• Tidak ada hasil yang ditemukan

Groundwater flow Groundwater flow

N/A
N/A
Protected

Academic year: 2019

Membagikan "Groundwater flow Groundwater flow"

Copied!
38
0
0

Teks penuh

(1)

M odu le 4 – ( L1 2 - L1 8 ) : “

W a t e r sh e d M ode lin g”

St a n da r d m ode lin g a ppr oa ch e s a n d cla ssifica t ion s, syst e m con ce pt St a n da r d m ode lin g a ppr oa ch e s a n d cla ssifica t ion s, syst e m con ce pt for w a t e r sh e d m ode lin g, ove r a ll de scr ipt ion of diffe r e n t h ydr ologic pr oce sse s, m ode lin g of r a in fa ll, r u n off pr oce ss, su bsu r fa ce flow s a n d gr ou n dw a t e r flowg

1 8

Su bsu r fa ce & Gr ou n dw a t e r

1 1

1

(2)

L1 8

L1 8 –

Su bsu r fa ce & Gr ou n dw a t e r

Fl

Flow s

Topics Cove r e d

Topics Cove r e d

Subsurface flow , I nfilt rat ion, Aquifers

Subsurface flow , I nfilt rat ion, Aquifers

Groundw at er flow Groundw at er flow

Groundw at er flow Groundw at er flow

Groundw at er flow, Groundw at er flow

Groundw at er flow, Groundw at er flow

m odeling, Num erical m odeling, Groundw at er

m odeling, Num erical m odeling, Groundw at er

li

li

qualit y

qualit y

Keywords:

Keywords:

y

y

Subsurface flow, I nfilt rat ion, Aquifer, Subsurface flow, I nfilt rat ion, Aquifer, qq

Groundw at er flow , Groundw at er flow m odeling, Num erical Groundw at er flow , Groundw at er flow m odeling, Num erical m odeling, Groundw at er qualit y.

m odeling, Groundw at er qualit y.

2 2

(3)

Re ch a r ge beneat h t he Eart h’s surface

R h d b i filt t i it h t he beds of st ream s, lakes & oceans.

Un sa t ur a t e d soil Con fin e d

a qu ife r I m pe r viou s la ye r

• Discharged t hrough - evaporat ion,

t ranspirat ion, from springs, seeps on land surface or beds of surface wat er bodies,

Un sa t ur a t e d soil

Soil

pa r t icle a ir

surface or beds of surface wat er bodies, pum ping wells, gravit y drains et c.

• Subsurface environm ent –som e

arrangem ent of porous m at erials wat er

Sa t u r a t e d soil W a t e r

arrangem ent of porous m at erials – wat er m oves wit hin t he pores of t hese m at erials. • Most t errest rial hydrologic act ivit ies t akes

Soil

pa r t icle

3 3

Prof. T I Eldho, Department of Civil Engineering, IIT Bombay

y g

(4)

Rainfall

Evapot ranspirat ion

Su bsu r fa ce W a t e r

S il t

Unsat urat ed zone

Soil wat er

- divided int o 3 part s

 Drainable wat er – t hat readily

drains from soil under t he

Wat er Table

Capillary fringe

Recharge

influence of gravit y – w at er occupying pores larger t han capillary size.

Fully Sat urat ed Zone - Groundwat er

 Plant available wat er – volum e of

wat er released from soil bet ween

a soil wat er pressure head of p

about - 1/ 3 bar ( field capacit y)

and about - 15 bars ( wilt ing point ) – w at er det ained in st orage by

ll f

capillary forces.

 Unavailable wat er – hygroscopic

wat er – w at er held t ight ly in film s

4 4

around individual soil part icles.

(5)

I n filt r a t ion

I nfilt rat ion: process by which wat er on t he ground

surface ent ers t he soil.

 I nfilt rat ion capacit y of soil det erm ines – am ount &  I nfilt rat ion capacit y of soil det erm ines – am ount &

t im e dist ribut ion of rainfall excess for runoff from a st orm .

f f f ff b f

 I m port ant for est im at ion of surface runoff, subsurface

flow & st orage of wat er wit hin wat ershed.

