• Tidak ada hasil yang ditemukan

Interaksi antara tumbuhan dan hewan di hutan hujan tropis. Andrew J. Marshall

N/A
N/A
Protected

Academic year: 2021

Membagikan "Interaksi antara tumbuhan dan hewan di hutan hujan tropis. Andrew J. Marshall"

Copied!
60
0
0

Teks penuh

(1)

Interaksi antara tumbuhan dan hewan

di hutan hujan tropis

Andrew J. Marshall

Kuliah Lapanagan

Taman Nasional Gunung Palung 23 May-3 Juni 2016

(2)

• Tipe interaksi antara hewan dan tumbuhan

• Fenologi di hutan tropis

 

Bagaimana habitat mempengaruhi hewan

Interaksi antara tumbuhan

dan hewan

(3)

> Tipe interaksi antara hewan dan tumbuhan

• Fenologi di hutan tropis

 

Bagaimana habitat mempengaruhi hewan

Interaksi antara tumbuhan

dan hewan

(4)

Tumbuh-tumbuhan “mau” hindari jadi

makanan untuk hewan.

Masukkan beberapa tipe racun dalam daunya,

jadi pemakan daun perlu adaptasi tertentu untuk

melawan rancun-racunan.

Daun: sumber energi untuk tumbuhan

sumber makanan untuk hewan

CO

2

O

2

Interaksi antara tumbuhan

dan hewan

(5)

Biji: anak pohon

makanan hewan

Interaksi antara tumbuhan

dan hewan

Tumbuh-tumbuhan “mau” hindari anaknya jadi

makanan untuk hewan.

Masukkan beberapa tipe racun dalam biji atau

bikin biji keras sekali, jadi pemakan daun perlu

adaptasi tertentu untuk melawan rancun-racunan.

(6)

Buah: strategi untuk penyebar biji

sumber makanan untuk hewan

Interaksi antara tumbuhan

dan hewan

Kerja sama!

Tumbuh-tumbuhan “mau” buah dimakan

hewan (asal biji tetap utuh).

(7)

sumber: Phillips & Phillips 2016

Dibawa…

Burung kecil

buah kecil, tidak berbau

berkilauan, merah atau hitam

daging manis, kulit lembek

biji kecil, licin

(8)

sumber: Phillips & Phillips 2016

Dibawa…

Burung kecil

Burung enggang

tidak berbau

kulut tebal dan keras

pecah belah

(9)

sumber: Phillips & Phillips 2016

Dibawa…

Burung kecil

Burung enggang

Primata

wangi

masak warna tua/tidak berkilau

kulit tebal

daging manis, tempel ke biji

biji agak besar (~2 cm)

(10)

sumber: Phillips & Phillips 2016

Dibawa…

Burung kecil

Burung enggang

Primata

Tikus

biji besar, keras, berkilau

biji agak beracun

kulit tebal

tanpa daging

(11)

sumber: Phillips & Phillips 2016

Dibawa…

Burung kecil

Burung enggang

Primata

Tikus

Gajah

sangat wangi dan besar

berbuah di pohon kecil

kulit tebal

(12)

sumber: Phillips & Phillips 2016

(13)

sumber: Phillips & Phillips 2016

(14)

sumber: Phillips & Phillips 2016

(15)

sumber: Phillips & Phillips 2016

(16)

sumber: Phillips & Phillips 2016

(17)

Dibawa mamalia besar

Kalau punah, gimana?

(18)

Dibawa air

Vatica resak

Barringtonia sarchostachys

(19)

Dipetrocarpaceae

Uncaria

sp.

(20)
(21)

• Tipe interaksi antara hewan dan tumbuhan

> Fenologi di hutan tropis

 

Bagaimana habitat mempengaruhi hewan

Interaksi antara tumbuhan

dan hewan

(22)
(23)

Fenologi hutan tropis

0

2

4

6

8

10

12

14

16

Ja

n

8

6

Ap

r

8

6

Ju

l

8

6

O

ct

8

6

Ja

n

8

7

Ap

r

8

7

Ju

l

8

7

O

ct

8

7

Ja

n

8

8

Ap

r

8

8

Ju

l

8

8

O

ct

8

8

Ja

n

8

9

Ap

r

8

9

Ju

l

8

9

O

ct

8

9

Ja

n

9

0

Ap

r

9

0

Ju

l

9

0

O

ct

9

0

Ja

n

9

1

Ap

r

9

1

Ju

l

9

1

T

F

A

(p

a

tch

e

s/

h

a

)

0

2

4

6

8

10

12

14

16

#

t

a

xa

w

it

h

f

ru

it

A

Marshall (2004)

(24)

0 % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Jan-Mar 86 (31) Apr-Ju n 86 (36) Jul-Se p 86 (19) Oc t-Dec 86 (35) Jan-Mar 87 (28) Apr-Ju n 87 (14) Jul-Se p 87 (25) Oc t-Dec 87 (57) Jan-Mar 88 (45) Apr-Ju n 88 (49) Jul-Se p 88 (12) Oc t-Dec 88 (21) Jan-Mar 89 (12) Apr-Ju n 89 (4) Jul-Se p 89 (26) Oc t-Dec 89 (29) Jan-Mar 90 (28) Apr-Ju n 90(27) Jul-Se p 90 (17) Oc t-Dec 90 (13) Jan-Mar 91 (8) % total fe eding observ ation s Leaves Figs

Fruit pulp+ seeds Flowers

% Feeding Observations

% Feeding Observations

time

time

kelempiau

0 % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Jan-Mar 86 (38) Apr-Jun 86 (57) Jul-Se p 86 (26) Oc t-Dec 86 (35) Jan-Mar 87 (49) Apr-Ju n 87 (320) Jul-Se p 87 (71) Oc t-Dec 87 (45) Jan-Mar 88 (40) Apr-Jun 88 (37) Jul-Se p 88 (24) Oc t-Dec 88 (24) Jan-Mar 89 (18) Apr-Jun 89 (8) Jul-Se p 89 (11) Oc t-Dec 89 (25) Jan-Mar 90 (15) Apr-Jun 90 (15) Jul-Se p 90 (13) Oc t-Dec 90 (13) Jan-Mar 91 (11)

