. .1Jurnal
TApril 2012Vol22NoeknologiIndustri Pertanian
Jurnal
Teknologi Industri Pertanian
ISSN 0216-3160
Vol. 25 No.1 April 2015
TERAKREDITASI: SK Dirjen DIKTI No. 56/DIKTI/Kep/2012
Vol. 25 No. 1Jurnal Teknologi Industri PertanianApril 2015
Volume 25, Nomor 1, 1-93 April 2015
PERUBAHAN KANDUNGAN KIMIA SARI ROSELA MERAH DAN UNGU (Hibiscus sabdariffa Linn.) HASIL PENGERINGAN MENGGUNAKAN CABINET DRYER DAN FLUIDIZED BED DRYER
Mardiah, Fransisca Rungkat Zakaria, Endang Prangdimurti, Rizal Damanik ... 1 ADSORPTION MODELING ON CARBON MONOLITHIC COLUMN FOR
METHYLENE BLUE REMOVAL
Darmadi, Medyan Riza, and Mirna Rahmah Lubis ... 8 PROSES HIDROLISIS ASAM DAN ENZIM PADA POLISAKARIDA
Euchema cottonii UNTUK BAHAN BAKU BIOETANOL
Pandit Hernowo, Dwi Setyaningsih, dan Bagus Sediadi Bandol Utomo ... 17 INVESTASI DAN PEMILIHAN TEKNOLOGI PENGGILINGAN PADA AGROINDUSTRI PADI DENGAN PENDEKATAN FUZZY STUDI KASUS DI KABUPATEN CIANJUR
Faqih Udin, Marimin, Sukardi, Agus Buono, Hariyadi Halid... 23 PEMANFAATAN KATALIS SILIKA ALUMINA DARI BAGASSE PADA
PEMBUATAN BIODIESEL DARI MINYAK GORENG SISA PAKAI
Sriatun , Taslimah, dan Linda Suyati ... 35 FORMULATING STRATEGIES TO IMPROVE FOOD SAFETY OF SMALL-MEDIUM ENTERPRISES BAKERIES THROUGH GOOD
MANUFACTURING PRACTICES
Yandra Arkeman,Triningsih Herlinawati, Dhani S. Wibawa, Himawan Adinegoro ... 43 PROSES REAKTIVASI TANAH PEMUCAT BEKAS SEBAGAI ADSORBEN UNTUK PEMURNIAN MINYAK SAWIT KASAR DAN BIODIESEL
Ani Suryani, Gustan Pari, dan Amelia Aswad ... 52 KARAKTERISASI PEPTON IKAN HASIL TANGKAP SAMPINGAN TIDAK LAYAK KONSUMSI SEBAGAI SUMBER NUTRIEN
PERTUMBUHAN MIKROORGANISME
Tati Nurhayati, Bustami Ibrahim, Pipih Suptijah, Ella Salamah, Risa Nurul Fitra, Eska Rizky Wiji Astuti ... 68 PERENGKAHAN KATALITIK METIL ESTER dari MINYAK LIMBAH CAIR
PABRIK MINYAK KELAPA SAWIT DENGAN KATALIS Cr/Mo/HZA DAN Ni/Mo/HZA
Agus Sundaryono, Dewi Handayani, Budiman, Sherly Winda ... 78 KARAKTERISTIK KOMPON KARET DENGAN BAHAN PENGISI ARANG AKTIF TEMPURUNG KELAPA DAN NANO SILIKA SEKAM PADI
Popy Marlina, Filli Pratama, Basuni Hamzah, Rindit Pambayun... 85
Terakreditasi B berdasarkan Surat Keputusan Dirjen Dikti No 56/DIKTI/Kep/2012 tertanggal 24 Juli 2012 ISSN : 0216-3160
JURNAL TEKNOLOGI INDUSTRI PERTANIAN
Vol. 25, No. 1, 2015 Penanggung Jawab
Ketua Umum Asosiasi Agroindustri Indonesia dan Ketua Departemen Teknologi Industri Pertanian, FATETA - IPB
Ketua Dewan Editor Marimin (IPB) Dewan Editor
Agus H. Canny (AGRIN) Didik Purwadi (UGM) Dwiwahju Sasongko (ITB) Kadarsah Suryadi (ITB) M. Syamsul Ma’arif (IPB) Moh. Nasikin (UI) Moses L. Singgih (ITS) Tajuddin Bantacut (IPB) N. Taufiqurahman (LIPI) Editor Pelaksana
Ika Amalia Kartika (Ketua) Andes Ismayana
Dwi Setyaningsih Ono Suparno Titi Candra Sunarti Sekretariat Sri Martini Ketih Suketih Penerbit
Asosiasi Agroindustri Indonesia (AGRIN) dan Departemen Teknologi Industri Pertanian (TIN) Fakultas Teknologi Pertanian (FATETA) Institut Pertanian Bogor (IPB)
Alamat Redaksi
Departemen Teknologi Industri Pertanian Fakultas Teknologi Pertanian
Institut Pertanian Bogor
Kampus IPB Darmaga PO Box 220, Bogor 16002 Telp./Fax. (0251) 8621974, 8625088
e-mail: [email protected] ,
[email protected] atau [email protected] Biaya langganan per tahun
Perorangan Rp. 150.000,-
Institusi Rp. 200.000,- belum termasuk ongkos kirim Permintaan langganan di kirim ke:
Redaksi Jurnal Teknologi Industri Pertanian Departemen Teknologi Industri Pertanian, FATETA-IPB
Kampus IPB Darmaga PO Box 220 Bogor 16002 Telp./Fax. : 0251-8625088 dan 0251-8621974 E-mail: [email protected] ,
[email protected] atau [email protected] Bank BNI Capem Darmaga, Bogor
No.Rekening 0275671500 atas nama Ketih Suketih
PRAKATA
Pembaca yang budiman,
Puji syukur kita panjatkan ke hadirat Allah SWT, atas berkat dan rahmatNya pada kesempatan ini kami dapat kembali menyajikan artikel-artikel menarik pada Jurnal Teknologi Industri Pertanian Volume 25 Nomor 1 Edisi April, Tahun 2015.
Semua artikel yang dimuat pada Jurnal Teknologi Industri Pertanian ini telah diseleksi dan ditelaah oleh Dewan Editor dan Mitra Bebestari yang kompeten. Hanya artikel-artikel berkualitas baik dan sangat baik yang dapat dimuat pada Jurnal Teknologi Industri Pertanian.
Topik-topik yang disajikan pada edisi ini mencakup: Perubahan kandungan kimia sari rosela merah dan ungu dengan alat pengering cabinet dryer dan fluidized bed dryer; Adsorption modeling on carbon monolithic column for methylene blue removal; Proses hidrolisis asam dan enzim pada polisakarida Euchema cottoni untuk bahan baku bioetanol; Investasi dan pemilihan teknologi penggilingan pada agroindustri padi dengan pendekatan fuzzy; Pemanfaatan katalis silika alumina dari bagasse pada pembuatan biodisel dari minyak goreng sisa pakai; Formulating strategies to improve food safety of small-medium enterprises bakeries through good manufacturing practice;
Proses reaktivasi tanah pemucat bekas sebagai adsorben untuk pemurnian minyak sawit kasar dan biodisel; Karakterisasi pepton ikan hasil tangkap sampingan tidak layak konsumsi sebagai sumber nutrien pertumbuhan mikroorganisme; Perengkahan katalitik metil ester dari minyak limbah cair pabrik minyak kelapa sawit dengan katalis Cr/Mo/HZA dan Ni/Mo/HZA. Sebagai penutup disajikan artikel yang berjudul Karakteristik kompon karet dengan bahan pengisi arang aktif tempurung kelapa dan nano silika sekam padi.