 Cont rolling fact ors:Cont rolling fact ors: Soil t ype ( size of part icles, degree Soil t ype ( size of part icles, degree

of aggregat ion bet ween part icles, arrangem ent of

part icles) ; veget at ive cover; surface crust ing; season of t he year; ant ecedent m oist ure; rainfall hyet ograph; of t he year; ant ecedent m oist ure; rainfall hyet ograph; subsurface m oist ure condit ions et c.

Soil zone

5 5

Prof. T I Eldho, Department of Civil Engineering, IIT Bombay

Groundwat er Capillary fringe

(6)

Un sa t u r a t e d & Sa t u r a t e d Flow s

Un sa t ur a t e d soil

 Unsat urat ed soils: wat er m oves

prim arily in sm all pores & t hrough film s locat ed around and bet ween

Un sa t ur a t e d soil

Soil

pa r t icle a ir

film s locat ed around and bet ween solid part icles. As wat er cont ent decreases, cross sect ional area of

t he film s decreases & flow pat hs Sa t u r a t e d soil

W a t e r

t he film s decreases & flow pat hs becom e m ore lim it ed. Result is a hydraulic conduct ivit y funct ion t hat decreases rapidly wit h wat er

Soil

pa r t icle

(7)

Un sa t u r a t e d & Sa t u r a t e d Flow s..

 Soil Wat er Movem ent: response t o a gradient

 Wet soil t o Dry Soil - low soil m oist ure t ension t o high

SMT; high soil wat er pot ent ial t o low soil pot ent ial SMT; high soil wat er pot ent ial t o low soil pot ent ial

 Sat urat ed condit ions: w at er m oving m ainly in t he

m acropores, all of t he pores are filled.

U t t d dit i f ll f i i

 Unsat urat ed condit ions: m acropores full of air m icropores

filled wit h wat er & air - m oist ure t ension gradient creat es unsat urat ed flow.

S t t d fl ( it t i l fl ) d t t d

 Sat urat ed flow ( gravit at ional flow ) occurs under sat urat ed

condit ions w hen t he force of gravit y is great er t han forces holding wat er in t he soil. Capillary flow occurs in

unsat urat ed soil ( also called unsat urat ed flow) .

 Measuring Soil Moist ure: Gravim et ric m et hod,

Tensiom et er, Elect rical resist ance m et hod

Unsat urat ed

Surface wat er

7 7

Tensiom et er, Elect rical resist ance m et hod

Groundwat er ( sat urat ed flow )

(8)

 I nfilt rat ed wat er som e replenishes soil m oist ure deficiency

Gr ou n dw a t e r

 I nfilt rat ed wat er – som e replenishes soil m oist ure deficiency

– if soil is not sat urat ed

 When sat urat ed – shallow groundwat er syst em

 Wat er t hen percolat es down unt il it reaches t he sat urat ed

zone – called Aquifer or deep groundwat er syst em

 Upper wat er surface of sat urat ed zone groundwat er is

 Upper wat er surface of sat urat ed zone – groundwat er – is

called wat er t able.

 Soil above wat er t able – not sat urat ed –Hydrologic processes

vadose or unsat urat ed zone

 Groundwat er – im port ant source of

fresh wat er–part of hydrologic cycle

Precipitation

Overland Evaporation

fresh wat er part of hydrologic cycle

 Const it ut es m ore t han 80 t im es

am ount of fresh wat er in rivers & lakes com bined

Land Hydrology

Groundw ater

8 8

lakes com bined.

River Groundw ater

(9)

Gr ou n dw a t e r - Aqu ife r s

 Aquifer- form at ion t hat cont ains sufficient sat urat ed

perm eable m at erial t o yield significant quant it y of wat er t o wells/ springs e.g. Sand.

wat er t o wells/ springs e.g. Sand.