%

total

fe

eding

observ

ation

s

Seeds Leaves Figs Fruit pulp Flowers

kelasi

time

time

% of

diet

% of

diet

(25)

Fenologi hutan tropis

Perbandingan antara lokasi dan

tipe hutan

(26)

Fenologi hutan tropis

Perbandingan antara lokasi dan

tipe hutan

(27)

Sumatra

Sumatra

Borneo

Borneo

(28)
(29)

Tujuh tipe hutan

tanah, ketinggian, cuaca -> jenis tumbuhan berbeda

Satsiun Penelitian Cabang Panti

% tree species shared with another habitat types PS FS AB LS LG UG MO

max 11 19 22 22 15 14 10 mean 9.5 15 16.5 16 11.5 10.5 8.5 min 8 11 11 10 8 7 7 5 10 15 20 !"#$ %"#$ &"#$ '"#$ ("#$ #"#$ )"#$ *"#$ % tree species shared with other habitats (max, mean, & min; pairwise comparisons among habitats) UB Ridge GP ridge

Average STDEV Average STDEV

DT 5-max 30.13404255 1.454735728 SK 2-max 30.65558621 2.3872342 DT 5-min 22.84042553 0.738273871 SK 2-min 22.71551724 1.314934689 DT 5-hujan 143.0340426 118.8802679 SK 2-hujan 121.8651724 100.1716091 DR 11-max 30.10638298 1.317340682 SC 7-max 31.23684211 2.232281951 DR 11-min 22.23404255 3.138836518 SC 7-min 22.66896552 0.855161193 DR 11-hujan 130.2404255 102.4921281 SC 7-hujan 121.4806897 105.3540278 UB 15-max 30.26702128 2.364840334 GP 35-max 30.60344828 1.541128035 UB 15-min 21.72340426 1.58693336 GP 35-min 25.6637931 26.39367746 UB 15-hujan 143.3744681 128.8278397 GP 35-hujan 113.3768966 95.06716228 NB13-max 28.00106383 1.373386185 TK 22-max 29.37931034 1.897159337 NB13-min 21.17021277 0.890434948 TK 22-min 21.56896552 1.95216541 NB13-hujan 126.7765957 87.91246055 TK 22-hujan 101.96 85.65333369 UB 53-max 28.60957447 9.626065472 MR 2-max 27.69827586 0.922143076 UB 53-min 20.91489362 0.722398715 MR 2-min 21.73275862 1.490365307 UB 53-hujan 117.9940426 85.10232875 MR 2-hujan 121.477931 93.26856545 UB 73-max 24.9787234 1.929180948 GP 80-max 28.74655172 2.065014805 UB 73-min 19.28723404 1.025814158 GP 80-min 20.95689655 1.060802753 UB 73-hujan 131.5978723 96.87636705 GP 80-hujan 107.7993103 85.38255683 UB 88-max 26.92391304 2.216020937 GP 90-max 26.3362069 1.292311716 UB 88-min 17.35869565 1.319356087 GP 90-min 19.47413793 1.268451238 UB 88-hujan 126.1630435 91.1153856 GP 90-hujan 107.3596552 84.9438494 PS FS AB LS Max temp 30.39481438 30.67161254 30.43523478 28.69018709 Min temp 22.77797139 30.43523478 23.69359868 21.36958914 133.9043432 127.1778983 130.7405227 rainfall 132.4496075 125.8605576 128.3756823 114.3682979 130.9948718 122.7217211 -0.452157413 !!"# !$%# !&"# "'%# !'%# $'%# ('%# &'%# %'%# )'%# *'%# UB Ridge GP ridge

Average STDEV Average STDEV DT 5-max 30.13404255 1.454735728 SK 2-max 30.65558621 2.3872342 DT 5-min 22.84042553 0.738273871 SK 2-min 22.71551724 1.314934689 DT 5-hujan 143.0340426 118.8802679 SK 2-hujan 121.8651724 100.1716091 DR 11-max 30.10638298 1.317340682 SC 7-max 31.23684211 2.232281951 DR 11-min 22.23404255 3.138836518 SC 7-min 22.66896552 0.855161193 DR 11-hujan 130.2404255 102.4921281 SC 7-hujan 121.4806897 105.3540278 UB 15-max 30.26702128 2.364840334 GP 35-max 30.60344828 1.541128035 UB 15-min 21.72340426 1.58693336 GP 35-min 25.6637931 26.39367746 UB 15-hujan 143.3744681 128.8278397 GP 35-hujan 113.3768966 95.06716228 NB13-max 28.00106383 1.373386185 TK 22-max 29.37931034 1.897159337 NB13-min 21.17021277 0.890434948 TK 22-min 21.56896552 1.95216541 NB13-hujan 126.7765957 87.91246055 TK 22-hujan 101.96 85.65333369 UB 53-max 28.60957447 9.626065472 MR 2-max 27.69827586 0.922143076 UB 53-min 20.91489362 0.722398715 MR 2-min 21.73275862 1.490365307 UB 53-hujan 117.9940426 85.10232875 MR 2-hujan 121.477931 93.26856545 UB 73-max 24.9787234 1.929180948 GP 80-max 28.74655172 2.065014805 UB 73-min 19.28723404 1.025814158 GP 80-min 20.95689655 1.060802753 UB 73-hujan 131.5978723 96.87636705 GP 80-hujan 107.7993103 85.38255683 UB 88-max 26.92391304 2.216020937 GP 90-max 26.3362069 1.292311716 UB 88-min 17.35869565 1.319356087 GP 90-min 19.47413793 1.268451238 UB 88-hujan 126.1630435 91.1153856 GP 90-hujan 107.3596552 84.9438494 PS FS AB LS Max temp 30.39481438 30.67161254 30.43523478 28.69018709 Min temp 22.77797139 30.43523478 23.69359868 21.36958914 133.9043432 127.1778983 130.7405227 rainfall 132.4496075 125.8605576 128.3756823 114.3682979 130.9948718 122.7217211 -0.452157413 !!"# !$%# !&"# "'%# !'%# $'%# ('%# &'%# %'%# )'%# *'%# !+# $&# ("# ()# "'%# !'%# $'%# ('%# &'%# %'%# )'%# *'%# max, min temperature (10 day period, C) PS FS AB LS LG UG MO avg rainfall (10 day period, mm) FOREST TYPES