Kepada penulis dan mitra bebestari yang telah berkontribusi pada penerbitan jurnal edisi ini, kami menyampaikan terima kasih yang mendalam.
Kami mengundang rekan sejawat peneliti dan praktisi agroindustri mengirimkan naskah untuk disajikan pada jurnal ini. Saran dan kritik yang membangun dari pelanggan, pembaca dan para pihak lainnya sangat kami harapkan. Selamat membaca.
Ketua Dewan Editor
Marimin
Jurnal Teknologi Industri Pertanian, April 2015 Vol. 25, No. 1 ISSN : 0216 - 3160
UCAPAN TERIMA KASIH
Dewan Editor menyampaikan terima kasih Kepada Bapak/Ibu/Sdr, atas kesediannya untuk menelaah naskah yang dimuat pada edisi ini.
Anggara Hayun Anujuprana, Pusat Pengkajian Kebijakan Peningkatan Daya Saing, Badan Pengkajian dan Penerapan Teknologi, Jakarta
Armansyah Halomoan Tambunan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor Achmad Poernomo, Badan Penelitian dan Pengembangan Bioteknologi Kelautan dan Perikanan, Jakarta
Ary Achyar Alfa, Balai Penelitian Teknologi Karet, Bogor
Dyah Iswantini Pradono, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor Endang Widjajanti Laksono, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri
Yogyakarta
Erliza Hambali, Fakultas Teknologi Pertanian, Institut Pertanian Bogor
Ekowati Chasanah, Balai Besar Riset Pengolahan Produk dan Bioteknologi Kelautan dan Perikanan, Jakarta Gayuh Rahayu, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor
Haznan Abimanyu, Lembaga Ilmu Pengetahuan Indonesia, Pusat Penelitian Kimia, Serpong Indah Yuliasih, Fakultas Teknologi Pertanian, Institut Pertanian Bogor
Isti Surjandari Prajitno, Fakultas Teknik, Universitas Indonesia, Depok Irzaman, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor
Joelianingsih, Fakultas Teknik, Institut Teknologi Indonesia, Tangerang Muslich, Fakultas Teknologi Pertanian, Institut Pertanian Bogor
Muhammad Dani Supardan, Fakultas Teknik, Universitas Syiah Kuala, Banda Aceh Mulyorini Rahayuningsih, Fakultas Teknologi Pertanian, Institut Pertanian Bogor
Nanik Purwanti, Fakultas Teknologi Pertanian, Institut Pertanian Bogor
Novizar Nazir, Fakultas Teknologi Pertanian, Universitas Andalas, Padang Sumatera Barat Nastiti Siswi Indrasti, Fakultas Teknologi Pertanian, Institut Pertanian Bogor Ridwan Rahmat, Balai Besar Penelitian dan pengembangan Pascapanen Pertanian, Bogor
Rokhani Hasbullah, Fakultas Teknologi Pertanian, Institut Pertanian Bogor Suprihatin, Fakultas Teknologi Pertanian, Institut Pertanian Bogor
Suherman, Fakultas Teknik , Universitas Diponegoro, Semarang Slamet Budijanto, Fakultas Teknologi Pertanian, Institut Pertanian Bogor Suryadi Ismadji, Fakultas Teknik, Universitas Katolik Widya Mandala, Surabaya
Sukardi, Fakultas Teknologi Pertanian, Institut Pertanian Bogor
Suryani, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor Udin Hasanuddin, Fakultas Pertanian, Universitas Lampung, Bandar Lampung Wagiman, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Yogyakarta
Zaenal Alim Mas’ud, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor
Volume 25, Nomor 1, 1-93 April 2015
PERUBAHAN KANDUNGAN KIMIA SARI ROSELA MERAH DAN UNGU (Hibiscus sabdariffa Linn.) HASIL PENGERINGAN MENGGUNAKAN CABINET DRYER DAN FLUIDIZED BED DRYER
Mardiah, Fransisca Rungkat Zakaria, Endang Prangdimurti, Rizal Damanik ... 1 ADSORPTION MODELING ON CARBON MONOLITHIC COLUMN FOR
METHYLENE BLUE REMOVAL
Darmadi, Medyan Riza, and Mirna Rahmah Lubis ... 8 PROSES HIDROLISIS ASAM DAN ENZIM PADA POLISAKARIDA
Euchema cottonii UNTUK BAHAN BAKU BIOETANOL
Pandit Hernowo, Dwi Setyaningsih, dan Bagus Sediadi Bandol Utomo ... 17 INVESTASI DAN PEMILIHAN TEKNOLOGI PENGGILINGAN PADA AGROINDUSTRI PADI DENGAN PENDEKATAN FUZZY STUDI KASUS DI KABUPATEN CIANJUR
Faqih Udin, Marimin, Sukardi, Agus Buono, Hariyadi Halid... 23 PEMANFAATAN KATALIS SILIKA ALUMINA DARI BAGASSE PADA
PEMBUATAN BIODIESEL DARI MINYAK GORENG SISA PAKAI
Sriatun , Taslimah, dan Linda Suyati ... 35 FORMULATING STRATEGIES TO IMPROVE FOOD SAFETY OF SMALL-MEDIUM ENTERPRISES BAKERIES THROUGH GOOD
MANUFACTURING PRACTICES
Yandra Arkeman,Triningsih Herlinawati, Dhani S. Wibawa, Himawan Adinegoro ... 43 PROSES REAKTIVASI TANAH PEMUCAT BEKAS SEBAGAI ADSORBEN UNTUK PEMURNIAN MINYAK SAWIT KASAR DAN BIODIESEL
Ani Suryani, Gustan Pari, dan Amelia Aswad ... 52 KARAKTERISASI PEPTON IKAN HASIL TANGKAP SAMPINGAN TIDAK LAYAK KONSUMSI SEBAGAI SUMBER NUTRIEN
PERTUMBUHAN MIKROORGANISME
Tati Nurhayati, Bustami Ibrahim, Pipih Suptijah, Ella Salamah, Risa Nurul Fitra, Eska Rizky Wiji Astuti ... 68 PERENGKAHAN KATALITIK METIL ESTER dari MINYAK LIMBAH CAIR
PABRIK MINYAK KELAPA SAWIT DENGAN KATALIS Cr/Mo/HZA DAN Ni/Mo/HZA
Agus Sundaryono, Dewi Handayani, Budiman, Sherly Winda ... 78 KARAKTERISTIK KOMPON KARET DENGAN BAHAN PENGISI ARANG AKTIF TEMPURUNG KELAPA DAN NANO SILIKA SEKAM PADI
Popy Marlina, Filli Pratama, Basuni Hamzah, Rindit Pambayun... 85
Adsorption Modeling on Carbon Monolithic Column………
8 J Tek Ind Pert. 25 (1): 8-16
ADSORPTION MODELING ON CARBON MONOLITHIC COLUMN FOR METHYLENE BLUE REMOVAL
PEMODELAN PENYERAPAN PADA KOLOM MONOLITIK BERLAPIS KARBON UNTUK PEMISAHAN METILEN BIRU
Darmadi*, Medyan Riza, and Mirna Rahmah Lubis
Department of Chemical Engineering, Faculty of Engineering, Syiah Kuala University Jl. Syech Abdurrauf No. 7, Banda Aceh, Indonesia, 23111
E-mail: [email protected]
Paper: Received 2 July 2014; Revised 6 October 2014; Accepted 11 November 2014 ABSTRAK
Model matematika telah dikembangkan untuk sistem batch dan kontinyu. Pada sistem batch, kinetika adsorpsi oleh monolith berlapis karbon dikaji untuk menganalisis kurva hasil penelitian dengan menggunakan model perkiraan Gaya dorong linear. Kinerja pada kolom monolith dievaluasi melalui kurva output. Model prediksi aliran sumbat yang terdispersi, dengan laju adsorpsinya dinyatakan oleh model tersebut, juga diidentifikasi. Kesetimbangan yang dinyatakan oleh isotermal Langmuir dan parameter laju yang termuat dalam dua persamaan, diperoleh dari penelitian secara batch. Kapasitas adsorpsi monolith karbon aktif tersebut adalah 190 mg/g dan koefisien gaya dorong liniarnya berkurang dari 0,011 menjadi 0,0052 per menit dengan kenaikan konsentrasi awal metilen biru dari 10 hingga 50 ppm. Prediksi yang menggunakan perkiraan gaya dorong linear untuk laju adsorpsi tersebut sesuai dengan data output penelitian.
