• Tidak ada hasil yang ditemukan

PERANCANGAN DAN PEMBUATAN RUMAH DC: KONTROL MANAJEMEN BATERAI BI- DIRECTIONAL (DC-DC CONVERTER) TUGAS AKHIR

N/A
N/A
Protected

Academic year: 2021

Membagikan "PERANCANGAN DAN PEMBUATAN RUMAH DC: KONTROL MANAJEMEN BATERAI BI- DIRECTIONAL (DC-DC CONVERTER) TUGAS AKHIR"

Copied!
18
0
0

Teks penuh

(1)

PERANCANGAN DAN PEMBUATAN RUMAH

DC: KONTROL MANAJEMEN BATERAI

BI-DIRECTIONAL (DC-DC CONVERTER)

TUGAS AKHIR

Disusun Oleh :

SAMUDI

NIM: 201010130311192

JURUSAN ELEKTRO

FAKULTAS TEKNIK

UNIVERSITAS MUHAMMADIYAH MALANG

(2)

ii

PERANCANGAN DAN PEMBUATAN RUMAH DC:

KONTROL MANAJEMEN BATERAI

BI-DIRECTIONAL (DC-DC CONVERTER)

TUGAS AKHIR

Diajukan kepada

Fakultas Teknik Universitas Muhammadiyah Malang Untuk Memenuhi Salah Satu Persyaratan

Akademik dalam Menyelesaikan Program Sarjana (S-1) Teknik

Disusun Oleh :

SAMUDI

NIM: 201010130311192

JURUSAN ELEKTRO

FAKULTAS TEKNIK

(3)
(4)
(5)
(6)

vi ABSTRAKSI

Abstrak-Manajemen baterai dan beban pada proyek DC House ini

mengatur charging dan discharging baterai.. Tugas akhir ini membahas perancangan dan pembuatan Rumah DC: Kontrol Manajemen Baterai Bi-directional (DC-DC Converter) menggunakan topologi buck dan boost konverter dengan menggunakan dua buat Metal Oxide Semiconductor Field Effect Transistor (MOSFET) untuk mengatur switching dari rangkaian buck dan boost konverter. Pengaturan charging dan discharging baterai dan beban menggunakan tiga buah relay dengan parameter sumber daya listrik, kapasitas baterai dan beban. Pengujian menggunakan implementasi buck dan boost konverter menggunakan mikronkontroller Atmega8535 dengan Pulse With Modulation (PWM) sebagai driver penyulutnya.Tujuan dari tugas akhir ini adalah perancangan, pembuatan serta Memahami konsep perancangan dan aplikasi dari pembuatan system Battery Charge, yang sumbernya berasal dari input (MISO) sebagai sumber energy untuk pengisian accu yang diaplikasikan sebagai suplay energy untuk mensuplai beban 150 Watt.

(7)

vii ABSTRACT

Abstract- Battery management and load on the DC House project is

set charging and discharging of the battery .This thesis discusses the design and manufacturing of House DC: Battery Management Control Bi-directional (DC-DC Converter) using buck and boost converter topologies using two for Metal Oxide Semiconductor Field Effect Transistor (MOSFET) to regulate the switching of the circuit buck and boost converter. Setting charging and discharging of the battery and the load uses three relays with the parameters of the power source, the battery capacity and load. Tests using implementations buck and boost converter using mikronkontroller Atmega8535 with Pulse With Modulation (PWM) as a drivers input.The aim of this thesis is the design, manufacture and understand the concept of the design and application of the manufacturing system Battery Charge, which is derived from the input source (MISO) as a source of energy for charging batteries which is applied as a supply of energy to supply the load 150 Watt.

(8)

viii KATA PENGANTAR

Assalamualaikum Wr. Wb.