 Aquiclude: sat urat ed but relat ively im perm eable

m at erial – does not yield appreciable quant it ies of w at er; e g Clay

wat er; e.g. Clay.

 Aquifuge: relat ively im perm eable form at ion – neit her

cont ain nor t ransm it wat er; e.g.: granit e.

 Aquit ard: sat urat ed but poorly

perm eable st rat um; e.g.: sandy clay.

Aquifers: Confined or unconfined

Re ch a r ge

D ischa r ge

 Aquifers: Confined or unconfined

Unconfined aquifer

Pu m pin g w e ll

I m pe r viou s

9 9

Prof. T I Eldho, Department of Civil Engineering, IIT Bombay

Con fin e d a qu ife r Con fin e d

pe ou s

la ye r

I m pe r viou s la ye r

(10)

Aquifer Charact erist ics

 Porosit y ( n) :Porosit y ( n) : Those port ions of soil, not occupied by solids; Those port ions of soil, not occupied by solids;

Rat io of volum e of pores or int erst ices t o t ot al volum e.

 Percolat ion – rat e at w hich w at er m oves dow nw ard t hrough

soil; Perm eabilit y – an expression of m ovem ent of w at er in soil; Perm eabilit y an expression of m ovem ent of w at er in any direct ion.

 Specific yield ( Sy) : rat io of volum e of w at er t hat , aft er

sat urat ion can be drained by gravit y sat urat ion, can be drained by gravit y.

 St orage coefficient ( S- st orat ivit y) : volum e of w at er t hat an

aquifer releases from or t akes int o st orage per unit surface area of aquifer per unit change in head norm al t o t hat

area of aquifer per unit change in head norm al t o t hat surface.

 Hydraulic conduct ivit y ( K) : const ant t hat serves as a

m easure of t he perm eabilit y of t he porous m edium m easure of t he perm eabilit y of t he porous m edium .

 Transm issivit y ( T) : Rat e at which wat er is t ransm it t ed

t hough a unit w idt h of aquifer under unit hydraulic gradient ; T Kb; b is sat urat ed t hickness of aquifer

10 10

T = Kb; b is sat urat ed t hickness of aquifer.

Prof. T I Eldho, Department of Civil Engineering, IIT Bombay

(11)

Groundw at er Flow

Darcy’s Law:

Darcy defined how wat er m oves t hrough a sat urat ed porous m edium wit h analogy of a cylinder

fit t ed wit h inflow and out flow pipes He showed t hat

fit t ed wit h inflow and out flow pipes

.

He showed t hat

velocit y was a funct ion of difference in head ‘h’ over a finit e dist ance ‘l’

 Darcy’s law: Velocit y of flow: v = -K ( dh/ dl)

Where v is Darcy velocit y or specific discharge; K is

hydraulic conduct ivit y; dh/ dl is hydraulic gradient ; ‘- ’

hydraulic conduct ivit y; dh/ dl is hydraulic gradient ;

sign – flow wat er in t he direct ion of decreasing head;

act ual velocit y = v/ n.

D ’ l lid h R ( R ld b > I t i

 Darcy’s law valid: w hen Re ( Reynolds num ber - > I nert ia

force/ viscous force) < 1

 Hydraulic conduct ivit y K: found by pum ping t est s, t racer

11 11

y y y p p g ,

t est s, form ulas, laborat ory m et hods et c.

(12)

Groundw at er Flow in Porous Media

 Porous m edia – het erogeneous & anisot ropic

 Geologic form at ion as aquifers: Alluvial deposit s,

lim est one volcanic rock sandst one igneous & lim est one, volcanic rock, sandst one, igneous & m et am orphic rocks – accordingly porous m edia charact erist ics changes.

d l d f l h

 Hydraulic conduct ivit y varies from one locat ion t o anot her

( het erogeneous) and varies wit h respect t o direct ion.

 Accordingly groundwat er m ovem ent varies.Accordingly groundwat er m ovem ent varies.

 Groundwat er flow analysis – very com plex due t o

com plexit y of aquifer m edia and various ot her param et er.