Kata kunci: adsorpsi, kurva output, gaya dorong linear, kolom monolith, metilen biru
ABSTRACT
Mathematical models of adsorptionon carbon monolithiccolumn for methylene blue removalwere developed for batch and continuous systems. For batch system, kinetics of adsorption by carbon coated monolith was studied to analyze experimental uptake curves by using approximation model oflinear driving force.
Performance for monolith column was evaluated through breakthrough curves. A predictive model of dispersed plug flow, with the adsorption rate stated by the model, was also identified. Equilibrium represented by the Langmuir isotherm and rate parameters contained in two equations wasobtained from batch experiment. Capacity of activated-carbon-monolith adsorption was 190 mg/g and linear driving force coefficient decreased from 0.011 to 0.0052 min
-1with a rise of initial concentration of methylene blue from 10 toward 50 ppm, respectively.
Prediction using linear driving force approximation for adsorption rate fited in with experimental breakthrough data.
Keywords: adsorption; breakthrough curve; linear driving force; monolith column, methylene blue INTRODUCTION
Activated carbons in the form of powder or granule are commonly implemented in fixed-bed column. Fixed-bed columns have some disadvantages, such as maldistribution (resulting in non-uniform path of adsorbate to adsorbent surface, and non-optimally local conditions), large pressure drop in the bed, and sensitivity toward fouling by impurities. Activated carbon particle should be small in general relating to adsorptive activity. However, smaller particle will result in greater pressure drop (Cybulski and Moulijn, 2006). These disadvantages can be overcome by monolithic structure, which can be considered as a bundle of capillaries having a honeycomb-like shape.
Activated carbon monoliths have been proposed as adsorbent of pollutants from gas stream (Yates et al., 2000; Yates et al., 2003; Gadkaree, 1998). As compared to gas adsorption, liquid
adsorption using activated carbon monolith has received so little attention. Adsorption of methylene blue (MB) using activated-carbon-coated monolith to determine its capacity from aqueous solution has been performed (Darmadi et al., 2008).
In this study, the performance for liquid adsorption on the activated carbon coated monolith was investigated by using MB as a model dye. A mathematical model describing adsorption rate on the monolithic column was developed to predict breakthrough curves. Linear driving force (LDF) approximation were used in a batch system.
Therefore, no adjustable parameters were required in the model.
MATERIALS AND METHODS
Materials
The materials used in this research were ceramic monoliths (25 mm diameter and 100 mm
Jurnal Teknologi Industri Pertanian25 (1):8-16 (2015)
*Correspondence Author
Darmadi, Medyan Riza, and Mirna Rahmah Lubis
J Tek Ind Pert. 25 (1): 8-16 9
length) that were supplied by Beihai Huihuang Chemical Packing Co. Ltd., GuangXi, China. The chemical compositions of the monolithic substrate, as reported by Beihai Huihuang Chemical Packing Co. Ltd., are MgO 13.9 ± 0.5%, SiO
250.9 ± 1%, Al
2O
335.2 ± 1%, and others < 1%. Monolithic channels‟ cell shape was square with width of 1.02 ± 0.02 mm, wall thickness of 0.25 ± 0.02 mm, and channel density of 400 cpsi. Monolithic structure of 400 cell per square inch was coated by carbon.
Chemicals used in the carbon-coated monoliths were furfuryl alcohol 99% (FA) (Acros Organics, Geel, Belgium), pyrrole 99% (Acros Organics, Geel, Belgium), nitric acid 65% (Acros Organics, Geel, Belgium), and poly ethylene glycol (PEG) with 1500 g/mol molecular weight, further called PEG-1500 (Acros Organics, Geel, Belgium). For adsorption application, standard dye (methylene blue) was used.
Powder of the methylene blue was supplied by BDH Gurr-Cersistain, England, then directly utilized without further treatment.
Surface and Pore Volume Analysis
The pore structure (pore volume distribution and Brunauer-Emmett-Teller (BET) surface area) of carbon monolith was measured by nitrogen adsorption at 77 K. The pore volume was calculated by the Barret-Joyner-Halenda (BJH) method.
The specific surface area of porous carbons was usually measured by gas adsorption measurements using the BET theory (Gregg and Singh, 1982). Nitrogen adsorption at 77 K was widely used, although argon at 77 K was also used.
For carbon with surface areas less than 5 m
2g
-1, krypton at 77 K might be preferably as adsorptive gas because of its low-saturation-vapor pressure (McEnaney and Mays, 1989). Lozano-Castello et al.
(2004) stated that molecule of nitrogen at 77 K cannot reach the narrowest microporous carbon because of diffusional limitations. Adsorption by using carbon dioxide at 273 K was recommended to obtain complete characterization of the narrowest micropores.
BET developed the first theory to successfully describe multilayer adsorption of gases on a wide range of porous and non porous solids (Do, 1998). For the reason, BET equation was accepted as standard equation in adsorption analysis to obtain specific surface areas of solids. It stated that the first adsorptive layer was localized on surface sites with uniform energy, and subsequent layers were analogous to adsorbate condensation (Gregg and Singh, 1982). Linear form of the BET equation is:
( )
( )
( )
where n is mole adsorbed at pressure p to saturated vapor pressure p
o, n
mis the mole of adsorbate required to cover surface monolayer, and c is dimensionless constant given by
(
) ( )
where q
1- q
2is heat of adsorption, q
1is heat of adsorption in the first adsorbed layer, q
2is heat of adsorption in subsequent layers, R
gis ideal gas constant, and T is temperature.