Puji syukur kehadirat Allah SWT yang telah mencurahkan kasih dan sayang kepada hambaNya sehingga tugas akhir yang berjudul “PERANCANGAN DAN PEMBUATAN RUMAH DC: KONTROL MANAJEMEN BATERAI BI-DIRECTIONAL (DC-DC CONVERTER)” dapat terselesaikan yang digunakan sebagai salah satu persyaratan untuk meraih gelar sarjana S-1.

Banyak sekali pihak yang telah membantu penulis sehingga tugas akhir ini dapat diselesaikan. Dalam kesempatan ini penulis ingin mengucapkan terima kasih yang tak terhingga kepada:

1. Orang tua tercinta, yang senantiasa mendoakan dan mendukung secara materiil demi terselesaikannya tugas akhir ini.

2. Ibuk Ir. Nur Alif Mardiyah,MT., selaku Ketua Jurusan Elektro Universitas Muhammadiyah Malang, dan juga selaku dosen wali yang selama ini telah membimbing proses akademis hingga akhir jenjang kuliah.

3. Ermanu Azizul Hakim,Dr.Ir.MT, selaku dosen pembimbing I yang telah meluangkan waktu untuk membimbing, mengarahkan penulis dengan sabar, dan selalu memberi semangat dalam menyelesaikan tugas akhir ini.

4. Ir. Nur Khasan,MT. selaku dosen pembimbing II yang telah meluangkan waktu untuk membimbing, mengarahkan, dan selalu memberi semangat serta masukan dalam menyelesaikan tugas akhir ini.

5. Seluruh dosen dan staf TU jurusan elektro UMM, terima kasih banyak atas bantuannya.

6.

Saudara-saudara di rumah, mas Amin, Adikku Wiwit Jayanti terima kasih atas doa dan dukungannya.

7. Teman-teman seperjuangan elektro 2010, anak-anak Rumah Makan Nelongso, “Cepet diselesaikan skripsinnya rek ndang kerjo !!!” yang telah membantu dan mendukung terselesaikannya tugas akhir ini.

(9)

ix Jika ada kesalahan dalam penulisan tugas akhir ini, penulis berharap saran dan kritik yang bersifat membangun guna kesempurnaan dari isi tugas akhir ini. Semoga tugas akhir ini dapat berguna bagi penulis dan pembaca.

Wassalamualaikum wr. wb.

Malang, Oktober 2015

(10)

x

DAFTAR ISI

LEMBAR JUDUL ... i

LEMBAR PERSETUJUAN ... iii

LEMBAR PENGESAHAN ... iv

SURAT PERNYATAAN KEASLIAN ... v

ABSTRAKSI ... vi

KATA PENGANTAR ... viii

DAFTAR ISI ... x

DAFTAR GAMBAR ... xiv

DAFTAR TABEL ... xvi

BAB I PENDAHULUAN 1.1 Latar Belakang ... 1 1.2 Tujuan ... 2 1.3 Perumusan Masalah ... 2 1.4 Metodologi ... 2 1.4.1 Studi literatur ... 3 1.4.2 Perancangan Sistem ... 3

1.4.3 Perancangan Perangkat Lunak ... 3

1.4.4 Pembuatan dan Pengukuran atau Pengujian Perangkat Sistem ... 4

1.4.5 Pengujian Sistem ... 4

1.4.6 Analisa Sistem ... 5

1.4.7 Konfigurasi Sistem ... 5

1.5 Sistematika Penulisan Laporan ... 5

BAB II DASAR TEORI 2.1 Proyek Rumah DC ... 7

2.2 Baterai (Accumulator) ... ...8

2.2.1 Proses Charge Discharge dengan Arus Konstan ... ...8

(11)

xi

2.3 Battery Charge Regulator (BCR) ... 12

2.4 Prinsip Kerja Baterai ... 14

2.5 Sensor Tegangan dan Arus ... 15

2.5.1 Sensor Tegangan ... 16

2.5.2 Sensor Arus ... 17

2.6 DC-DC Converter ... 18

2.7 Metal Oxide Semiconductor Field Effect Transisitor (MOSFET) ... .21

2.7.1 Driver MOSFET ... .23

2.8 Dasar Switching Converter ... .23

2.9 Buck Converter ... .24

2.10 Boost Converter ... .28

2.11 Penentuan LC Filter ... .29

2.11.1 Penentuan Nilai Induktansi L ... .29

2.11.2 Penentuan Nilai Capasitansi C ... .31

BAB III RANCANGAN SISTEM 3.1 Diagram Blok Sistem Bi-directional DC-DC Converter ... 23

