−dH2 and a, b, c, d∈R, ac−bd= 1.

Remark 2. The function Cab ∈C

∞ (R3

, R) given by

Cab(x1, x2, x3) = a(

1 2x

2

1−x3) +b(x1x3−

1 2x

2 2 −

1 3x

3 1)

is a Casimir of the configuration (R3

,Πab).

3.The system (1) like a multi-gradient system

Let H1, H2 ∈C

∞ (R3

, R) be the first integrals of the system (1) given by (3) and (4). Then we have

Proposition 5. The system (1) can be written as a multi-gradient system

˙

x=S(x)· ∇H1(x)· ∇H2(x), x= (x1, x2, x3)∈R 3

, (7)

where S is a completely skew symmetric 3−tensor.

Proof. If we take S =ǫijk (the Levi-Civita 3−tensor), then, a direct

compu-tation shows us that ˙ xi =

3

X

j,k=1

Sijk

∂H1(x)

∂xj

∂H2(x)

∂xk

, i= 1,2,3,

as required.

Let us now consider the discretization of the system (7) given by (see [3], [4]):

xn+1

−xn

h =S(xe

n, xn+1

, h)· ∇H1(xn, xn +1

)· ∇H2(xn, xn +1

), (8)

where the discrete gradients ∇H1,∇H2 are any solution of

H(xn+1

)−H(xn) = (∇H)·(xn+1

−xn)

(4)

and Seis a completely skew symmetric 3−tensor that verifies e

S(xn, xn+1, h) =S(xn) +O(h). Choosing discrete gradients ∇H1, ∇H2 as follows:

∇H1(xn, xn +1 ) = −1 3

(xn+1 1 )

2

+xn1+1x n 1 + (x

n 1)

2

+xn3,−

1 2 x

n+1 2 +x

n 2

, xn1+1

,

∇H2(xn, xn +1 ) = −1 2 x n+1 1 +x

n 1

,0,1

and S(xe n, xn+1

, h) =S(xn) we obtain, via (8), an explicit first order

numer-ical integrator for the system (1), given by             

xn1+1−xn1

h =

1 2 x

n+1 2 +x

n 2

xn+12 −x n 2 h = 1 6(x n+1 1 ) 2 + 1 6x n+1 1 x n 1 − 1 3(x n 1) 2

+xn3

xn3+1−xn3

h =

1 4 x

n+1 1 +x

n 1

xn+12 +x n 2

(9)

where h is the size step of the integrator.

Proposition 6. The integrator (9) preserves both the first integrals H1, H2 of the system (1).

Proof. Indeed, for i= 1,2 we have: Hi(xn

+1 1 , x

n+1 2 , x

n+1

3 )−Hi(xn1, x n 2, x

n 3) =

=∇Hi(xn, xn+1)t·(xn+1−xn)

=h∇Hi(xn, xn+1)t·S(xe n, xn+1, h)· ∇H1(xn, xn+1)· ∇H2(xn, xn+1)

= 0, as required.

4.The system (1) and the midpoint rule

The midpoint integrator for the system (1) is given by             

xn+11 −x n 1 h = 1 2 x n+1 2 +x

n 2

xn2+1−xn2

h =

1 2 x

n+1 3 +x

n 3

xn+13 −x n 3 h = 1 4 x n+1 1 +x

n 1

xn2+1+x n 2

.

(5)

Then, we can prove

Proposition 7. The midpoint integrator (10) preserves the first integral H2 given by (4).

Remark 3. Let us observe that if we modify the midpoint rule as follows: 

     

     

xn+11 −x n 1

h =

1 2 x

n+1 2 +x

n 2

xn2+1−xn2

h =

1 2 x

n+1 3 +x

n 3

+ ∆ xn3+1−xn3

h =

1 4 x

n+1 1 +x

n 1

xn2+1+x n 2

,

where ∆ = 1 6(x

n+1 1 )

2

+ 1 6x

n+1 1 x

n 1 −

1 3(x

n 1)

2

+ 1 2x

n 3 −

1 2x

n+1

3 , we obtain the

integrator (9), that preserves both the first integrals H1, H2 of the system

(1). The midpoint integrator lies on H2 = const. and with ∆ we ”drag” it

on the phase curves of the system (1), the intersection of x1x3−

1 2x

2 2−

1 3x

3

1 =const.

with

x3−

1 2x

2

1 =const.