Polymerization
Polymerization reaction performed in reactor referred to method proposed by Vergunst et al. (2002). Monoliths were immersed in polymer solution for 15 minutes. The duration was made shorter compared to previous research which is 24 hours (Mohamad et al., 2014) in order to save immersing time. Optimization by Box-Behnken design was performed to investigate interaction and effects of concentration and molecular weight of PEG, as well as carbonization temperature on pore volume of carbon coated monolith (Darmadi et al., 2009). Characterization of carbon by using thermal- gravimetric analysis, elemental analysis, textural analysis, and scanning electron microscopy had been carried out by Darmadi et al. (2009). Amount of carbon coated on monolith after carbonization was about 15.42 wt% of bare monolith.
Kinetic Measurement
Kinetic experiment was conducted in a finite adsorber unit. It is an agitated batch adsorber with a 1.00 L cylindrical glass vessel containing 500 mL liquid. Mixing was provided by a monolithic impeller. The agitator was driven by an Overhead Stirrer Kika Labortechnik Type Rw 20. Study of batch contact time resulted in data of kinetic in curve type of time versus reduced concentration. Carbon- coated monolith of 1.6 g in each experiment was brought into contact with adsorbate solution of 500 mL at different initial adsorbate concentrations of 10, 20, and 50 mg L
-1. In regular time intervals, samples of approximately 2 ml were obtained by sampling system, then placed in sample bottles.
Withdrawal of the sample was started at t = 0 to 600 minutes every 10 minutes for the first half hour, every 30 minutes for the next an hour and a half, every 1 hour for the rest, then run was terminated.
Each of the samples was tested to determine solute concentrations by utilizing UV-vis spectrophotometer at wavelength of 664 nm.
Column Adsorption Studies
Column studies were performed to
investigate continuous flow of adsorbate through
monolithic column. Adsorption unit was an acrylite
column with length of 40 cm and inner diameter of
Adsorption Modeling on Carbon Monolithic Column………
10 J Tek Ind Pert. 25 (1): 8-16
26 mm. Column was made in particular structure in order to withdraw its samples in different heights (25, 30, and 35 cm) to evaluate breakthrough curve at various bed heights. During research, the column was continuously fed by a 20 mg/L methylene blue solution using peristaltic pump (Ismatec, Ecoline VC-280, Germany). The flow rates were adjusted by setting peristaltic pump switch on rates of 1, 2, and 3, respectively. Up-flow condition was selected to facilitate the accuracy in controlling flow rate of the adsorbate.
Column had been run in three types of flow rate in the range of 1.725 - 4.645 mL/min. The effect of adsorbate concentrations was also investigated by employing 10, 20, and 50 mg/L feed adsorbate concentrations. Samples (~5 mL) were withdrawn in certain interval of time starting from t = 0 to 600 minutes (10 hours). Each sample was tested to determine solute concentrations by utilizing UV-vis spectrophotometer at a wavelength with the maximum absorbance of 664 nm.
Modeling of Adsorption Process
Complete explanation of the mass transfer in adsorbents required solution of partial differential equations (PDEs). The explanation was written by changing equation of diffusion for adsorbent into space-independent approximation in determining rate of adsorption, which was LDF approximation.
First, LDF model (Chuang et al., 2005) for batch system was derived with some assumptions:
adsorbate concentration throughout bulk of solution in tank is homogeneous; at initial time (t = 0), solute concentration is uniform throughout the solution; the adsorbate concentration in its adsorbent at initial time is zero; volume of reactor is constant; the adsorption rate of adsorbate by adsorbent is linearly proportional to driving force, stated as a difference between concentration of surface and average concentration of adsorbed-phase; and system is isothermal. Mass conservation equation in batch condition is stated as:
is the concentration in liquid phase (mg/L), is liquid volume (L), M is the mass of adsorbent (g), and is average concentration of adsorbed phase per unit mass of adsorbent (mg/g). In solid phase, the average concentration is given by LDF approximation (Gleuckauf, 1955):
where q
*is concentration of the adsorbed phase at particle surface in equilibrium with bulk
concentration (mg/g), and , LDF kinetic constant (1/s), is given by (Zabka et al., 2006):
where D
effis pore diffusion (m
2/s), R
1is monolith radius (m), R
2is radius of the monolith channel wall (m).
For square channel, Patton et al. (2004) gives:
and
where is diameter of the monolithic channel (m) and is the thickness of carbon coated (m).
Performance of a monolithic column is analyzed by studying its breakthrough which is outlet responses of a monolith bed toward inputs. In order to derive mathematical model of carbon monolithic column, the following assumptions are used: uniform flow distribution in the monolithic column; unvaried parameters of mass transfer and physico-chemical properties throughout monolithic column; each channel is identical; carbon is initially free of adsorbate; isothermal operation; radial diffusion is ignored; and mass transfer within the adsorbent is described by LDF model. Using above assumptions, material balance in bulk phase of a monolithic channel gives:
where is concentration of bulk liquid phase (kg/m
3), is axial coordinate (m), is time (s), is interstitial velocity of fluid in monolithic channel (m/s), is monolithic structure porosity, and is axial dispersion coefficient (m
2/s).
The boundary and initial conditions are
dt
q M d dt V dC
C V
q
) ( q
*q dt k
q d
LDF
k
LDF2 2 2 2 1
2 1
) (
8 R R
R
k
LDFD
eff
R 2 a
1
2 1
2
4 ( )
R a t t
R
w w
a t
wt q z
D C z v C t C
m m ax
z
) 1 (
2 2
C
z t
v
z
mD
ax0 ) , 0 ( ,
0 ) , 0
( t z and q t z C
C
Fz t
C ( , 0 )
………..….. (3)
…………..….. (4)
……….….. (5)
………....….. (6)
…………...….. (7)
...….. (8)
... (9)
... (10)
Darmadi, Medyan Riza, and Mirna Rahmah Lubis
J Tek Ind Pert. 25 (1): 8-16 11
where C
Fis initial concentration (kg/m
3). Dispersion coefficient, , can be represented by (Douglas, 1984):
where and are geometrical constants. For monolithic channel, (Zabka et al., 2006) gives = 0.85 and = 3.68, respectively. The governing Equation (8) and Equation (12) are developed by combining effects of adsorption equilibrium, mass transfer, and dispersion. Information concerning adsorption equilibrium for adsorbate-adsorbent system is provided by measurements made in batch studies. The LDF mass transfer coefficients ( ) are obtained from matching a batch model with experimental uptake rate data. Column model is then used to predict breakthrough curves in a monolithic column. Note that the model does not have any adjustable parameter.
Numerical Simulation
The column model described previously is non-linear PDE. The PDE was discretized in spatial domain with orthogonal collocation (OC) method (Villadsen and Michelsen, 1978; Richard and Duong, 2012; and Choong et al., 2006). This set of ordinary differential equations (ODEs) was solved by using MATLAB subroutine ODE15s. It was found that twenty (20) interior collocation points give balance between computational speed and accuracy. In assuring appropriateness of the OC method, discrete scheme was verified by heat conduction in finite slab and plug flow-adsorption- model cases, and analytical solutions. Conformity for both cases was excellent.