C l h d l i l

 Com plex hydrogeological syst em s

 Field invest igat ions - Lim it at ions

 I m port ance of groundwat er flow m odeling

12 12

 I m port ance of groundwat er flow m odeling.

(13)

Groundwat er Qualit y Problem s

 Groundwat er Pollut ion- a m aj or problem in m any count ries.

 I ndiscrim inat e disposal of indust rial w ast es, ext ensive use

f h i l i i lt ( f t ili & t i id ) d

of chem icals in agricult ure ( fert ilizers & pest icides) and a host of ot her hum an int ervent ions have been causing pollut ion.

 Effluent s in w at er bodies aft er affect ing soils, ext ends t o

t he groundwat er syst em t hrough dow nward gravit at ional m ovem ent , lat eral dispersion & advect ive m igrat ion.

m ovem ent , lat eral dispersion & advect ive m igrat ion.

 Fract ures, Fissures, Joint s et c., provide addit ional preferred

pat hways for fast m igrat ion of pollut ant s

 Wit h increase in indust rializat ion & increasing use & reliance

on groundwat er, it is im perat ive t o assess t he w at er qualit y & st udy t he m ovem ent of cont am inant s in an aquifer

13 13

y q

syst em t o predict t he m igrat ion.

(14)

 Nat ural cont am inat ion

Gr ou n dw a t e r Con t a m in a t ion Sou r ce s

 Nat ural cont am inat ion

 Agricult ural cont am inat ion

Groundwat er pollut ion

Landfill

 I ndust rial cont am inat ion

U d d t t k

Farm Seepage

 Underground st orage t anks

 Land applicat ion and

i i

Percolat ion

pollut ion Runoff

m ining

 Sept ic t anks

Pollut ant m ovem ent

Sept ic t ank Well

 Wast e disposal inj ect ion

wells

Unconfined aquifer

14 14

 Landfills

(15)

landfill

Plum e m ovem ent

Groundw at er Cont am inat ion

Mechanism

Cont am inant plum e

Mechanism

Ch a n ge s in ch e m ica l con ce n t r a t ion occu r s in

gr ou n dw a t e r syst e m by fou r dist in ct pr oce sse s gr ou n dw a t e r syst e m by fou r dist in ct pr oce sse s

1. Advect ive t ransport

Dissolved chem icals are m oving wit h t he groundwat er flow.

2 Hydrodynam ic dispersion 2. Hydrodynam ic dispersion

Mechanical , hydraulic, m olecular and ionic diffusion

3. Fluid sources

Wat er of one com posit ion is int roduced in t o and m ixed Wat er of one com posit ion is int roduced in t o and m ixed wit h wat er of different com posit ion.

4. React ions

S f i l di l d h i l i

Som e am ount of a part icular dissolved chem ical species m ay be added or rem oved from groundwat er as a result of chem ical, biological and physical react ions in t he wat er or

15 15

bet ween t he wat er and t he solid aquifer m at erials.

(16)

Work Elem ent s for Groundwat er I nvest igat ions

– Well invent ory and select ion of observat ion w ells

Preparat ion of groundw at er level m ap

– Preparat ion of groundw at er level m ap

– Geophysical invest igat ions t o decipher t he

subsurface layers and t heir charact erist ics

subsurface layers and t heir charact erist ics

– I dent ificat ion of hydrogeological feat ures of int erest

w hich are likely t o cont rol groundw at er flow &

t ransport .

– Underst anding of aquifer geom et ry

D t il d d i di

l t

lit l

i

– Det ailed and periodical wat er qualit y analysis

– Periodical m onit oring of w at er levels in observat ion

w ells

16 16

w ells

(17)

Groundw at er – Mat hem at ical Model

A Model is a represent at ion of a syst em

-only effect ive w ay t o t est effect s of

only effect ive w ay t o t est effect s of

d

d

groundwat er m anagem ent st rat egies

groundwat er m anagem ent st rat egies

 Mat hem at ical m odel: sim ulat es ground- wat er flow

and/ or solut e fat e and t ransport indirect ly by m eans / p y y

of a set of governing equat ions t hought t o represent

t he physical processes t hat occur in t he syst em

.