(30)
(31)
(32)

0 2 4 6 8 10 12 14 16

Ja

n

86

Ap

r 8

6

Ju

l 8

6

Oct

8

6

Ja

n

87

Ap

r 8

7

Ju

l 8

7

Oct

8

7

Ja

n

88

Ap

r 8

8

Ju

l 8

8

Oct

8

8

Ja

n

89

Ap

r 8

9

Ju

l 8

9

Oct

8

9

Ja

n

90

Ap

r 9

0

Ju

l 9

0

Oct

9

0

Ja

n

91

Ap

r 9

1

Ju

l 9

1

TF

A

(p

at

ch

es/

ha

)

0 2 4 6 8 10 12 14 16

#

ta

xa

w

ith

fru

it

A

Hutan dataran rendah

0 2 4 6 8 10 12 14 16 18 20

Ja

n 8

6

Ap

r 8

6

Ju

l 8

6

Oct

86

Ja

n 8

7

Ap

r 8

7

Ju

l 8

7

Oct

87

Ja

n 8

8

Ap

r 8

8

Ju

l 8

8

Oct

88

Ja

n 8

9

Ap

r 8

9

Ju

l 8

9

Oct

89

Ja

n 9

0

Ap

r 9

0

Ju

l 9

0

Oct

90

Ja

n 9

1

Ap

r 9

1

Ju

l 9

1

TF

A

(pa

tch

es/

ha

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

# t

axa

w

ith

fru

it

Pegununungan

0 2 4 6 8 10 12 14

Ja

n

86

Ap

r 8

6

Ju

l 8

6

O

ct

8

6

Ja

n

87

Ap

r 8

7

Ju

l 8

7

O

ct

8

7

Ja

n

88

Ap

r 8

8

Ju

l 8

8

O

ct

8

8

Ja

n

89

Ap

r 8

9

Ju

l 8

9

O

ct

8

9

Ja

n

90

Ap

r 9

0

Ju

l 9

0

O

ct

9

0

Ja

n

91

Ap

r 9

1

Ju

l 9

1

TF

A

(p

at

ch

es/

ha

)

0 2 4 6 8 10 12 14

#

ta

xa

w

ith

fru

it

Jumlah sumber makan kelempiau

Rawa gambut

Musim buah raya Bulan dgn banyak buah Bulan dgn sedikit buah Musim kelaparan Jumlah tipe makan yg

(33)

Fenologi hutan tropis

Perbandingan antara lokasi dan

tipe hutan

(34)

0 2 4 6 8 10 12 14 16 Jan 86 Apr 86 Jul 86 Oc t 86 Jan 87 Apr 87 Jul 87 Oc t 87 Jan 88 Apr 88 Jul 88 Oc t 88 Jan 89 Apr 89 Jul 89 Oc t 89 Jan 90 Apr 90 Jul 90 Oc t 90 Jan 91 Apr 91 Jul 91

Jumlah pohon makanan per ha

Waktu (tahun)

Sumber makanan kelasi, Jan. 1986 - Okt. 91

musim kelaparan

1986

1987

1988

1989

1990

1991

Marshall 2004

(35)

Cannon, Curran, Marshall & Leighton 2007

Ecol. Lett.

granite climbers (Fig. S3), variability in reproductive pro-ductivity is quite high. In the lowland sandstone, climbers were the most consistently reproductive, ranking substan-tially higher than all other forest types across the observa-tion period. This high relative rank is largely due to the very

low variability in reproductive productivity as the mean and maximum productivity values for the lowland sandstone are quite low. The freshwater swamp climber community was the second most consistently reproductive of the seven forest types examined.

(a) (h) (b) (i) (c) (j) (d) (k) (e) (l) (f) (m) (g) (n)

Figure 4 Fruiting behaviour over

68 months in a Bornean rainforest for different forest types. (a) montane (mean N month)1 = 283, min = 266, max = 301); (b) upper granite (mean Nmonth)1 = 640, min = 504, max = 678); (c) lower granite (mean N month)1= 673, min = 572, max = 696); (d) lower sandstone (mean N month)1 = 1023, min = 911, max = 1049); (e) alluvial bench (mean Nmonth)1 = 646, min = 578, max = 671); (f) freshwa-ter swamp (mean Nmonth)1 = 870, min = 676, max = 922); and (g) peat swamp (mean N month)1= 688, min = 610, max = 701). Observed values are shown in thick grey line. The average level of fruiting expected across all months is indicated by the solid black line while 95% confidence limits are shown by the dashed black lines. The thin grey line illustrates a single replicate of random fruiting behaviour. Frequency distribution of reproductive levels by month follow: (h) montane; (i) upper granite; (j) lower granite; (k) lower sandstone; (l) alluvial bench; (m) freshwater swamp; and (n) peat swamp. Barcharts illustrate observed levels of reproduction. Black curves assume a single season, grey curves assume a mixed model with two seasons.

Letter Landscape level Bornean plant reproduction 963

!2007 Blackwell Publishing Ltd/CNRS

granite climbers (Fig. S3), variability in reproductive

pro-ductivity is quite high. In the lowland sandstone, climbers

were the most consistently reproductive, ranking

substan-tially higher than all other forest types across the

observa-tion period. This high relative rank is largely due to the very

low variability in reproductive productivity as the mean and

maximum productivity values for the lowland sandstone are

quite low. The freshwater swamp climber community was

the second most consistently reproductive of the seven

forest types examined.