In order to solve Equation (3), equilibrium adsorption capacity and initial conditions have to be known. The governing Equation (3) and Equation (4) from a set of ODEs, are solved simultaneously to
obtain concentration of fluid phase as a function of time. The linear driving force mass transfer coefficient ( ) is determined by matching simulation with experimental data.
RESULTS AND DISCUSSION
Specific surface area and pore volume for the carbon monolith are indicated in Table 1. These results confirm that the carbon monolith has relatively low specific surface. The equilibrium relationship between the activated carbon monolith and dye are described well by using the Langmuir isotherm:
( ) where C
*is concentration in the bulk fluid phase (mg/L).
The linear driving force mass transfer coefficients ( ) are extracted by solving Eq. 3 for batch system in both average concentration in solid phase and initial concentration. Then solution obtained is matched with kinetic data (Fig. 1). The best fit values are then listed (Table 2). Based on correlation coefficients, R
2for monolith, the monolith can be considered as better adsorbent that carbon coated monoliths 8000 whose R
2is 0.978 (Yi et al., 2013).
It is evident that k
LDFand D
effdepends on initial concentration. Both k
LDFand D
effdecrease with an increase of dye concentration. It indicates that there is an increase of affinity energy with progressive filling of site. Therefore, dye is strongly bonded to adsorbent surface, which reduces its diffusion rate from site to site ( Abd et al., 2010).
Adsorption capacity obtained is 190 mg/g (relatively larger than capacity of methylene orange, i. e. 28 – 132.7 mg/g (Willie et al., 2013), and much higher compared to that of
-carotene, i. e. 62.118 mg/g(Muhammad et al., 2011).
Table 1. Specific surface area and pore volume for carbon monolith tested in nitrogen adsorption at temperature of 77 K
Sample S
BET(m
2/g
carbon) Total pore volume (cm
3/g
carbon)
Mesopore area (m
2/g
carbon)
Mesopore volume (cm
3/g
carbon) Activated
Carbon 431.0000 0.3800 186.5500 0.2313
Table 2. Parameters of LDF model for adsorption of MB at various initial concentrations Initial Conc. (ppm)
kLDF(min
-1)
Deff×10
8(cm
2s
-1)
R210 0.01100 6.932 0.9865
20 0.00825 6.661 0.9974
50 0.00520 4.199 0.9945
0 ) ,
( t z L dz
dC
D
axz eff
ax
D a v
D
1
2
1
2
1
2k
LDFk
LDFk
LDF... (11)
... (12)
Adsorption Modeling on Carbon Monolithic Column………
12 J Tek Ind Pert. 25 (1): 8-16
Figure 1. Plot of the MB removal versus time for different initial concentrations: ∆ k
LDF= 0.0110 min
-1; ◊ k
LDF= 0.00825 min
-1; □ k
LDF= 0.00520 min
-1.
Breakthrough curve in each experiment is resulted from the experiment concentration versus time data. Figure 2 depicts breakthrough curves for MB removal with carbon coated monolith at three different dye feed concentrations, 30 cm height of bed, and 1.725 mL/min rate of flow. Shape difference observed at the breakthrough curve is ascribed to varied adsorption-driving-force because this system has the same flow rate, i.e. the same hydraulic loading. Breakthrough curves are flatter in low concentrations, which indicates mass transfer zone that is relatively wider, and film-controlled process. Conversely, an increase of initial adsorbate concentration increases slope of the breakthrough curve that reduces time needed before generation of carbon. It indicates that concentration change at the beginning could modify rate of adsorption and breakthrough time, hence difussion process depends on concentration (Foo and Hameed, 2012).
At constant flow rate, an increase of dye concentration reduces throughput until breakthrough.
This is because high adsorbate concentration makes carbon saturated more quickly, so that decreases breakthrough time. It can be concluded that higher dye concentrations reduce the treating times because carbon coated monolith is saturated more quickly (Walker and Weatherley, 1997). The results indicates that the modeling is favorable because there is relationship between concentration at the beginning with brakthrough time, not as for phenol adsorption (Anisuzzaman et al., 2014).
Breakthrough curve at different bed heights are indicated as plot of the dimensionless concentration versus time (Figure 3). It indicates that adsorber capacity increases at higher bed-depths or carbon mass. It also confirms that volume of solution treated and adsorbate removal increases as bed depth increases (Hasfalina et al., 2012). This
behavior is favorable since higher carbon mass means that there are more available adsorption sites for MB. However, breakthrough curves indicated in Figure 3 do not look like typical profile of “S-shape”
that is resulted in ideal adsorption system. Similar patterns of breakthrough curves are obtained for adsorption of reactive dyes, tectilon red 2B, tectilon blue 4R-01, as well as tectilon orange 3G with adsorber of Filtrasorb 400, and for adsorption of acid dye using granular activated carbon (Walker and Weatherley, 2000; Al-Degs et al., 2007).
Deformed breakthrough curves are attained because of two reasons: (1) adsorption kinetics of MB are slow on carbon coated monolith that is porous, where slow MB kinetics makes breakthrough faster, consequently results in “S”
breakthrough shape that is incomplete, and (2) utilization of small scale-column-apparatus commonly results in adsorption breakthrough curve (Al-Degs et al., 2007; Crittenden et al., 2005). Zone of adsorption along bed decreases throughout the bed height at particular rate which suggests that higher bed height is probably necessary for dye adsorption.
The tendency takes place at adsorption of dye material as a result of its large molecular structure so that its resistance toward internal diffusion is extremely higher compared to that of smaller molecular structures such as phenol.
Breakthrough curves for three types of flow rate, 30 cm fixed bed height, and 20 ppm initial concentration are indicated in Figure 4.
Breakthrough curve shape indicates internal
resistance in column, as well as relative effect in
mass transfer parameter for all conditions of
operation. Apparently, breakthrough point occurs
earlier at higher flow rates, implying shorter column
life.
Darmadi, Medyan Riza, and Mirna Rahmah Lubis
J Tek Ind Pert. 25 (1): 8-16 13
Figure 2. Breakthrough curve for different feed dye concentrations, 30 cm height of bed, and 1.725 mL/min rate of flow
Figure 3. Breakthrough curves of MB adsorption on various bed heights at 1.725 mL min
-1flow rate, 2.5 pH, and C
0of 20 ppm
Figure 4. Breakthrough curves of MB adsorption on various flow rates, 20 ppm feed concentration, bed height of 30 cm, and pH of 2.5.
0 2 4 6 8 10
0 60 120 180 240 300 360 420 480 540
C/Co (×10-1)
Time (min)
Exp Co = 10 ppm Exp Co = 20 ppm Exp Co = 50 ppm Simulation
0 2 4 6 8 10
0 60 120 180 240 300 360 420 480 540
C/Co (×10-1)
Time (min)
Exp. Bed Height 25 cm Exp. Bed Height 30 cm Exp. Bed Height 35 cm Simulation
0 2 4 6 8 10
0 60 120 180 240 300 360 420 480 540
C/Co (×10-1)
Time (min)
Exp. Fz = 1.725 mL/min Exp. Fz = 2.840 mL/min
Adsorption Modeling on Carbon Monolithic Column………
14 J Tek Ind Pert. 25 (1): 8-16
Breakthrough curves are also premature in larger flow rates, indicating that rate of adsorption is controlled by internal diffusion, and a narrow mass transfer zone occurs (Ahmad et al., 2007). It is also because of decrease in contact time between adsorbent and dye at higher flow rate (Walker and Wetherley, 1997). Besides, it is attributable to insufficient contact time of adsorbate in column to enable adsorbate diffuse into monolith pores (Salman et al., 2011). Therefore, solution weakly spreads or diffuses into monolith particle that causes time quicker to achieve saturation, or lower efficiency (Mohammad et al., 2012).