G i E i

 Governing Equat ion

 ( Darcy’s law + wat er balance equat ion) wit h head ( h)

as t he dependent variable

 Boundary Condit ions

 I nit ial condit ions ( for t ransient problem s)

17 17

Prof. T I Eldho, Department of Civil Engineering, IIT Bombay

(18)

R

x

y

Q

Derivat ion of Groundwat er Flow Equat ion

y

q

q

z

y

x

y

1. Consider flux (q) t hrough REV

2. OUT – I N = - St orage

3 Com bine wit h: q = - KK gr a d h

18 18

3. Com bine wit h: q = - KK gr a d h

(19)

La w of M a ss Ba la n ce

+ D a r cy’s La w =

Derivat ion of Groundwat er Flow Equat ion

La w of M a ss Ba la n ce

+ D a r cy s La w

Gove r n in g Equ a t ion for Gr ou n dw a t e r Flow

-div q

= - S

s

(

h



t )

( La w of M a ss Ba la n ce )

q

= -

K

grad

h

( D a r cy’s La w )

div

(

K

grad

h) = S

s

(

h



t )

( S

s

= S /

z)

19 19

(20)

Gr ou n d W a t e r Flow M ode lin g

General 3D equat ion

R

St orage coefficient ( S) is eit her st orat ivit y or specific yield.

20 20

S = Ss b & T = K b; R is recharge or pum ping ( - ,+ ) .

(21)

Ground Wat er Transport Modeling

 n is t he porosit y dim ensionless,

 xii, xjj are t he Cart esian co ordinat es, ( L) ,

(22)

Velocit y com put at ions ( Darcy’s law )

h

K

v

x x

v

y

K

y

h

V

x

v

x

/

n

e

V

y

v

y

/

n

e

x

x

x

y

y

y

x x e y y e

I nit ial & Boundary condit ions

Types of Solut ions of Mat hem at ical Models

A l t i l S l t i h f( t )

y

• Analyt ical Solut ions: h= f( x,y,z,t ) ( exam ple: Theis equat ion)

• Num erical Solut ions

Finit e difference m et hod ( FDM)

Finit e elem ent m et hod ( FEM) , FVM, BEM et c. • Analyt ic Elem ent Met hods ( AEM)

22 22

y ( )

(23)

Gr ou n d W a t e r Flow M ode lin g

A pow erful t ool

for furt hering our

underst anding of hydrogeological

syst em s & groundw at er flow

Aquifer m edia

syst em s & groundw at er flow

I m port ance of ground wat er flow m odeling

Const ruct accurat e represent at ions of hydrogeological Const ruct accurat e represent at ions of hydrogeological syst em s

Underst and int errelat ionships bet ween elem ent s of syst em s Efficient ly develop a sound m at hem at ical represent at ion Make reasonable assum pt ions and sim plificat ions

Underst and t he lim it at ions of t he m at hem at ical Underst and t he lim it at ions of t he m at hem at ical represent at ion

Underst and lim it at ions of t he int erpret at ion of t he result s

23 23

(24)

Gr ou n d W a t e r Flow M ode lin g

Pr e dict in g h e a ds ( and flows) a n d Pr e dict in g h e a ds ( and flows) a n d Appr ox im a t in g pa r a m e t e r s

Solut ions t o t he flow equat ions

Most ground wat er flow m odels are

h(x,y,z,t)?

Most ground wat er flow m odels are solut ions of som e form of t he

ground wat er flow equat ion

x

K

q

Part ial different ial equat ion

needs t o be solved t o calculat e head as a funct ion of posit ion

d i i h f( )

x

x x

h

o h(x)

“ e.g., unidirect ional, st eady- st at e flow wit hin a confined aquifer

and t im e, i.e., h= f( x,y,z,t )

x

0

q

Darcy’s Law Integrated

24 24

(25)

Finit e Difference Met hod

C i i i f h f i d b

 Cont inuous variat ion of t he funct ion concerned by a set

of values at point s on a grid of int ersect ing lines.