(a) (h) (b) (i) (c) (j) (d) (k) (e) (l) (f) (m) (g) (n)

Figure 4 Fruiting behaviour over

68 months in a Bornean rainforest for different forest types. (a) montane (mean

Nmonth)1 = 283, min = 266, max = 301);

(b) upper granite (meanN month)1 = 640,

min = 504, max = 678); (c) lower granite

(mean N month)1 = 673, min = 572, max

= 696); (d) lower sandstone (mean

Nmonth)1 = 1023, min = 911, max =

1049); (e) alluvial bench (mean N month)1

= 646, min = 578, max = 671); (f)

freshwa-ter swamp (mean N month)1 = 870,

min = 676, max = 922); and (g) peat swamp

(mean N month)1 = 688, min = 610,

max = 701). Observed values are shown in thick grey line. The average level of fruiting expected across all months is indicated by the solid black line while 95% confidence limits are shown by the dashed black lines. The thin grey line illustrates a single replicate of random fruiting behaviour. Frequency distribution of reproductive levels by month follow: (h) montane; (i) upper granite; (j) lower granite; (k) lower sandstone; (l) alluvial bench; (m) freshwater swamp; and (n) peat swamp. Barcharts illustrate observed levels of reproduction. Black curves assume a single season, grey curves assume a mixed model with two seasons.

Letter Landscape level Bornean plant reproduction 963

! 2007 Blackwell Publishing Ltd/CNRS

Dataran rendah

Gambut

granite climbers (Fig. S3), variability in reproductive pro-ductivity is quite high. In the lowland sandstone, climbers were the most consistently reproductive, ranking substan-tially higher than all other forest types across the observa-tion period. This high relative rank is largely due to the very

low variability in reproductive productivity as the mean and maximum productivity values for the lowland sandstone are quite low. The freshwater swamp climber community was the second most consistently reproductive of the seven forest types examined.

(a) (h) (b) (i) (c) (j) (d) (k) (e) (l) (f) (m) (g) (n)

Figure 4 Fruiting behaviour over 68 months in a Bornean rainforest for different forest types. (a) montane (mean

N month)1 = 283, min = 266, max = 301); (b) upper granite (mean N month)1 = 640, min = 504, max = 678); (c) lower granite (mean Nmonth)1 = 673, min = 572, max = 696); (d) lower sandstone (mean

N month)1 = 1023, min = 911, max = 1049); (e) alluvial bench (mean Nmonth)1 = 646, min = 578, max = 671); (f) freshwa-ter swamp (mean N month)1 = 870, min = 676, max = 922); and (g) peat swamp (mean N month)1= 688, min = 610, max = 701). Observed values are shown in thick grey line. The average level of fruiting expected across all months is indicated by the solid black line while 95% confidence limits are shown by the dashed black lines. The thin grey line illustrates a single replicate of random fruiting behaviour. Frequency distribution of reproductive levels by month follow: (h) montane; (i) upper granite; (j) lower granite; (k) lower sandstone; (l) alluvial bench; (m) freshwater swamp; and (n) peat swamp. Barcharts illustrate observed levels of reproduction. Black curves assume a single season, grey curves assume a mixed model with two seasons.

Letter Landscape level Bornean plant reproduction 963

!2007 Blackwell Publishing Ltd/CNRS

granite climbers (Fig. S3), variability in reproductive pro-ductivity is quite high. In the lowland sandstone, climbers were the most consistently reproductive, ranking substan-tially higher than all other forest types across the observa-tion period. This high relative rank is largely due to the very

low variability in reproductive productivity as the mean and maximum productivity values for the lowland sandstone are quite low. The freshwater swamp climber community was the second most consistently reproductive of the seven forest types examined.

(a) (h) (b) (i) (c) (j) (d) (k) (e) (l) (f) (m) (g) (n)

Figure 4 Fruiting behaviour over 68 months in a Bornean rainforest for different forest types. (a) montane (mean

Nmonth)1 = 283, min = 266, max = 301); (b) upper granite (mean N month)1= 640, min = 504, max = 678); (c) lower granite (mean N month)1= 673, min = 572, max = 696); (d) lower sandstone (mean

Nmonth)1 = 1023, min = 911, max = 1049); (e) alluvial bench (mean N month)1 = 646, min = 578, max = 671); (f) freshwa-ter swamp (mean N month)1= 870, min = 676, max = 922); and (g) peat swamp (mean N month)1= 688, min = 610, max = 701). Observed values are shown in thick grey line. The average level of fruiting expected across all months is indicated by the solid black line while 95% confidence limits are shown by the dashed black lines. The thin grey line illustrates a single replicate of random fruiting behaviour. Frequency distribution of reproductive levels by month follow: (h) montane; (i) upper granite; (j) lower granite; (k) lower sandstone; (l) alluvial bench; (m) freshwater swamp; and (n) peat swamp. Barcharts illustrate observed levels of reproduction. Black curves assume a single season, grey curves assume a mixed model with two seasons.

Letter Landscape level Bornean plant reproduction 963

!2007 Blackwell Publishing Ltd/CNRS

granite climbers (Fig. S3), variability in reproductive

pro-ductivity is quite high. In the lowland sandstone, climbers

were the most consistently reproductive, ranking

substan-tially higher than all other forest types across the

observa-tion period. This high relative rank is largely due to the very

low variability in reproductive productivity as the mean and

maximum productivity values for the lowland sandstone are

quite low. The freshwater swamp climber community was

the second most consistently reproductive of the seven

forest types examined.

(a) (h) (b) (i) (c) (j) (d) (k) (e) (l) (f) (m) (g) (n)

Figure 4 Fruiting behaviour over

68 months in a Bornean rainforest for different forest types. (a) montane (mean

N month)1 = 283, min = 266, max = 301);

(b) upper granite (mean N month)1 = 640,

min = 504, max = 678); (c) lower granite

(mean N month)1 = 673, min = 572, max

= 696); (d) lower sandstone (mean

N month)1 = 1023, min = 911, max =

1049); (e) alluvial bench (mean N month)1

= 646, min = 578, max = 671); (f)

freshwa-ter swamp (mean N month)1 = 870,

min = 676, max = 922); and (g) peat swamp

(mean N month)1 = 688, min = 610,

max = 701). Observed values are shown in thick grey line. The average level of fruiting expected across all months is indicated by the solid black line while 95% confidence limits are shown by the dashed black lines. The thin grey line illustrates a single replicate of random fruiting behaviour. Frequency distribution of reproductive levels by month follow: (h) montane; (i) upper granite; (j) lower granite; (k) lower sandstone; (l) alluvial bench; (m) freshwater swamp; and (n) peat swamp. Barcharts illustrate observed levels of reproduction. Black curves assume a single season, grey curves assume a mixed model with two seasons.