Breakthrough curves are flatter for lower rates indicating that effect of film resistance is more prominent, service time of the bed is longer, and zone of mass transfer is larger. It is reasonable because boundary layer around particles is thicker in lower flow rate that it increases external mass transfer resistance. It also indicates that adsorption is incomplete and leads to steep breakthrough result in initial operation (Ai and Ahmad, 2014). Effects of process parameters on breakthrough curve are also investigated. Breakthrough curves for all parameters are not like characteristic of „S‟ shape profile resulted in ideal adsorption system; it is connected to adsorbate molecular size. Most research performed on adsorption of dyes indicates similar profile of breakthrough curves to profile reported here. It appears that simulations performed by predictive model fits very well to the experimental breakthrough curve (Figures 2 - 4).
CONCLUSIONS AND RECOMMENDATION
Conclusions
LDF model for monolithic system was developed to extract LDF mass transfer coefficients ( ) by fitting the simulation to experimental data of uptake rate. Comparison of results by the LDF model and experiment was good with of 1.10 × 10
-2, 8.25 × 10
-3, and 5.20 × 10
-3min
-1at concentrations of 10, 20, and 50 mgL
-1, respectively.
A predictive model of dispersed plug flow, with adsorption rate stated by the LDF model, was developed to estimate breakthrough curve of monolith column. Parameters of the model were determined by batch adsorption experiments.
Simulation result obtained fits well to the experiment. Optimization could carried out with respect to geometric properties of the monolithic cell density and thickness of carbon coating layer. The LDF model employed in this work had its limitations as it assumes space independent approximation for the rate of adsorption. It is interesting to consider some of new rate models for adsorption. Activated carbon monolith was usable in other processes, i.e.
recovery of beta-carotene from palm oil, multi- component dye adsorption, and catalyst support in
hydrogenation reaction. Investigation of desorption and regeneration of activated carbon monolith is required.
Recommendation
Optimization can be carried out with respect to geometric properties of the monolithic cell density and thickness of carbon coating layer. The LDF model applied in this research should be replaced with new models e.g. film-pore- concentration-dependent-surface-diffusion model.
Activated carbon monolith is usable in recovery of beta-carotene from palm oil, multi-component dye adsorption, and catalyst support in extremely exothermic reaction. Furthermore, investigation of desorption and regeneration of activated carbon monolith is also required in the future.
REFERENCES
Abd MME, Amal MI, and El-Kady MF. 2010.
Adsorption Equilibrium, kinetics and thermodynamcs of methylene blue from aqueous solutions using biopolymer oak sawdust composite. J Am Sci. 6: 267-283.
Ahmad J, Lam SS, Nora‟aini A, Noor MJMM. 2007.
A simulation study of the removal efficiency of granular activated carbon on cadmium and lead. Desalination. 206: 9-16.
doi:10.1016/j.desal.2006.04.048
Ai PL and Ahmad ZA. 2014. Continuous fixed-bed column study and adsorption modeling:
Removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons. Biochem Eng J. 87: 57-61, doi 10.1016/j.bej.2014.03.019.
Al-Degs Y, Khraisheh MAM, Allen SJ, Ahmad MN, Walker GM. 2007. Competitive adsorption of reactive dyes from solution: Equilibrium isotherm studies in single and multisolute systems. Chem Eng J. 128: 163-167.
Anisuzzaman SM, Awang B, Duduku K, Yit ZT.
2014. A study of dynamic simulation of phenol adsorption in activated carbon packed bed column. J King Saud Univ – Eng Sci. Article in press, doi 10.1016/j.jksues.2014.01.001.
Choong TSY, Wong TN, Chuah TG, Idris A. 2006.
Film pore concentration dependent surface diffusion model for the adsorption of dye onto palm kernel shell activated carbon. Jof Colloid and Interface Sci. 301: 436-440.
Chuang CL, Fan M, Xu M, Brown RC, Sung S, Saha B, Huang CP. 2005. Adsorption of arsenic(V) by activated carbon prepared from oat hulls. Chemosphere. 61: 478-873.
doi:10.1016/j.chemosphere.2005.03.012 Crittenden B, Patton A, Jouin C, Perera S, Tennison
S, Echevarria JAB. 2005. Carbon
k
LDFk
LDFDarmadi, Medyan Riza, and Mirna Rahmah Lubis
J Tek Ind Pert. 25 (1): 8-16 15
monoliths: A comparison with granular materials. Adsorption. 11: 537-541.
Cybulski A and Moulijn JA. 2006. Structured catalysts and reactors. 2
ndEd. Boca Raton.
Florida: Taylor & Francis Group.
Darmadi, Choong TSY, Chuah TG., Yunus R, Taufik Yap YH. 2008. Adsorption of methylene blue from aqueous solutions on carbon coated monolith. Asean J Chem Eng. 8: 27-38.
Darmadi, Choong TSY, Chuah TG, Yunus R, Taufiq Yap YH. 2009. Development of polymer derived carbon coated monolith for liquid adsorption application by response surface methodology. The Canadian J Chem Eng.
87: 591-597.
Do DD. 1998. Adsorption Analysis: Equilibria and Kinetics. Imperial College Press: London.
Douglas MR. 1984. Principles of Adsorption and Adsorption Processes. New York: John Wiley & Sons Inc.
Foo KY and Hameed BH. 2012. Dynamic adsorption behavior of methylene blue onto oil palm shell granular activated carbon prepared by microwave heating. Chem Eng J. 203: 81-87.
Giovanna F, Erc SF, and Stafano B. 2009.
Multicriteria design framework for CO
2capture by multi-step PSA Cycles. 19th European Symposium on Computer Aided Process Engineering. Amsterdam: Elsevier.
Gregg SJ and Singh KSW. 1982. Adsorption, Surface Area and Porosity. Academic Press. London.
Hasfalina CM, Maryam RZ, Luqman CA, Rashid M.
2012. Adsorption of Copper (II) from Aqueous Medium in Fixed-Bed Column by Kenaf Fibres. APCBEE Procedia. 3: 255- 263. doi 10.1016/j.apcbee.2012.06.079.
Lingai L, David R, Mark JR, Georges G. 2006.
Adsorption and electrothermal desorption of organic vapors using activated carbon adsorbents with novel morphologies,
Carbon. 44: 2715-2723.
doi:10.1016/j.carbon.2006.04.007.
Lozano-Castello D, Cazorla AD, Linares-Solano A.
2004. Textural development and hydrogen adsorption of carbon materials from PET waste. J Alloys Compd. 379: 280-289.
McEnaney B and Mays TJ. 1989. Introduction to Carbon Science, edited by Marsh H.
Butterworths.
Mohamad RM, Moonis AK, Soraya H, Luqman CA, Thomas SYC. 2014. Adsorption/desorption of cationic dye on surfactant modified mesoporous carbon coated monolith:
Equilibrium, kinetic and thermodynamic studies. J Industand Eng Chem. Article in press, doi 10.1016/j.jtice.2012.07.001.