 The gradient of t he funct ion are t hen represent ed by e g ad e o e u c o a e e ep ese ed by

differences in t he values at neighboring point s and a finit e difference version of t he equat ion is form ed.

 At point s in t he int erior of t he grid t his equat ion is used

 At point s in t he int erior of t he grid, t his equat ion is used

t o form a set of sim ult aneous equat ions giving t he value of t he funct ion at a point in t erm s of values at nearby

i t point s.

 At t he edges of t he grid, t he value of t he funct ion is

fixed, or a special form of finit e difference equat ion is , p q used t o give t he required gradient of t he funct ion.

25 25

(26)

FD M for Gr ou n dw a t e r Flow Eqn .

q

hom ogeneous isot ropic aquifer

 Using t he finit e difference schem e,

for a node I ,J & for a specific t im e n

and cent ral difference discret izat ion

in space Tim ein t e r va l

t

in space

– FTCS in spat ial and t em poral dom ain

choosing const ant m esh int ervals

(27)

Finit e Elem ent Met hod

 The region of int erest is divided in a m uch m ore

flexible way flexible way

 The nodes at which t he value of t he funct ion is found

have t o lie on a grid syst em or on a flexible m esh

h b d d h dl d

 The boundary condit ions are handled in a m ore

convenient m anner.

 Direct approach, variat ional principle or weight ed Direct approach, variat ional principle or weight ed

residual m et hod is used t o approxim at e t he governing different ial equat ion

(28)

Ca se st u dy: I D A Pa t a n ch e r u

I ndust rial Developm ent Areas of Pat ancheru near Hyderabad in A.P , part of t he st ream cat chm ent s of Naka vagu a t ribut ary of Manj ira River

of Naka vagu, a t ribut ary of Manj ira River.

The area is in Medak dist rict covering about 500 sq km spread over in t hree m andals Pat ancheru,

Jinnaram and Sangareddy;

More t han 600 indust ries in t his area dealing w it h pharm aceut icals, paint s and pigm ent s, m et al

p , p p g ,

t reat m ent & st eel rolling, cot t on & synt het ic yarn & engineering goods w ere est ablished since 1977

As part of cont am inant t ransport st udy a flow

14000 Ismailkhanpet

Arutla

Nakkavagu Watershed Medak District , A.P.

N

0 2000m 4000m

As part of cont am inant t ransport st udy, a flow m odel using an FDM package Visual MODFLOW is developed

(29)

Ca se st u dy: I D A Pa t a n ch e r u

 The gr oundwat er rechar ge varies from 100- 110 m m yr־¹ for an

annual rainfall of 800m m .

 Perm eabilit y values as high as 50- 80 m / day were found in t he

alluvium around Arut la village alluvium around Arut la village

 Transm issivit y is found t o vary from 140 m2 / day in granit es t o 1300 m2/ day in alluvium .

Ob d it d t h t h t t h t t h d if i h i

 Observed sit e dat a show s t hat t he t op w eat hered aquifer is having 10- 15 m t hick is underlain by fract ured layer.

 The sim ulat ed m odel dom ain of Pat ancheru I DA and it ’s environ

consist s of 55 rows and 65 colum ns ( sm all rect angles 2 5 0 m x 2 5 0

consist s of 55 rows and 65 colum ns ( sm all rect angles,2 5 0 m x 2 5 0 m ) and t wo layers covering an area of 16000 m x 13500 m .

(30)

Ca se st u dy: I D A Pa t a n ch e r u

 Top layer consist s of 10- 25 m t hick

alluvium along Nakka vagu or

weat hered zone in granit es and is

underlain by 10- 20 m fract ured zone.