3.2 Desain Buck Converter ... 35

3.3 Rangkaian Buck Converter ... 38

3.4 Desain Boost Converter ... 39

3.5 Rangkaian Boost Converter... 42

3.6 Mikrokontroller ATMega8535 ... 43

3.7 Rangkaian Relay Pengatur Beban ... 44

3.8 Rangkaian LCD ... 45

3.9 Desain Sensor Tegangan ... 45

3.10 Sensor Arus ... 47

3.11 Rangkaian Charge Baterai ... 47

3.11.1 Analisa Perhitungan ... 49

3.11.2 Prinsip Kerja Charge Baterai ... 50

(12)

xii BAB IV PENGUJIAN DAN ANALISA

4.1 Metode Pengujian ... 52

4.2 Pengujian Buck Converter dan Driver Penyulutnya ... 52

4.2.1 Tujuan Pengujian ... 53

4.2.2 Alat Yang Dibutuhkan ... 53

4.2.3 Gambar Rangkaian ... 53

4.2.4 Prosedur Pengujian ... 53

4.2.5 Hasil Pengujian Buck Coverter ... 54

4.3 Pengujian Rangkaian Charge Baterai ... 55

4.3.1 Tujuan Pengujian ... 55

4.3.2 Alat Yang Dibutuhkan ... 55

4.3.3 Gambar Rangkaian ... 55

4.3.4 Prosedur Pengujian ... 56

4.3.5 Hasil Pengujian Rangkaian Charge ... 56

4.4 Pengujian Boost Converter ... 57

4.4.1 Tujuan Pengujian ... 57

4.4.2 Alat Yang Dibutuhkan ... 57

4.4.3 Gambar Rangkaian ... 58

4.4.4 Prosedur Pengujian ... 58

4.4.5 Hasil Pengujian Boost Converter ... 58

4.5 Pengujian Sensor Tegangan ... 60

4.5.1 Tujuan Pengujian ... 60

4.5.2 Alat Yang Dibutuhkan ... 60

4.5.3 Gambar Rangkaian ... 60

4.5.4 Prosedur Pengujian ... 60

4.5.5 Hasil Pengujian Boost Converter ... 60

4.6 Pengujian Relay ... 61

4.6.1 Tujuan Pengujian ... 61

4.6.2 Alat Yang Dibutuhkan ... 61

4.6.3 Gambar Rangkaian ... 61

4.6.4 Prosedur Pengujian ... 62

(13)

xiii

4.7 Pengujian Sensor Arus ACS712 ... 62

4.7.1 Tujuan Pengujian ... 62

4.7.2 Alat Yang Dibutuhkan ... 62

4.7.3 Gambar Rangkaian ... 63

4.7.4 Prosedur Pengujian ... 63

4.7.5 Hasil Pengujian Boost Converter ... 58

4.8 Pengujian Integrasi Keseluruhan ... 64

4.8.1 Tujuan Pengujian ... 64

4.8.2 Alat Yang Dibutuhkan ... 64

4.8.3 Gambar Rangkaian ... 64

4.8.4 Prosedur Pengujian ... 65

4.8.5 Hasil Pengujian Boost Converter ... 65

BAB V PENUTUP 5.1 Kesimpulan ... 67

5.2 Saran ... 67

(14)