Remark 4. Unfortunately, none of these integrators preserves the Poisson structures Π1, Π2 defined by (2), (6).

Next, using the midpoint rule, combined with splitting and composition methods, we construct an Poisson integrator for the system (1). Let us observe that the system (1) can be written as (see [5])

˙

x= (Π21(x) + Π22(x))· ∇H2(x), x∈R 3

,

where

Π21 =

0 x1 0

−x1 0 x3−x21

0 x2

1−x3 0

, Π22=

0 0 x2

0 0 0

−x2 0 0

.

If ϕ1, ϕ2 are the midpoint integrators of the systems

˙

(6)

then, the splitting midpoint integrator ϕ =ϕ1◦ϕ2 is given by

    

xn1+1 = xn1 +hxn2 +h 2

xn 3

xn2+1 = xn2 +hxn2

xn3+1 = x n 3 +hx

n 1x

n 2 +h

2

xn1x n 3 +h

3

xn2x n 3 +

h2

(xn 2)

2

2 +

h4

(xn 3)

2

2 ,

(11)

where h is the size step of the integrator. Now, we can prove

Proposition 9. The numerical integrator (11) has the following properties: (i) It preserves the Poisson structure Π1 given by (2).

(ii) It preserves the Casimir H2 of the configuration (R3,Π1) given by (4). Proof. (i) A direct computation gives us

Dϕ(x)·Π1(x)·[Dϕ(x)]t= Π1(ϕ(x)),

as required.

(ii) Indeed, via (11), we have H2(ϕ(xn1, x n 2, x

n

3)) =H2(xn1, x n 2, x

n 3).

Remark 5. In a similar manner we obtain a Poisson integrator for the Poisson structure Π2, given by (6).

References

[1] P. Birtea, M. Puta, On Ishii’s equation, C.R. Math. Acad. Sci. Paris, 341 (2005), 107-111.

[2] I. Dorfman, Dirac structures and Integrability of nonlinear evolution equations, John Wiley & Sons, Chichester, 1993.

[3] E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration, Springer-Verlag, 2001.

[4] R. McLachlan, G.R.W. Quispel and N. Robidoux, Geometric integra-tion using discrete gradients, Philos. Trans. R. Soc. Lond. Ser. A, 357, (1999), 1021-1045.

[5] I. Mo¸s, An introduction to geometric mechanics, Cluj University Press, Cluj-Napoca, 2005.

Author:

Ionel Mo¸s

Department of Education Sciences West University of Timi¸soara

Referensi

Dokumen terkait

(1) Apabila skala/besaran suatu jenis rencana usaha dan/atau kegiatan lebih kecil atau sama dengan skala besaran yang tercantum pada lampiran II Peraturan Daerah

To the extent permitted by law, Phillip Futures, or persons associated with or connected to Phillip Futures, including but not limited to its officers,

The writer use library research for translation methodology and for the theoretical review of translation there are consist of the definition translation, technique of

Pada tahap ini dilakukan proses pengolahan data-data yang telah diperoleh. terhadap kapasitas jalan lama, baik itu kapasitas volume

Cara kerja sensor ini didasarkan pada prinsip dari pantulan suatu gelombang suara sehingga dapat dipakai untuk menafsirkan eksistensi (jarak) suatu benda dengan

The work of the historians of the education of women and of people of color is only part of a rich set of recent monographs and articles in the social, political, and intel-

3.2 Mengenal teks cerita narasi sederhana kegiatan dan bermain di lingkungan dengan bantuan guru atau teman dalam bahasa Indonesia lisan dan tulis yang dapat diisi dengan

Pejabat adalah pejabat yang berwenang mengangkat dan memberhentikan Juru sita Pajak, menerbitkan Surat Perintah Penagihan Seketika dan Sekaligus, Surat Paksa, Surat