Introduction
Zeleny (1982) dalam bukunya "Multiple Criteria Decision Making", mengatakan:
"Semakin sulit melihat dunia di sekitar kita secara unidimensional dan hanya menggunakan satu kriteria saat menilai apa yang kita lihat"
3
Examples of Multi-Criteria Problems
• Wife selection problem. This problem is a good
example of multi-criteria decision problem.
Criteria include:
• Religion • Beauty • Wealth • Family status • Family relationship • EducationAgama Harta Keturunan Kecantikan/Kegantengan
Banyak masalah sektor publik dan bahkan keputusan pribadi melibatkan banyak pertimbangan, tujuan dan sasaran.
Sebagai contoh:
Menemukan pembangkit listrik tenaga nuklir melibatkan tujuan seperti:
1. Keamanan 2. Kesehatan
3. Lingkungan Hidup 4. Biaya
• Luna wants to go on a vacation.
• She has 3 options
Hogwarts
Hogsmeade
Azkaban
How to decide..???
Let us consider…
• Each option can be evaluated against certain
criteria.
• Criteria for vacation destinations can be:
• Entertainment • Facilities
• Accommodation cost • Travel cost
Important terms…
• Weights
–
These estimates relative importance ofcriteria.
Each attribute is given certain points on 0-10 or 0-100 rating scale by a team of experts or decision makers.
Example:
criteria weight rating scale
Entertainment - 4 10 very good -1 none Facilities - 2 10 very good -1 none Travel cost- 6 10 low-1 very high
Similarly…
Selecting a source of information (library, internet,
etc…) involves various criteria such as:
Reliability of information Time to gather information Cost of acquiring information
These are examples of MULTI-CRITERIA
problems
and requires MCDM
approach.
•
Land is a scarce resource:
•
Identifying suitability for
•Where to build a dam •Water flow
•Mountainous?
• Where to place a hospital •Costs
•Access
•Greatest need
• Criteria can be based on human or physical geography factors
Beberapa istilah:
Multi Criteria AnalysisMulti Criteria Evaluation (MCE) Multi Criteria Preference Analysis
Multi Criteria Decision Making Multi Objective Evaluation
These methods are essentially one and the
same!
MCE
=
Multi-criteria evaluation is primarily concerned with how to combine the information from several criteria to form asingle index of evaluation
• Bagus untuk mengambil keputusan dari masalah
yang kompleks.
• Memungkinkan pengambil keputusan untuk
menunjukkan pemikiran mereka.
• Berguna dalam analisis GIS dimana beberapa kriteria
digabungkan.
• Termasuk kemampuan untuk menimbang kriteria.
• Sering digunakan untuk penentuan alokasi lahan.
MCDM
• Selection of the best, from a set of alternatives, each of which
is evaluated against multiple criteria.
Some problem solving techniques are : • SAW (Simple Additive Weighting)
• TOPSIS (Technique for Order Preference by Similarity to the Ideal Solution)
• ELECTRE (Elimination et Choice Translating Reality)
• AHP (The Analytical Hierarchy Process)
• SMART (The Simple Multi Attribute Rating Technique ) • ANP (Analytic network process)
Definitions
• Decisions: a choice between alternatives
• Criterion: some basis for a decision. Two main classes:
•Factor: enhances or detracts from the suitability of a land
use alternative (e.g. distance from a road) •Constraint: limits the alternatives
• Goal or target: some characteristic that the solution must possess (a positive constraint)
Principles of MCE
•
Methodology:
1. Determine criteria
(factors/constraints) to be included
2. Determining the weights for each
factor
1
st
Step: Determine the
criteria to be included
• Criteria determine the alternatives
• Oversimplification of the decision problem could lead to too few criteria being used
• Using a large number of criteria reduces the influence of any one criteria
• Often proxies must be used since the criteria of interest may not be determinable
Example: Case study of a
suitable dam and reservoir
site
Criteria used:
River Urban Forest
Accumulated water flow Existing reservoir
Watershed boundary City
Hydraulic head Undulation
Determine the weights
• A decision is the result of a comparison of one or more alternatives with respect to one or more criteria that we consider relevant for the task at hand.
• Among the relevant criteria we consider some as more important and some as less important;
this is equivalent to assigning weights to the criterion according to their relative importance.
Weights assigned using
AHP
Weights assigned using the
Rank Order method
Sensitivity analysis
→ sensitivity analysis: vary the
scores/weights of the factors to determine the sensitivity of the solution to minor
changes
• Choice of criteria (e.g. why included?)
• Assesses the reliability of data: how stable is the final result?
