• Tidak ada hasil yang ditemukan

Waves, diffusion and variational principles1

N/A
N/A
Protected

Academic year: 2017

Membagikan "Waves, diffusion and variational principles1"

Copied!
18
0
0

Teks penuh

(1)

Variational Principles for Travelling Waves of

Reaction-diffusion Equations

Oct 19-24, 2009

Workshop on Kinetic Theory and Fluid Dynamics National Institute for Mathematical Sciences

and

(2)

Reaction-diffusion equations

letu be a vector-valued function,A be a diagonal

nonnegative matrix.

∂u

∂t = A∆u+f(u). (RD)

Reaction-diffusion equations describe phenomena in chemical kinetics, physics, and biology

such as combustion, phase transitions,

(3)

Travelling Waves:

( ∂u

∂t = ∆u+f(u) on R

u(x,t) =u(x−ct)

(4)

Min-max principles for the wave speed

Hadeler and Rothe (1975): K ={v∈C2

:vz<0,0<v <1}

ψ(v(z)) = ∆v(z) +f(v(z))

vz(z)

Theorem

sup v∈K

inf

(5)

Min-max principles for the wave speed

Hadeler and Rothe (1975): K ={v∈C2

:vz<0,0<v <1}

ψ(v(z)) = ∆v(z) +f(v(z))

vz(z)

Theorem

sup v∈K

inf

z∈Rψ(v(z)) =c = infv∈Ksupz∈Rψ(v(z)).

(6)

Min-max principles for the wave speed

Hadeler and Rothe (1975): K ={v∈C2

:vz<0,0<v <1}

ψ(v(z)) = ∆v(z) +f(v(z))

vz(z)

Theorem

sup v∈K

inf

z∈Rψ(v(z)) =c = infv∈Ksupz∈Rψ(v(z)).

◮ Vol’pert et al. (1994): monotone systems.

◮ Gartner-Freidlin (1979), Heinze-Papanicolaou-Stevens (2001):

(7)

Min-max principles for the wave speed

Hadeler and Rothe (1975): K ={v∈C2

:vz<0,0<v <1}

ψ(v(z)) = ∆v(z) +f(v(z))

vz(z)

Theorem

sup v∈K

inf

z∈Rψ(v(z)) =c = infv∈Ksupz∈Rψ(v(z)).

◮ Vol’pert et al. (1994): monotone systems.

◮ Gartner-Freidlin (1979), Heinze-Papanicolaou-Stevens (2001):

inhomogeneous media.

(8)

Min-max principles for the wave speed

◮ Vol’pert et al. (1994): monotone systems.

◮ Gartner-Freidlin (1979), Heinze-Papanicolaou-Stevens (2001):

inhomogeneous media.

◮ Assumptions: monotonicity of the wave, uniqueness, stability

◮ Question: Can we use this principle to find the travelling

(9)
(10)

Variational formulation for the solution

Variational problem: minv∈H1

(11)

Variational formulation for the solution

Variational problem: minv∈H1

c Ec(v)

(12)

Variational formulation for the solution

Variational problem: minv∈H1

c Ec(v)

◮ Question: Whichc should we choose?

◮ Translation in space:

(13)

Variational formulation for the solution

◮ Translation in space:

(14)

Variational formulation for the solution

Fife-McLeod (1977): cut-off ofEc to prove stability of travelling

wave

Ec as a variational problem: Heinze (2000), Muratov-Lucia-Novaga

(2004 -), Xinfu Chen (2006), Chen.

Theorem(Lucia-Muratov-Novaga, 2008)

Gradient system on a infinite cylinders: ∃ c∗ such that infEc= 0 and it can be attained by a travelling wave solution.

Proof: Constraint Z

ecz|∇v|2= 1.

Gallay-Risler (preprint): UseEc to prove the stability of travelling

(15)
(16)

Gradient system

Gradient system on a infinite cylinders with Neumann boundary condition:

∂u

∂t = A∆u− ∇uF(u). (1)

Theorem

(1)coercive: F(u)→ ∞ as|u| → ∞;

(2)w non-degenerate local min. point of F,F(w)>infF.

(17)

Lyapunov Fuction

(1) Infinitely many Lyapunov fuctions

(18)

Open Problems

(1) Different diffusion rates

Referensi

Dokumen terkait

maka Pejabat Pengadaan Dinas Perhubungan Komunikasi Informasi dan Telematika Aceh Tahun Anggaran 2015 menyampaikan Pengumuman Pemenang pada paket tersebut diatas sebagai berikut

2016 dengan ini menyatakan GAGAL LELANG ULANG karena dari 5 (Lima) calon penyedia yang diundang sampai dengan batas waktu Pembuktian Dokumen Kualifikasi hanya dua

[r]

Sesuai dengan hasil evaluasi kelompok kerja, maka perusahaan Saudara merupakan salah satu penyedia Barang/jasa untuk diusulkan sebagai calon pemenang pada paket tersebut di

PENATAAN BATAS KAWASAN HUTAN PROV MALUKU SAMPAI DENGAN TAHUN

_ Materi yang diarnati berupa kegiatan tatalaksana pemeliharaan ayam pcdaging di cv.. Lladi's Farm crarr kegiatan penanganan prosessing uyu* pcdaging'di Dcsa Kcpuh Kecamatan

those reasons, this research tries to analyze what is determinants of capital buffer in Indonesia which is influenced by some variables such as Return on Equity, Non Performing

Menetapkan : PERATURAN BUPATI BANTUL TENTANG PERUBAHAN ATAS PERATURAN BUPATI BANTUL NOMOR 57 TAHUN 2013 TENTANG PETUNJUK PELAKSANAAN PERATURAN DAERAH KABUPATEN