Mohammad AS, Zahra H, Mohd HSI, Norhafizah A.
2012. Continuous metal and residual oil removal from palm oil mill effluent using natural zeolite-packed column. J Taiwan Institute of Chem Eng. 43: 934-941, doi 10.1016/j.apcbee.2012.06.079.
Muhammad, Moonis AK, Thomas SYC, Chuah TG, Robiah Y. 2011. Desorption of
-carotenefrom mesoporous carbon coated monolith:
Isotherm, kinetics and regeneration studies.
Chem Eng J. 173: 474-479, doi10.1016/j.cej.2011.08.015.
Muhammad, Thomas SYC, Chuah TG, Robiah Y, Taufiq YHY. 2010. Adsorption of
-carotene onto mesoporous carbon coated monolith in isopropyl alcohol and n-hexane solution: equilibrium and thermodynamic study. Chem Eng J. 164: 178-182, doi 10.1016/j.cej.2010.08.052.
Patton A, Crittenden BD, Perera SP. 2004. Use of the linear driving force approxi-mation to guide the design of monolithic adsorbents.
Chem Eng Res and Design. 82: 999-1009.
Richard GR and Duong DD. 2012. Applied Mathematics and Modeling for Chemical Engineers. New York: John Wiley & Sons.
Inc.
Salman JM, Njoku VO, and Hameed BH. 2011.
Batch and fixed-bed adsorption of 2,4- dichloroohenoxyacetic acid onto oil palm frond activated carbon, Chem Eng J. 174:
33-40, doi 10.1016/j.cej.2011.08.024.
Soraya H, Thomas SYC, and Muhammad H. 2012.
Adsorption of a cationic dye from aqueous solution on mesoporous carbon-based honeycomb monolith. Desalination and Water Treatment. 49: 326-336, doi:
10.1080/19443994.2012.-719359.
Vergunst T, Kapteijin F, and Moulijin JA. 2002.
Preparation of carbon-coated monolithic supports. Carbon. 40: 1891-1902.
Villadsen J and Michelsen ML. 1978. Solution of Differential Equation Model by Polynomial Approximation. Englewood Cliffs. New Jersey: Prentice-Hall. Inc.
Walker GM and Weatherley LR. 1997. Adsorption of acid dyes onto granular activated carbon in fixed beds. Water Res. 31: 2093 – 2101.
Willie C, Soraya H, Moonis AK, Chuah TG, Thomas SYC. 2013. Acid modified carbon monolith for methyl orange adsorption.
Chem Eng J. 215-216: 747-754, doi 10.1016/j.cej.2012.07.004.
Xin Z, Ying W, Cuimiao F, Ying S, Dongyuan Z.
2009. Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons. Chem Matter. 21:
706-716, 10.1021/cm8028577.
Yates M, Blanco J, Avila P, Martin MP. 2000.
Honeycomb monoliths of activated carbons
Adsorption Modeling on Carbon Monolithic Column………
16 J Tek Ind Pert. 25 (1): 8-16
for effluent gas purification. Microp and Mesop Mat. 37: 201-208.
Yates M, Blanco J, Martin-Luengo MA, Martin MP.
2003. Vapour adsorption capacity of controlled porosity honeycomb monoliths.
Microp and Mesop Mat. 65: 219-231.
Yi PT, Moonis AK, and Thomas SYC. 2013. Kinetic and isotherm studies for lead adsorption from aqueous phase on carbon coated
monolith. Chem Eng J. 217: 248-255, doi 10.1016/j.cej.2012.12.013.
Zabka M, Minceva M, and Rodrigues AE. 2006.
Experimental and modeling study of
adsorption in preparative monolithic silica
column. Chem Eng and Proces. 45: 150 –
160.
PEDOMAN BAGI PENULIS Jurnal Teknologi Industri Pertanian
Ketentuan Umum 1. Penulis harus menjamin bahwa naskah yang
dikirimkan adalah asli dan tidak pernah dipublikasikan di jurnal lainnya,yang dinyatakan dengan surat pernyataan seperti terlampir.
2. Naskah yang akan dipublikasikan pada Jurnal Teknologi Industri Pertanian dapat berupa hasil penelitian, analisis kebijakan, komunikasi singkat, opini, gagasan dan review.
3. Naskah dapat ditulis dalam Bahasa Indonesia atauBahasa Inggris menggunakan format yang sesuai dengan kaidah bahasa yang digunakan. Editor tidak menerima naskah yang tidak memenuhi persyaratan yang diminta.
4. Penentuan layak tidaknya naskah yang akan dipublikasikan ditentukan oleh Dewan Editor Jurnal Teknologi Industri Pertanian atas masukan mitra bestari yang kompeten.
5. Naskah dikirimkan ke editor sebanyak tiga eksemplar dalam bentuk naskah asli dansoftcopy dalam CD atau dapat dikirim via
email. Naskah ditulis dalam Microsoft Word, Gambar/grafik dalam Microsoft Exceldan tuliskan nama pengarang sebagai nama file. Naskah dapat dikirimkan dengan softcopynya kepada:Editor Jurnal Teknologi Industri Pertanian, Departemen Teknologi Industri Pertanian (TIN), Fateta IPB, Kampus IPB Darmaga PO Box 220 Bogor 16002, Telpon/Fax: 0251-8625088;0251-8621974;
dengan alamat e-mail:[email protected] [email protected].
6. Hak cipta tulisan yang dimuat ada pada Jurnal Teknologi Industri Pertanian.
7. Penulis yang naskahnya dimuat diharuskan membayar kontribusi biaya penerbitan sebesar Rp 75.000,00 per halaman. Biaya tambahan untuk pencetakan halaman berwarna menjadi tanggungjawab penulis.
8. Penulis harus mengusulkan tiga nama calon mitra bebestari (reviewer) yang kompeten dibidangnya dan bergelar doktor beserta nama institusi, alamat institusi dan alamat e-mailnya lengkapnya, yang penulis harapkan dapat me-review naskahnya.
Standar Penulisan
1. Naskah diketik dengan jarak 1,5 spasi kecuali Judul, Abstrak, Judul Gambar dan Judul Tabel diketik 1 spasi. Naskah diketik di atas kertas A4 dalam 1 kolom dengan jumlah kata antara 4000 sampai 7000 kata termasuk gambar dan tabel.
2. Naskah diketik menggunakan program Microsoft Word, Gambar menggunakan JPEG atau TIFF, jika ada grafik, lampirkan juga file masternya/Microsoft Excel. Huruf standar yang digunakan untuk penulisan adalah Times New Roman 12.
3. Naskah disusun dengan urutan: judul, nama penulis, alamat lengkap instansi setiap penulis, abstrak, pendahuluan, bahan dan
metode, hasil dan pembahasan, kesimpulan, ucapan terima kasih (kalau ada) dan daftar pustaka. Alamat instansi (jalan, nomor, kota, kode pos) dan alamat e-mail penulis perlu dituliskan dengan jelas.
4. Tata nama latin binomial atau trinomial (italik) digunakan untuk tanaman, hewan, serangga dan penyakit. Nama lengkap kimia digunakan untuk senyawaan pada penyebutan pertama kali.