xiv

DAFTAR GAMBAR

Gambar 1.1 Rangkaian Kontroller ... 3

Gambar 1.2 Flowchart Tahap-tahap Pengerjaan Proyek Akhir ... 4

Gambar 1.3 Perancangan Sitem ... 5

Gambar 2.1 Diagram Blok Rumah DC ... 7

Gambar 2.2 Proses Charge Dengan Arus Konstan ... 9

Gambar 2.3 Proses Discharge Dengan Arus Konstan ... 9

Gambar 2.4 Proses Charge Dengan Daya Konstan ... 10

Gambar 2.5 Proses Discharge Dengan Daya Konstan ... 10

Gambar 2.6 Proses Charge Dengan Arus Konstan dan Tegangan Konstan ... 10

Gambar 2.7 Proses Discharge Dengan Resistansi Konstan ... 11

Gambar 2.8 Blok Diagram Baterai Charge ... 13

Gambar 2.9 Blok Diagram Baterai Discharge ... 13

Gambar 2.10 Proses Pengosongan Baterai... 14

Gambar 2.11 Proses Pengisian Baterai. ... 15

Gambar 2.12 Rangkaian Tegangan dan Arus. ... 15

Gambar 2.13 Rangkaian Pembagi Tegangan ... 16

Gambar 2.14 Sensor Arus ACS712 ... 17

Gambar 2.15 DC-DC Converter ... 18

Gambar 2.16 Rangkaian PWM ... 19

Gambar 2.17 Gelombang Pulsa Keluaran PWM ... 19

Gambar 2.18 Pulse Width Modulation (PWM) ... 20

Gambar 2.19 Pulse Frekuensi Modulation (PFM) ... 20

Gambar 2.20 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) .... 21

Gambar 2.21 Simbol MOSFET... 22

Gambar 2.22 Driver MOSFET ... 23

Gambar 2.23 Rangkaian Dasar Switching Converter ... 23

Gambar 2.24 Tegangan Keluaran ... 24

Gambar 2.25 Rangkaian Buck Converter ... 25

Gambar 2.26 Rangkaian Buck Converter Saat Kondisi ON ... 26

(15)

xv

Gambar 2.28 Rangkaian Boost Converter ... 28

Gambar 2.29 Bentuk Gelombang Tegangan dan Arus pada Boost Converter ... 29

Gambar 2.30 Arus Induktor ... 30

Gambar 2.31 Tegangan Ripple ... 31

Gambar 2.32 Arus Capasitor ... 32

Gambar 3.1 Diagram Blok Sistem Bi-directional DC-DC Converter... 33

Gambar 3.2 Rangkaian Buck Converter ... 38

Gambar 3.3 Rangkaian Boost Converter. ... 42

Gambar 3.4 Rangkaian ATMega8535 ... 43

Gambar 3.5 Rangkaian Relay Pengatur Beban ... 45

Gambar 3.6 Rangkaian LCD 16x2 ... 45

Gambar 3.7 Rangkaian Sensor Tegangan ... 46

Gambar 3.8 Sensor arus ACS712 ... 47

Gambar 3.9 Rangkaian Charge Baterai ... 47

Gambar 4.1 Gelombang PWM Buck Converter ... 53

Gambar 4.2 Diagram Blok Rangkaian Power Suplai... 53

Gambar 4.3 Hardware Buck Converter ... 54

Gambar 4.4 Gelombang Output Buck Converter. ... 54

Gambar 4.5 Hasil Tampilan Buck Converter ... 55

Gambar 4.6 Diagram Blok Rangkaian Charge ... 55

Gambar 4.7 Accu pada Saat Mengisi Baterai ... 56

Gambar 4.8 Gelombang PWM Boost Converter ... 57

Gambar 4.9 Diagram Blok Rangkaian Boost Converter ... 58

Gambar 4.10 Hardware Boost Converter ... 58

Gambar 4.11 Gelombang Output Boost Converter ... 59

Gambar 4.12 Hasil Tampilan Boost Converter ... 59

Gambar 4.13 Diagram Blok Rangkaian Sensor Tegangan ... 60

Gambar 4.14 Sensor Tegangan ... . 60

Gambar 4.15 Diagram Blok Relay ... 61

Gambar 4.16 Pengujian Relay... 62

Gambar 4.17 Diagram Blok Rangkaian ACS712 ... 63

(16)
(17)