 Vert ical sect ion sim ulat ed in m odel is

 Vert ical sect ion sim ulat ed in m odel is

having t he t ot al t hickness of 45 m .

 Wat er t able in t he area has an

l t i diff f 75 it h

elevat ion difference of 75 m w it h sout hern boundary near Beram guda having a wat er t able of 570 m ( am sl) and lowest wat er t able elevat ion of 495 m elevat ion fixed as a const ant head @ Manj ira river confluence.

30 30

@ j

(31)

Ca se st u dy: I D A Pa t a n ch e r u

 By using t he visual MODFLOW

soft ware ( Guiger and Franz, ( g 1996) t he aquifer m odel sim ulat ion is carried out .

 Model is calibrat ed bet w een

observed dat a & sim ulat ed result s. Wat er t able

configurat ion of Novem ber 2003 was adopt ed for t his purpose. Com put ed & observed w at er level for t he st eady st at e condit ion is shown in Fig.

 Good agreem ent is observed

bet w een com put ed & observed

31 31

(32)

Ca se st u dy: I D A Pa t a n ch e r u

 Using MT3D: Values for dispersivit ies () are assum ed as  Using MT3D: Values for dispersivit ies () are assum ed as

100m , 1m , 0.01- based on field observat ion.

 A const ant TDS concent rat ion at different nodes of Nakka

vagu was assigned varying from 4500 m g/ L at CETP g g y g g

Pat ancheru t o 1500 m g/ L dow n st ream near I sm ailkhanpet .

 Dow nst ream concent rat ion of t he order of 1500 m g/ L is

observed all along Nakka vagu right up t o confluence w it h Manj ira river – based on 2003 m easurem ent s

Manj ira river based on 2003 m easurem ent s.

 The t im e st ep used in t his m odel is one day.

 Cont am inant predict ion is done for t he year 2007

1500 mg/L

1800 mg/L1800 mg/L

2000 mg/L

4500 mg/L

32 32

500 g/

(33)

Re fe r e n ce s

Re fe r e n ce s

• J V S Murt hy ( 1991) Wat ershed Managem ent New Age int ernat ional • J.V.S Murt hy ( 1991) , Wat ershed Managem ent , New Age int ernat ional

Publicat ions

 Anderson, M. P. and Woessner, W. W. ( 1992) . Applied Groundwat er

Modeling- Sim ulat ion of Flow and Advect ive Transportg p , , Academ ic Press, , San Diego, CA, U. S. A.

 Bear, J. ( 1972) . Dynam ics of Fluid in Porous Media, Am erican Elsevier

Publishing Com pany, New York.

 Bear, J. and Verruij t , A. ( 1979) . Modeling Groundwat er Flow and

Pollut ion, Kluwer Academ ic Publishers Group, Auckland, New Zealand.

 Eldho, T. I . ( 2001) . Groundw at er cont am inat ion, t he challenge of

ll t i t l d t t i J l f I di t W k

pollut ion cont rol and prot ect ion, Journal of I ndian w at er Works Associat ion, Vol. 3 3 ( 0 2 ), pp. 171- 180.

 Freeze, R. A. and Cherry, J. A. ( 1979) . Groundw at er, Prent ice Hall,

Engle Wood Cliffs Engle Wood Cliffs.

 Todd, D.K. ( 2001) . Groundwat er Hydrology, John Wiley and Sons

Pvt .Lt d- Singapore.

 Wang, F. H. and Anderson, P. M. ( 1995) . I nt roduct ion t o Groundwat er

33 33

 Wang, F. H. and Anderson, P. M. ( 1995) . I nt roduct ion t o Groundwat er Modeling.

(34)

Tu t or ia ls - Qu e st ion !.?.

How groundw at er condit ion can be im proved

in a w at ershed ?

in a w at ershed.?.

Discuss t he im port ance of groundw at er in

Discuss t he im port ance of groundw at er in

wat ershed m anagem ent plans

wat ershed m anagem ent plans

wat ershed m anagem ent plans.

wat ershed m anagem ent plans.