Letter Landscape level Bornean plant reproduction 963

!2007 Blackwell Publishing Ltd/CNRS

Pegunungan

(36)

Liana

Ficus

Pohon

kecil

Pohon

besar

Cannon, Curran, Marshall & Leighton 2007

Ecol. Lett.

berbuah

raya

(rata-rata)

tidak

(37)

0 5 1 0 1 5 2 0 2 5 3 0 Feb 8 6 May 86 Aug 8 6 Nov 8 6 Feb 8 7 May 87 Aug 8 7 Nov 8 7 Feb 8 8 May 88 Aug 8 8 Nov 8 8 Feb 8 9 May 89 Aug 8 9 Nov 8 9 Feb 9 0 May 90 Aug 9 0 Nov 9 0 Feb 9 1 May 91 Aug 9 1 0 5 1 0 1 5 2 0 2 5 3 0 Feb 8 6 May 86 Aug 8 6 Nov 8 6 Feb 8 7 May 87 Aug 8 7 Nov 8 7 Feb 8 8 May 88 Aug 8 8 Nov 8 8 Feb 8 9 May 89 Aug 8 9 Nov 8 9 Feb 9 0 May 90 Aug 9 0 Nov 9 0 Feb 9 1 May 91 Aug 9 1

Musim buah raya

Musim berbuah biasa

Neoscortechinia kingii

Rourea major

0 5 1 0 1 5 2 0 2 5 3 0 Feb 8 6 May 86 Aug 8 6 Nov 8 6 Feb 8 7 May 87 Aug 8 7 Nov 8 7 Feb 8 8 May 88 Aug 8 8 Nov 8 8 Feb 8 9 May 89 Aug 8 9 Nov 8 9 Feb 9 0 May 90 Aug 9 0 Nov 9 0 Feb 9 1 May 91 Aug 9 1

Porterandia sessiliflora

Musim buah sedikit

time

time

time

Food/ha

Food/ha

Food/ha

(38)

Berbuah raya v. musim-musim tertentu

Average rainfall, Davis, CA 1930–2010 weather.com

Konjup, Southwest Australia Hill & Donald 2003

New South Wales, Australia

(39)

Average rainfall, Ann Arbor, MI 1930–2010

weather.com

Average rainfall, Davis, CA 1930–2010

weather.com

Berbuah raya v. musim-musim tertentu

musim-musim tertentu

(40)

Landscape level Bornean plant reproduction, Cannon et al. figures

Figure S1. Annual reproductive behavior of all woody plants. Monthly observations are plotted for each year of the percentage of the reproductive stems. Each year is indicated by a different type of line, as shown in the legend.

persen tumbuhan yg berbuah

Cannon, Curran, Marshall & Leighton (2007) Ecology Letters

Feb

Apr

Jun

Aug

Oct

Dec

Monthly observations (excluding masts)

2%

3%

4%

1990 1990 1986 1987 1991 1991 1986 1988 1988 1989 1989 1987

Berbuah raya v. musim-musim tertentu

(41)

El Niño Southern Oscillation (ENSO) years

Seed exports

(millions of kg of dry mass)

(42)

ENSO

Non- ENSO

Year

June–Sept r

ainfall (mm)

(43)

• Tipe interaksi antara hewan dan tumbuhan

• Fenologi di hutan tropis

>

 

Bagaimana habitat mempengaruhi hewan

Interaksi antara tumbuhan

dan hewan

(44)

Kelempiau

(Hylobates albibarbis)

Berat badan 5-6 kg

Menjaga wilayah sebesar

30-40 ha

2-7 individu per kelompok

satu laki-laki kawin sama satu betina

(45)

Berat badan 5.5-7 kg

Wilayah sebesar 70-85 ha

T. Laman

T. Laman

2-11 individu per kelompok

satu laki-laki bisa kawin sama lebih dari satu betina

Kelasi

(46)

Dua jenis ini merupahkan contoh bagus

untuk meneliti pertanyaan ekologi karena:

• banyak informasi tentang jenis

2

binatang ini sudah

tersedia dari SPCP dan tempat lain

• hewan

2

tersebut mentempati beberapa macam hutan

• berat badan hampir sama, tapi makanan dan sistem sosial

jauh beda

• hewan

2

ini menjaga wilayah, dan tidak merantau ke

tempat lain untuk cari makanan (seperti orangutan), jadi

efek-efek kwalitas habitat lebih jelas dan mudah dilihat

• kepadatan cukup tinggi, berarti dapat ambil sampel yang

(47)

Marshall, Beaudrot & Wittmer (2014) Inter. J. Primatol.

covariates contribute to any top models (all models including phenology had

Δ

AIC > 3

and model weight < 0.15).