• Choice for weighting factors is subjective • Will the overall solution change if you use
MCE – pros and cons
•Cons:
– Dynamic problems
strongly simplified into a linear model
– Static, lacks the time dimension
– Controversial method – too subjective?
•Pros:
– Gives a structured and traceable analysis.
– Possibility to use different evaluation
factors makes it a good tool for discussion.
– Copes with large
amounts of information. – It works!
29
Approaches For MCDM
• Several approaches for MCDM exist. We will cover
the following:
• Weighted score method ( Section 5.1 in text book). • TOPSIS method
• Analytic Hierarchy Process (AHP) • Goal programming ?
30
Some problem solving techniques are :
• SAW (Simple Additive Weighting)
• TOPSIS (Technique for Order Preference by Similarity to the Ideal Solution)
• ELECTRE (Elimination et Choice Translating Reality) • BAYESIAN NETWORK BASED FRAMEWORK
• AHP (The Analytical Hierarchy Process)
• SMART (The Simple Multi Attribute Rating Technique ) • ANP (Analytic network process)
MCDM problem has four elements:
31 Goal
Objectives
Criteria
Alternatives
An example of hierarchical value tree:
Criteria characteristics
33
Completeness:
It is important to ensure that all of the
important criteria are included.
Redundancy:
In principle, criteria that have been judged
relatively unimportant or to be duplicates should be
removed at a very early stage.
Operationality:
It is important that each alternative can be
Problem solving steps:
34
1. Establish the decision context, the decision
objectives (goals), and identify the decision
maker(s).
2. Identify the alternatives.
3. Identify the criteria (attributes) that are relevant to
the decision problem.
Azas dalam Analisis Overlay
Azas Dominan (Dominance Rule):
satu nilai dominan
Azas Kontribusi (Contributory Rule)
masing-masing nilai attribut berkontribusi terhadap hasil
Azas Interaksi (Interaction Rule)
AHP merupakan salah satu alat bantu (proses)
dalam pengambilan keputusan yang dikembangkan
oleh Thomas L Saaty pada tahun 70an.
STRUKTUR ANALYTIC HIERARCHY PROCESS (AHP)
Konsep dasar AHP adalah penggunaan matriks pairwise comparison (matriks perbandingan berpasangan) untuk menghasiIkan bobot relative antar kriteria maupun alternative. Suatu kriteria akan dibandingkan dengan kriteria lainnya dalam hal seberapa penting terhadap pencapaian tujuan di atasnya (Saaty, 1986).
Klaus Goepel Combining performance indicators to one Key Performance
Indicator (KPI)
Mathematical method:
How to derive the weights?
AHP has many applications:
1. Select key performance indicators (KPIs)
2. Evaluate product features
3. Select from srategic alternatives
4. Make consilifated decisions with multiple inputs
from different stakeholders
Allows some small inconsistency in judgment
Analytic Hierarchy Process (AHP)
Deriving ratio scales from paired comparisons
Actual measurement Subjective opinion
Ratio scales Consistency index
Price, weight etc satisfaction feelings, preferences
from Eigen vectors from Eigen value
INPUT:
OUTPUT:
Analytic Hierarchy Process (AHP)
Step 1 : Define objectiveStep 2: Structure elements in criteria, sub-criteria, alternatives etc. Step 3: Make a pair wise compatison of elements in each group
Step 4: Calculate weighting and consistency ratio
Step 5: Evaluate alternatives according weighting
Get Ranking
Price not taken as criterion separating
benefits form cost allows for a
HASIL REKLASIFIKASI Mengetahui rekomendasi jalur pipa PDAM yang optimum dalam melayani konsumen
Kemiringan Lereng Arah Hadap Lereng Penggunaan Lahan
Sungai Jalan
HASIL PERHITUNGAN AHP
Parameter Jalan Penggunaan
Lahan
Kemiringan Lereng
Arah Hadap
Lereng Sungai Priority Vector Bobot
Jalan 1 5 2 6 9 0.452744686 45% Penggunaan Lahan 0.2 1 0.33 4 5 0.139783822 14% Kemiringan Lereng 0.5 3 1 9 7 0.315980423 32% Arah Hadap Lereng 0.11 0.25 0.11 1 3 0.056732268 6% Sungai 0.11 0.2 0.14 0.33 1 0.0347588 3% Jumlah 1.92 9.45 3.58 20.33 25 1 100.00%
Principle Eigen Value : 5.344
Consistency Index (CI) : 0.086
Consistency Ratio (CR) : 0.077
Hasil CR dapat diterima karena lebih kecil dari 0,1