• Tidak ada hasil yang ditemukan

resume10_4. 80KB Jun 04 2011 12:07:04 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "resume10_4. 80KB Jun 04 2011 12:07:04 AM"

Copied!
1
0
0

Teks penuh

(1)

Journal de Th´

eorie des Nombres

de Bordeaux

18

(2006), 471–476

Small exponent point groups on elliptic curves

par

Florian LUCA, James MCKEE

et

Igor E. SHPARLINSKI

R´esum´e. Soit E une courbe elliptique d´efinie sur Fq, le corps fini `a q ´el´ements. Nous montrons que pour une constante η >0

d´ependant seulement de q, il existe une infinit´e d’entiers

posi-tifs n tels que l’exposant de E(Fqn), le groupe des points Fqn-rationnels sur E, est au plus qnexp

−nη/log logn

. Il s’agit d’un analogue d’un r´esultat de R. Schoof sur l’exposant du groupe E(Fp) des pointsFp-rationnels, lorsqu’une courbe elliptique fix´ee Eest d´efinie surQet le nombre premierptend vers l’infini.

Abstract. LetEbe an elliptic curve defined overFq, the finite field ofqelements. We show that for some constantη >0

depend-ing only on q, there are infinitely many positive integers n such

that the exponent ofE(Fqn), the group ofF

qn-rational points on

E, is at mostqnexp nη/log logn

. This is an analogue of a result of R. Schoof on the exponent of the groupE(Fp) of Fp-rational points, when a fixed elliptic curve E is defined over Q and the primeptends to infinity.

FlorianLuca

Instituto de Matem´aticas

Universidad Nacional Aut´onoma de M´exico C.P. 58089, Morelia, Michoac´an, M´exico

E-mail:[email protected]

JamesMcKee

Department of Mathematics

Royal Holloway, University of London Egham, Surrey, TW20 0EX, UK

E-mail:[email protected]

Igor E.Shparlinski

Department of Computing Macquarie University Sydney, NSW 2109, Australia

E-mail:[email protected]

Referensi

Dokumen terkait

In the two years he was at Cambridge we wrote four papers on elliptic curves, culminating in the proof of a part of the conjecture for elliptic curves with complex multiplication

But this contradicts condition (4) and the proof is complete.. The main result of this paper regards the case of Stancu operator. The four condition and general assumption from

We illustrate how the technique articulated here gives an easy way to produce an elliptic curve containing a length 12 progression and an infinite family of elliptic curves containing

Recently Heath–Brown and the author [8] proved that, under the same conditions on n , the equation (1.1) has solutions in one prime and three P 101 – almost–prime variables and also

Nous donnons une carac- t´erisation explicite des extensions ab´eliennes de K de degr´e p en reliant les coefficients des polynˆomes engendrant les extensions L/K de degr´e p

Nous donnons une preuve que tout automorphisme sauvage- ment ramifi´e d’un corps de s´eries formelles `a une variable et ` a co- efficients dans un corps parfait de caract´eristique

Our aim is to obtain sharp estimates on the metastable transition times between the two stable states, both for fixed N and in the limit when N tends to infinity, with error

In this section, we use Corollary 2 to determine whether the Λ-coalescent comes down from infinity for particular families of measures Λ. We begin with the