0 15 30 Macaca CVSPACE = 1.55 0 1 2 Callosciurus CVSPACE = 0.80 0 1.5 3 Ratufa CVSPACE = 0.66 0 2 4 Sus CVSPACE = 0.65 0 2 4 Pongo CVSPACE = 0.59 0 7.5 15 Hylobates CVSPACE = 0.58 0 7.5 15 Presbytis CVSPACE = 0.57 0 1.5 3 B. rhinoceros CVSPACE = 0.55 0 1.5 3 Anorrhinus CVSPACE = 0.51

AB.II AB.I LS.II FS.I LS.I PS.I LG.II LG.I UG.II UG.I MO.I MO.II 0 0.25 0.5 B. vigil CVSPACE= 0.37 Habitat partitions Population density +/ − SE (individuals/km 2 )

Fig. 3

Spatial variation in frugivore population densities at the Cabang Panti Research Station, Gunung

Palung National Park, West Kalimantan from October 2007 to February 2013. Mean (±SE) model averaged

population density (individuals/km

2

) for each vertebrate frugivore by habitat partition (

D

SPACE

). Note that the

y

-axis scale differs among plots, therefore the height of bars reflects relative habitat quality of partitions within

each taxon. The highest partition specific mean population density for each taxon is shown with a black bar,

second highest in dark gray, third highest in light gray, and all others in white. Taxon names are given on the

right side of the figure, along with the coefficient of variation for model averaged population density among

partitions (CV

SPACE

, an index of habitat specialization). Species are listed from top to bottom in descending

order of habitat specialization; habitat partitions are listed from left to right in descending order of mean

population density for the 10 frugivore species shown. Lowland forest types contain the highest densities of all

10 frugivorous species.

Responses of Primates to Plant Resource Variability

covariatescontributetoanytopmodels(allmodelsincludingphenologyhad

Δ

AIC>3

and model weight < 0.15).

0

15

30

Macaca

CV

SPACE

= 1.55

0

1

2

Callosciurus

CV

SPACE

= 0.80

0

1.5

3

Ratufa

CV

SPACE

= 0.66

0

2

4

Sus

CV

SPACE

= 0.65

0

2

4

Pongo

CV

SPACE

= 0.59

0

7.5

15

Hylobates

CV

SPACE

= 0.58

0

7.5

15

Presbytis

CV

SPACE

= 0.57

0

1.5

3

B. rhinoceros

CV

SPACE

= 0.55

0

1.5

3

Anorrhinus

CV

SPACE

= 0.51

AB.II

AB.I

LS.II

FS.I

LS.I

PS.I

LG.II

LG.I

UG.II

UG.I

MO.I

MO.II

0

0.25

0.5

B. vigil

CV

SPACE

= 0.37

Habitat partitions

Population density +/ − SE (individuals/km 2 )

Fig. 3

Spatial variation in frugivore population densities at the Cabang Panti Research Station, Gunung

Palung National Park, West Kalimantan from October 2007 to February 2013. Mean (±SE) model averaged

populationdensity(individuals/km

2

)foreachvertebratefrugivorebyhabitatpartition(

D

SPACE

).Notethatthe

y

-axisscalediffersamongplots,thereforetheheightofbarsreflectsrelativehabitatqualityofpartitionswithin

each taxon. The highest partition specific mean population density for each taxon is shown with a black bar,

second highest in darkgray, third highestin light gray, and all othersin white. Taxon namesaregivenon the

right side of the figure, along with the coefficient of variation for model averaged population density among

partitions (CV

SPACE

, an index of habitat specialization). Species are listed from top to bottom in descending

order of habitat specialization; habitat partitions are listed from left to right in descending order of mean

populationdensityforthe10frugivorespeciesshown.Lowlandforesttypescontainthehighestdensitiesofall

10 frugivorous species.

Responses of Primates to Plant Resource Variability

covariatescontributetoanytopmodels(allmodelsincludingphenologyhad

ΔAIC>3

and model weight < 0.15).

0

15

30

Macaca

CV

SPACE

= 1.55

0

1

2

Callosciurus

CV

SPACE

= 0.80

0

1.5

3

Ratufa

CV

SPACE

= 0.66

0

2

4

Sus

CV

SPACE

= 0.65

0

2

4

Pongo

CV

SPACE

= 0.59

0

7.5

15

Hylobates

CV

SPACE

= 0.58

0

7.5

15

Presbytis

CV

SPACE

= 0.57

0

1.5

3

B. rhinoceros

CV

SPACE

= 0.55

0

1.5

3

Anorrhinus

CV

SPACE

= 0.51

AB.II

AB.I

LS.II

FS.I

LS.I

PS.I

LG.II

LG.I

UG.II

UG.I

MO.I

MO.II

0

0.25

0.5

B. vigil

CV

SPACE

= 0.37

Habitat partitions

Population density +/ − SE (individuals/km 2 )

Fig. 3

Spatial variation in frugivore population densities at the Cabang Panti Research Station, Gunung

Palung National Park, West Kalimantan from October 2007 to February 2013. Mean (±SE) model averaged

population density (individuals/km

2

) for eachvertebratefrugivoreby habitat partition(

D

SPACE

).Note that the

y

-axisscalediffersamongplots,thereforetheheightofbarsreflectsrelativehabitatqualityofpartitionswithin

each taxon. The highest partition specific mean population density for each taxon is shown with a black bar,

second highest in dark gray, third highest in light gray, and all others in white. Taxon names are given on the

right side of the figure, along with the coefficient of variation for model averaged population density among

partitions (CV

SPACE

, an index of habitat specialization). Species are listed from top to bottom in descending

order of habitat specialization; habitat partitions are listed from left to right in descending order of mean

populationdensityforthe10frugivorespeciesshown.Lowlandforesttypescontainthehighestdensitiesofall

10 frugivorous species.

Responses of Primates to Plant Resource Variability

Kepadatan

(individu/km

2

)

Kelempiau

Kelasi

Bagian tipe hutan

Kwalitas habitat berbeda

covariates contribute to any top models (all models including phenology hadΔAIC > 3

and model weight < 0.15).