5. Satuan pengukuran dipakai Sistem Internasional (SI).
6. Penulisan angka desimal untuk Bahasa Indonesia dengan koma (,) dan untuk Bahasa Inggris dengan titik (.).
Tatacara Penulisan Naskah Judul.Judul harus singkat, spesifik dan informatif
yang mencerminkan secara tepat isi naskah, dengan jumlah kata maksimal 15 kata ditulis dalam Bahasa Indonesia dan Bahasa Inggris.Judul diikuti dengan nama pengarang, institusi dan alamat, serta catatan kaki yang merujuk penulis yang bertanggungjawab untuk surat menyurat (corresponding author), lengkap dengan alamat surat, nomor telpon & faksimili serta alamat e- mail.
Abstrak. Abstrak ditulis dalam Bahasa Inggris dan BahasaIndonesia.Abstrak terdiri dari 200-250 katadan ditulis dalam satu paragraf. Abstrak berisi intisari dari keseluruhan naskah, yakni latar belakang, tujuan, metode, hasil-hasil penting, pembahasan, dan kesimpulan. Hindari penggunaan singkatan kecuali yang telah umum digunakan.
Kata kunci (keywords) ditulis dalam Bahasa Inggris
dan Bahasa Indonesia, terdiri atas tiga hingga lima
kata/frase, dan disusun berdasarkan kepentingan dan disajikan pada bagian akhir abstrak.
Pendahuluan. Pada bagian ini disajikan latar belakang yang didukung dengan intisari pustaka, tujuan dan apabila diperlukan ruang lingkuppenelitian,sehingga pembaca dapat mengevaluasi hasil kajian tanpa harus membaca publikasi sebelumnya. Pustaka yang digunakan harus yang benar-benar relevan dengan penelitian yang dilakukan. Tinjauan pustaka sebaiknya diintegrasikan pada bagian pendahulan, metodologi, dan pembahasan.
Bahan dan Metode. Bagian ini berisi informasi teknis dan rinci, sehingga percobaan dapat diulang dengan baik oleh peneliti lainnya. Jika digunakan peralatan/instrumen khusus maka perlu diberikan spesifikasi alat dan kondisi operasi.
Hasil dan Pembahasan. Bagian ini menyajikan hasil penelitian, baik dalam bentuk teks, tabel, atau gambar. Penggunaan foto sangat dibatasi pada hasil yang jelas. Setiap gambar dan tabel diberi nomor secara berurut dan harus diacu pada naskah. Gambar 1, Gambar 2, dan Tabel 1 adalah contoh penulisan gambar dan tabel.
Gambar 1. Hubungan antara konsentrasi natrium perkarbonat, jumlah air dan daya serap air setelah perendaman selama 2 jam
Gambar 2. Interaksi antara konsentrasi natrium perkarbonat dan jumlah air terhadap kadar minyak
Tabel 1. Komposisi media transmisi Komposisi Jumlah (g/L)
KH
2PO
43
MgSO
4.7H
2O 0,5
(NH
4)
2SO
40,3
CaCl
20,25
FeCl
3.6H
2O 0,02
Kesimpulan dan Saran
Kesimpulan ditulis secara ringkas tetapi menggambarkan substansi hasil penelitian yang diperoleh.
Sarandiberikan secara jelas untuk dapat ditindaklanjuti oleh pihak yang relevan.
Ucapan Terima Kasih. Bagian ini dapat digunakan untuk mengapresiasi penyandang dana serta institusi dan personal yang membantu selama penelitian dan penyusunan naskah publikasi.
Daftar Pustakadiperlukan untuk semua sitasi dan disusun berdasarkan urutan abjad menggunakan author-date system. Pustaka yang digunakan merupakan pustaka mutakhir (10 tahun terakhir) dengan proporsi pustaka jurnal lebih dari 50%, dan pustaka primer yang relevan. Tidak diperkenankan menggunakan pustaka kutipan sebagai acuan pustaka.
Jurnal ini direferensikan sebagai J Tek Ind Pert., untuk jurnal-jurnal lainnya gunakan singkatan-singkatan berdasarkanChemical Abstracts abbreviations.
Jurnal
Sunarti TC, Nunome T, Yoshio N, Hisamatsu M.
2001. Study on outer chains from amylopectin between immobilized and free debranching enzymes. J Appl Glycosc.48 (1): 1-10.
Buku
Baker RW. 2004. Membrane Technology and Application. 2
nded. West Sussex: John Wiley
& Sons, Ltd.
Chapter dalam Buku
White PJ dan Tziotis A. 2004. New corn starch. Di dalam Eliasson AC (ed.),Starch in Food:
Structure, function and application.
Cambridge: CRC Press. P295-320.
Prosiding
Sunarti TC dan Yuliasih I.2006. Fractionation of Sago Starch Using Hot Water Solubiliza-tion Method.Proceedings of Malaysian Chemistry Conference 2006–International Conference on Green Chemistry. Petaling Jaya, Malaysia.19- 21 September 2006.
Tesis/Disertasi
Yuliasih I. 2007. Fraksinasi dan asetilasi pati sagu serta aplikasinya sebagai campuran plastik sintetik. [Disertasi]. Bogor: Institut Pertanian Bogor.
0 2 4 6 8 10 12
70 50 30
Jumlah Air (%)
Kadar Minyak (%)
Natrium perkarbonat 2%
Natrium perkarbonat 4%
Natrium perkarbonat 6%
Jurnal Elektronik
Romo DMR, Grosso MV, Solano NCM, Castano DM. 2007. A most effective method for selecting a broad range of short and medium chain-length polyhidroxyalcanoate
producing micro-organisms. Electron J Biotechnol. 10:e349-57, doi 10.2225.
Paten
Robinson JM. 2010. Methods of digesting cellulose to
glucose using slats and microwave (muwave)
energy. US Patent No: US2010/0044210 A1.
SURAT PERNYATAAN
Kepada Yth.
Redaksi Jurnal Teknologi Industri Pertanian Di Tempat
Bersama ini kami kirimkan naskah Judul : ...
Penulis : 1. ...
2. ...
dst.
Instansi : 1. ...
2. ...
dst.
untuk dapat diterbikan pada JurnalTeknologi Industri Pertanian. Kami menyatakan bahwa naskah tersebut belum pernah diterbitkan, dan selama naskah ini masih dalam proses penelaahan dan penyuntingan tidak akan diajukan untuk diterbitkan di media manapun, kecuali kami telah mencabut secara resmi naskah tersebut dari Jurnal Teknologi Industri Pertanian.
Mohon agar korespodensi (corresponding author) ditujukan kepada:
Nama : ...
Alamat : ...
Telepon/HP/e-mail : ...
Demikian surat pernyataan ini, atas perhatian dan kerjasama yang baik, kami sampaikan terima kasih.
..., ... 20...
Hormat kami, tanda tangan
( ...)
. .1Jurnal
TApril 2012Vol22NoeknologiIndustri Pertanian
Jurnal
Teknologi Industri Pertanian
ISSN 0216-3160
Vol. 25 No.1 April 2015
TERAKREDITASI: SK Dirjen DIKTI No. 56/DIKTI/Kep/2012
Vol. 25 No. 1Jurnal Teknologi Industri PertanianApril 2015