• Tidak ada hasil yang ditemukan

ResumeDrmotaetal. 76KB Jun 04 2011 12:07:06 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "ResumeDrmotaetal. 76KB Jun 04 2011 12:07:06 AM"

Copied!
1
0
0

Teks penuh

(1)

Journal de Th´

eorie des Nombres

de Bordeaux

17

(2005), 125–150

The joint distribution of

Q

-additive functions on

polynomials over finite fields

par

Michael DRMOTA

et

Georg GUTENBRUNNER

R´esum´e. Soient K un corps fini et Q K[T] un polynˆome de degr´e au moins ´egal `a 1. Une fonctionf surK[T] est dite (com-pl`etement) Q-additive si f(A+BQ) = f(A) +f(B) pour tous A, B ∈ K[T] tels que deg(A) <deg(Q). Nous montrons que les vecteurs (f1(A), . . . , fd(A)) sont asymptotiquement ´equir´epartis

dans l’ensemble image{(f1(A), . . . , fd(A)) :A∈K[T]} si les Qj

sont premiers entre eux deux `a deux et si lesfj : K[T] →K[T]

sont Qj-additives. En outre, nous ´etablissons que les vecteurs

(g1(A), g2(A)) sont asymptotiquement ind´ependants et gaussiens sig1, g2:K[T]→RsontQ1- resp.Q2-additives.

Abstract. Let K be a finite field and Q K[T] a polynomial of positive degree. A function f on K[T] is called (completely) Q-additive iff(A+BQ) =f(A) +f(B), whereA, B∈K[T] and deg(A) < deg(Q). We prove that the values (f1(A), . . . , fd(A))

are asymptotically equidistributed on the (finite) image set

{(f1(A), . . . , fd(A)) : A∈K[T]} if Qj are pairwise coprime and

fj : K[T] → K[T] are Qj-additive. Furthermore, it is shown

that (g1(A), g2(A)) are asymptotically independent and Gaussian ifg1, g2:K[T]→RareQ1- resp.Q2-additive.

MichaelDrmota

Inst. of Discrete Math. and Geometry TU Wien

Wiedner Hauptstr. 8–10 A-1040 Wien, Austria

E-mail:[email protected]

URL:http://www.dmg.tuwien.ac.at/drmota/

GeorgGutenbrunner

Inst. of Discrete Math. and Geometry TU Wien

Wiedner Hauptstr. 8–10 A-1040 Wien, Austria

E-mail:[email protected]

Referensi

Dokumen terkait

The research of both authors was supported in part by the 2003 summer undergraduate research fund from the College of Charleston.. The second author was also supported in part by

‡ Research supported in part by National Security Agency

The research of this author was partially supported by a Faculty Reassigned Time for Research and a Faculty Research Grant from the Minnesota State University, Mankato. ‡ Department

Supported by the Natural Science Foundation of China (60672160), the Scientific Research Innovation Foundation of Shanghai Municipal Education Commission (09YZ13), and Key

Supported by the National Natural Science Foundation of China under grant 10871051, Shanghai Municipal Education Commission (Dawn Project) and Shanghai Municipal Science and

This work is Project 10671026 supported by National Natural Science Foundation of China, Postdoctoral Scientific Research Foundation of Heilongjiang Province (no. HB200801165) and

This work was supported in part by the National Natural Science Foundation of China 10971176, the Guangdong Provincial Natural Science Foundation of China 10152104101000008 and the

This research was in part supported by a grant from IPM (No.. this paper is to consider matrices whose entries are obtained by recursive formulas and are related to two sequences,