0 15 30 Macaca CVSPACE = 1.55 0 1 2 Callosciurus CVSPACE = 0.80 0 1.5 3 Ratufa CVSPACE = 0.66 0 2 4 Sus CVSPACE = 0.65 0 2 4 Pongo CVSPACE = 0.59 0 7.5 15 Hylobates CVSPACE = 0.58 0 7.5 15 Presbytis CVSPACE = 0.57 0 1.5 3 B. rhinoceros CVSPACE = 0.55 0 1.5 3 Anorrhinus CVSPACE = 0.51

AB.II AB.I LS.II FS.I LS.I PS.I LG.II LG.I UG.II UG.I MO.I MO.II 0 0.25 0.5 B. vigil CVSPACE= 0.37 Habitat partitions Population density +/ − SE (individuals/km 2 )

Fig. 3 Spatial variation in frugivore population densities at the Cabang Panti Research Station, Gunung Palung National Park, West Kalimantan from October 2007 to February 2013. Mean (±SE) model averaged population density (individuals/km2) for each vertebrate frugivore by habitat partition (D

SPACE). Note that the

y-axis scale differs among plots, therefore the height of bars reflects relative habitat quality of partitions within each taxon. The highest partition specific mean population density for each taxon is shown with a black bar, second highest in dark gray, third highest in light gray, and all others in white. Taxon names are given on the right side of the figure, along with the coefficient of variation for model averaged population density among partitions (CVSPACE, an index of habitat specialization). Species are listed from top to bottom in descending

order of habitat specialization; habitat partitions are listed from left to right in descending order of mean population density for the 10 frugivore species shown. Lowland forest types contain the highest densities of all 10 frugivorous species.

1188 A.J. Marshall et al.

covariates contribute to any top models (all models including phenology hadΔAIC > 3 and model weight < 0.15).

0 15 30 Macaca CVSPACE = 1.55 0 1 2 Callosciurus CVSPACE = 0.80 0 1.5 3 Ratufa CVSPACE = 0.66 0 2 4 Sus CVSPACE = 0.65 0 2 4 Pongo CVSPACE = 0.59 0 7.5 15 Hylobates CVSPACE = 0.58 0 7.5 15 Presbytis CVSPACE = 0.57 0 1.5 3 B. rhinoceros CVSPACE = 0.55 0 1.5 3 Anorrhinus CVSPACE = 0.51

AB.II AB.I LS.II FS.I LS.I PS.I LG.II LG.I UG.II UG.I MO.I MO.II 0 0.25 0.5 B. vigil CVSPACE= 0.37 Habitat partitions Population density +/ − SE (individuals/km 2 )

Fig. 3 Spatial variation in frugivore population densities at the Cabang Panti Research Station, Gunung Palung National Park, West Kalimantan from October 2007 to February 2013. Mean (±SE) model averaged population density (individuals/km2) for each vertebrate frugivore by habitat partition (D

SPACE). Note that the

y-axis scale differs among plots, therefore the height of bars reflects relative habitat quality of partitions within each taxon. The highest partition specific mean population density for each taxon is shown with a black bar, second highest in dark gray, third highest in light gray, and all others in white. Taxon names are given on the right side of the figure, along with the coefficient of variation for model averaged population density among partitions (CVSPACE, an index of habitat specialization). Species are listed from top to bottom in descending

order of habitat specialization; habitat partitions are listed from left to right in descending order of mean population density for the 10 frugivore species shown. Lowland forest types contain the highest densities of all 10 frugivorous species.

1188 A.J. Marshall et al.

covariates contribute to any top models (all models including phenology hadΔAIC > 3 and model weight < 0.15).

0 15 30 Macaca CVSPACE = 1.55 0 1 2 Callosciurus CVSPACE = 0.80 0 1.5 3 Ratufa CVSPACE = 0.66 0 2 4 Sus CVSPACE = 0.65 0 2 4 Pongo CVSPACE = 0.59 0 7.5 15 Hylobates CVSPACE = 0.58 0 7.5 15 Presbytis CVSPACE = 0.57 0 1.5 3 B. rhinoceros CVSPACE = 0.55 0 1.5 3 Anorrhinus CVSPACE = 0.51

AB.II AB.I LS.II FS.I LS.I PS.I LG.II LG.I UG.II UG.I MO.I MO.II 0 0.25 0.5 B. vigil CVSPACE= 0.37 Habitat partitions Population density +/ − SE (individuals/km 2 )

Fig. 3 Spatial variation in frugivore population densities at the Cabang Panti Research Station, Gunung Palung National Park, West Kalimantan from October 2007 to February 2013. Mean (±SE) model averaged population density (individuals/km2) for each vertebrate frugivore by habitat partition (DSPACE). Note that the y-axis scale differs among plots, therefore the height of bars reflects relative habitat quality of partitions within each taxon. The highest partition specific mean population density for each taxon is shown with a black bar, second highest in dark gray, third highest in light gray, and all others in white. Taxon names are given on the right side of the figure, along with the coefficient of variation for model averaged population density among partitions (CVSPACE, an index of habitat specialization). Species are listed from top to bottom in descending

order of habitat specialization; habitat partitions are listed from left to right in descending order of mean population density for the 10 frugivore species shown. Lowland forest types contain the highest densities of all 10 frugivorous species.

1188 A.J. Marshall et al.

covariates contribute to any top models (all models including phenology hadΔAIC > 3 and model weight < 0.15).

0 15 30 Macaca CVSPACE = 1.55 0 1 2 Callosciurus CVSPACE = 0.80 0 1.5 3 Ratufa CVSPACE = 0.66 0 2 4 Sus CVSPACE = 0.65 0 2 4 Pongo CVSPACE = 0.59 0 7.5 15 Hylobates CVSPACE = 0.58 0 7.5 15 Presbytis CVSPACE = 0.57 0 1.5 3 B. rhinoceros CVSPACE = 0.55 0 1.5 3 Anorrhinus CVSPACE = 0.51

AB.II AB.I LS.II FS.I LS.I PS.I LG.II LG.I UG.II UG.I MO.I MO.II 0 0.25 0.5 B. vigil CVSPACE = 0.37 Habitat partitions Population density +/ − SE (individuals/km 2 )

Fig. 3 Spatial variation in frugivore population densities at the Cabang Panti Research Station, Gunung Palung National Park, West Kalimantan from October 2007 to February 2013. Mean (±SE) model averaged population density (individuals/km2) for each vertebrate frugivore by habitat partition (DSPACE). Note that the y-axis scale differs among plots, therefore the height of bars reflects relative habitat quality of partitions within each taxon. The highest partition specific mean population density for each taxon is shown with a black bar, second highest in dark gray, third highest in light gray, and all others in white. Taxon names are given on the right side of the figure, along with the coefficient of variation for model averaged population density among partitions (CVSPACE, an index of habitat specialization). Species are listed from top to bottom in descending

order of habitat specialization; habitat partitions are listed from left to right in descending order of mean population density for the 10 frugivore species shown. Lowland forest types contain the highest densities of all 10 frugivorous species.