Discuss groundwat er resources

Discuss groundwat er resources

i

t b

i

t

h

t i

&

i

t b

i

t

h

t i

&

im provem ent by rainwat er harvest ing &

im provem ent by rainwat er harvest ing &

art ificial recharge.

art ificial recharge.

34 34

(35)

Se lf Eva lu a t ion - Qu e st ion s!.

Q

Why groundw at er is very im port ant in

wat ershed m anagem ent ?

wat ershed m anagem ent ?.

Describe different t ypes of soil w at er.

Different iat e bet w een unsat urat ed flow s and

Different iat e bet w een unsat urat ed flow s and

sat urat ed flow s.

What are t he im port ant w ork elem ent s in

What are t he im port ant w ork elem ent s in

groundw at er invest igat ions?.

Discuss groundw at er qualit y issues.

Discuss groundw at er qualit y issues.

P f T I Eldh D t t f Ci il E i i IIT B b

35 35

(36)

Assign m e n t - Qu e st ion s?.

g

Q

Explain how t o assess groundw at er

pot ent ial?

pot ent ial?.

Describe different t ypes of aquifers &

classify aquifers according t o charact erist ics

classify aquifers according t o charact erist ics.

Discuss fundam ent al law s governing

groundwat er in a wat ershed.

groundwat er in a wat ershed.

How t o m odel groundw at er flow ?.

Explain m aj or m odeling t echniques for

groundw at er flow ?.

36 36

(37)

Un solve d Pr oble m !.

 Assess t he groundwat er pot ent ial based on available Assess t he groundwat er pot ent ial based on available

dat a.

 Discuss how you can im prove t he groundwat er Discuss how you can im prove t he groundwat er

availabilit y in t he area. availabilit y in t he area.

37 37

(38)

Dr. T. I. Eldho Dr. T. I. Eldho

Professor, Professor,

Department of Civil Engineering,

Department of Civil Engineering, pp gg gg

Indian Institute of Technology Bombay, Indian Institute of Technology Bombay, Mumbai, India, 400 076.

Mumbai, India, 400 076. Email:

Email: eldho@iitb.ac.ineldho@iitb.ac.in

38 38 Email:

Email: eldho@iitb.ac.ineldho@iitb.ac.in

Phone: (022)

Phone: (022) –– 25767339; Fax: 2576730225767339; Fax: 25767302

http://www.

Referensi

Dokumen terkait

Dari analisis tersebut dapat diketahui bahwa indeks keanekaragaman plankton di Danau Lais Kecamatan Kahayan Tengah Kabupaten Pulang Pisau Provinsi Kalimantan

Diajukan sebagai salah satu syarat untuk menyelesaikan Program Sarjana (S1) pada Program Sarjana Fakultas Ekonomi dan Bisnis. Universitas

Dengan ini kami mengundang perusahaan saudara untuk megikuti Klarifikasi Penawaran Paket Pekerjaan. Pengadaan Ternak Sapi yang Insya Allah akan diadakan

Kelompok Kerja Jasa Konsultansi Unit Layanan Pengadaan Barang/Jasa Kabupaten Lamandau mengumumkan pemenang seleksi sederhana untuk Pekerjaan Jasa.. Pengawasan Pembangunan Gedung

KADAR HS-CRP PADA PASIEN DISPEPSIA DENGAN INFEKSI HELICOBACTER PYLORI DIBANDINGKAN DENGAN TANPA INFEKSI2.

Pendaftaran hak atas tanah menurut Pasal 19 UUPA ditujukan kepada pemerintah agar melakukan pendaftaran tanah-tanah di seluruh wilayah Republik

Melalui proses pertumbuhan organik, penggabungan usaha, serta akuisisi, KLBF telah tumbuh dan bertransformasi menjadi penyedia solusi kesehatan terintegrasi melalui

Formulir Penjualan Kembali Unit Penyertaan yang telah lengkap dan diterima secara baik ( in complete application ) serta telah memenuhi persyaratan dan ketentuan yang tercantum