xvii

DAFTAR TABEL

Tabel 2.1 Tabel Kapasitansi Accu ... 11

Tabel 2.2 Keterangabn Gambar Sensor Arus ACS712 ... 17

Tabel 2.3 Jenis-jenis Toroid. ... 31

Tabel 3.1 Data Komponen Charge Baterai ... 48

Tabel 4.1 Hasil Pengujuran pada Rangkaian Buck Converter. ... 55

Tabel 4.2 Data Pada saar Mengisi accu 12 Volt 9 Ah ... 57

Tabel 4.3 Hasil Pengukuran pada Rangkaian Boost Converter ... 59

Tabel 4.4 Hasil Pengukuran pada Rangkaian Sensor Tegangan ... 61

(18)

xviii

DAFTAR PUSTAKA

[1] J. Zhang, “Bidirectional DC-DC Power Converter Design Optimization, Modeling and Control,” Ph.D dissertation, Dept. Elect. Eng.,Virginia Polytechnic Institute and State Univ.,Blacksburg, VA, 2008.

[2] Taufik. (2011). “The DC House Project.”[online]. Available:

http://www.calpoly.edu/~taufik/dchouse/indek.html

[3] J. K. Shiau, and C. J. Cheng, "Design of a non-inverting synchronous

buck-boost DC/DC power converter with moderate power level," Robotics and

Computer Integrated Manufacturing, vol. 26, no. 3, pp. 263-267, June 2010. [4] Perez , Richard, "Lead-acid Battery State of Charge vs.Voltage ",1993.

[5] Gaboriault, Mark, "A High Efficiency, Non-Inverting, Buck-Boost DC- DC

Converter " Allegro MicroSystems 115 Northeast Cutoff Worcester, MA

01606 USA

[6] KAZIMIERCZUK, MARIAN K. "Pulse-width Modulated DC-DC Power

Converters," Wiley, Ohio, 2008.

[7] Sasongko, Firman, “teknik kendali Konverter DC-DC topologi baru mode

Referensi

Dokumen terkait

taan atau gejala-gejala yang dihadapi, hukum sebagai kaidah merupakan pedo- man sikap tindak atau perilaku yang pantas atau diharapkan, hukum sebagai tata huk- um

Gambar 10 adalah perbandingan persentase degradasi dengan menggunakan metode fotokatalisis dan fotoelektrokatalisis pada waktu 4 jam dengan penyinaran sinar tungsten, hasil

Identitas itu adalah penerimaan diri bahwa kita layak kaya dan kita sudah ditakdirkan oleh Tuhan untuk menjadi kaya, kaya yang membawa berkat untuk orang banyak,

Berdasarkan perhitungan yang telah dilakukan, maka dapat diberikan usulan perbaikan sebagai berikut, melakukan perekrutan tour leader dengan melalui mekanisme

Pada proses regenerative braking, daya yang dihasilkan motor sebagai generator ±560 Watt dengan daya yang dihasilkan sel surya sebesar ±520 Watt. Daya charge

Tujuan dari laporan akhir ini adalah untuk mengetahui kinerja keuangan perusahaan berdasarkan rasio likuiditas, leverage , aktivitas dan profitabilitas pada PT

Independensi secara parsial mempunyai pengaruh yang signifikan terhadap kualitas audit, sehingga independensi yang dimiliki internal auditor bank tersebut harus bekerja

Dari hasil penelitian yang dilakukan, menunjukkan bahwa nilai koefisien variabel kualitas layanan sebesar 0.623 dengan arah positif dan hasil pengujian hipotesis telah