• Tidak ada hasil yang ditemukan

resume01_9. 76KB Jun 04 2011 12:07:01 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "resume01_9. 76KB Jun 04 2011 12:07:01 AM"

Copied!
2
0
0

Teks penuh

(1)

Journal de Th´

eorie des Nombres

de Bordeaux

17

(2005), 721–725

Sharper ABC-based bounds

for congruent polynomials

par

Daniel J. BERNSTEIN

R´esum´e. Agrawal, Kayal, et Saxena ont r´ecemment introduit une nouvelle m´ethode pour montrer qu’un entier est premier. La vitesse de cette m´ethode d´epend des minorations prouv´ees pour la taille du semi-groupe multiplicatif engendr´e par plusieurs polynˆomes modulo un autre polynˆome h. Voloch a trouv´e une application du th´eoreme ABC de Stothers et Mason dans ce con-texte: sous de petites hypoth`eses, des polynˆomes distinctsA, B, C de degr´e au plus 1.2 degh−0.2 deg radABC ne peuvent pas ˆetre tous congrus modulo h. Nous pr´esentons deux am´eliorations de la partie combinatoire de l’argument de Voloch. La premi`ere am´elioration augmente 1.2 degh−0.2 deg radABC en 2 degh− deg radABC. La deuxi`eme am´elioration est une g´en´eralisation `a A1, . . . , Amde degr´e au plus ((3m−5)/(3m−7)) degh−(6/(3m− 7)m) deg radA1· · ·Am, avecm≥3.

Abstract. Agrawal, Kayal, and Saxena recently introduced a new method of proving that an integer is prime. The speed of the Agrawal-Kayal-Saxena method depends on proven lower bounds for the size of the multiplicative semigroup generated by several polynomials modulo another polynomialh. Voloch pointed out an application of the Stothers-Mason ABC theorem in this context: under mild assumptions, distinct polynomialsA, B, Cof degree at most 1.2 degh−0.2 deg radABC cannot all be congruent modulo h. This paper presents two improvements in the combinatorial part of Voloch’s argument. The first improvement moves the de-gree bound up to 2 degh−deg radABC. The second improvement generalizes to m ≥3 polynomials A1, . . . , Am of degree at most ((3m−5)/(3m−7)) degh−(6/(3m−7)m) deg radA1· · ·Am.

Manuscrit re¸cu le 3 octobre 2003.

(2)

722 Daniel J.Bernstein

Daniel J.Bernstein

Department of Mathematics, Statistics, and Computer Science (M/C 249) The University of Illinois at Chicago

Chicago, IL 60607–7045

Referensi

Dokumen terkait

We construct an Euler system in the multiplicative groups of CM-fields, which is a generalization of the Euler system of Gauss sums, and generalize a structure theorem of Kolyvagin

This new type of cubic polynomial is closely related to the Ramanujan cubic polynomials (RCP) defined by Shevelev.. We also give many fundamental properties

Galois group, Generalized Laguerre Polynomial, Newton Polygon. This work was supported by the National Science Foundation under

Dans cet article, on utilise des estimations de sommes de charact`eres pour ´etudier les produits de factorielles modulo

In this paper, lower bounds are provided for the dimensions of linearizations and strong linearizations of a given m × n matrix polynomial, and particular lineariza- tions

In this paper, it is proven that every multiplicative bijective map, Jordan bijective map, Jordan triple bijective map, and elementary surjective map on triangular algebras is

In [10], the Laguerre and Hermite matrix polynomials are introduced as examples of right orthogonal ma- trix polynomial sequences for appropriate right matrix moment functionals

In earlier work (Wilson, 2001) we derived upper and lower bounds on the mixing time of a variety of Markov chains, including Markov chains on lozenge tilings, card shuffling,