1188 A.J. Marshall et al.

(48)

Kepadatan kelempiau tergantung

kepadatan

Ficus

kepadatan kelempiao log (indi

v/km

2

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.25

0.5

0.75

1

R

2

= 0.70, p = 0.01, n = 7 habitats

Kepadatan Ficus

(49)

n= 11 sites, r

2

= 0.82

p= 0.0001

Studi banding telah konfirmasikan ini juga

benra di beberapa lokasi di seluruh Asia

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0

0.25 0.5 0.75

1

1.25 1.5 1.75

Gibbon biomass log (kg/km

2

)

Kepadatan Ficus

log (fig stems per ha)

(50)

0 1 2 3 4 5

Kwalitas wilayah (individu/km

2

)

Jumlah anak

per kelompok

0 2 4 6 8 10

Reproduksi dan kwalitas habitat: kelempiau

jantan = betina

R2 = 0.58

p < 0.0001

n = 33 kelompok

Marshall (2010)

(51)

0 1 2 3 4 5

Kwalitas wilayah (individu/km

2

)

Jumlah anak

per kelompok

0 2 4 6 8 10

Reproduksi dan kwalitas habitat: kelasi

jantan

betina

R2 = 0.04 p = 0.53 n = 13 kelompok R2 = 0.70 p = 0.0004 n = 13 kelompok Marshall (2010)

(52)

0 1 2 3 4 5

Kwalitas wilayah (individu/km

2

)

Jumlah betina

per kelompok

0 2 4 6 8 10

Jumlah betina per kelompok

kelasi

kelempiau

tidak ada efek n = 33 kelompok R2 = 0.83 p < 0.0001 n = 13 kelompok Marshall (2010)

(53)

Kwalitas habitat sangat mempengaruhi

kelempiau dan kelasi, tapi efeknya

(54)

Dinamika populasi

sumber-saluran

(“source-sink”)

• Variasi antara tipe hutan dan angka perkembangan populasi

(“r”) tergantung populasi, sehingga:

r > 0 = sumber

r < 0 = saluran

• Dalam daerah dengan beberapa tipe hutan, populasi dapat

bertahan di saluran jika ada immigrasi dari sumber.

(55)

Marshall 2009 Biotropica 0 2 4 6 8 10 R2=0.72, p = 0.015 0 2 4 6 8 10 R2=0.83, p < 0.0000001 0 200 400 600 800 1000 0 1 2 3 4 d3$Altitude..m.asl. R2=0.54, p < 0.0000001

Jumlah anak per

kelompok

(di dalam 8 tahun)

Dinamika populasi

sumber-saluran

kelempiau

n = 7 tipe hutan n =33 kelompok Ketinggian (m apl)

Kepadatan

(individu/km2)

Kwalitas wilyah

(individu/km2 dalam wilayah)

n =33 kelompok

Hutan pungunungan

saluran untuk

(56)

Kwalitas wilayah

r2 = 0.77, p < 0.0004, n=11

(individu/km

2

dalam wilayah)

169

9 Effect of Habitat Quality on Primate Populations in Kalimantan

when the two peat swamp leaf monkey groups are retained. However, the

implica-tion of this result is similar to that found for gibbons: if lowland forests (most of

which are of high quality for leaf monkeys) were destroyed, montane leaf monkey

population densities might not be viable. These results have important conservation

implications, which will be discussed at the end of the Discussion section.

Discussion

This chapter presents an overview of results that have emerged from studies of

gib-bons and leaf monkeys living in a range of distinct habitats. These results indicate

that habitat quality (i.e., population density at carrying capacity) can vary

substan-tially across forest types on relatively small spatial scales. These results also

sug-gest that different classes of food resource (e.g., preferred and fallback foods) can

have distinct effects on primate populations, that these effects may differ between

primate taxa, and, therefore, that simple measures of food availability are

inade-quate to capture the ecological variation of most relevance to primates. Furthermore,

habitat quality can have important implications for primate populations on the

individual, group, and population level. For example, habitat quality can influence

individual reproductive success, group size, and a population’s probability of

persistence. This suggests that observations and ecological inferences from one

Fig. 9.5

Territory-specific population density (individuals/km

2

, defined as the territory specific

habitat-quality, as in Fig.

9.3

) of gibbons (

a

) and leaf monkeys (

b

) plotted against altitude (meters

asl). Statistics: (

a

) r

2

= 0.82, p < 0.0001, n = 33, from Marshall

2009

; (

b

) including two peat swamp

groups (open circles): r

2

= 0.29,

p < 0.06, n = 13; excluding peat swamp groups: r

2

= 0.77,

p < 0.0004,

n = 11. A simple demographic model using these cross-sectional data suggested that montane

forests are sink habitat for gibbons (Marshall

2009)

; data are insufficient to estimate habitat-specific

population growth rates for leaf monkeys

Kelasi juga?

tipe hutan lain rawa gambut

Ketinggian

(m apl)

Marshall (2010)

(57)

Hylobates R2=0.59, p = 0.003 min mid max Presbytis R2=0.48, p = 0.013 Pongo R2=0.81, p = 0.00001 Macaca R2=0.32, p = 0.053 min mid max Callosciurus R2=0.63, p = 0.002 Ratufa R2=0.69, p = 0.0008 0 200 400 600 800 data$elevation Sus R2=0.68, p = 0.0009 min mid max 0 200 400 600 800 data$elevation Buceros R2=0.48, p = 0.013 0 200 400 600 800 data$elevation Anorrhinus R2=0.92, p = 0.00001

Kepadatan menurun di atas gunung

n=12 bagian hutan

primata

mamalia lain

burung

Ketinggian (m apl)

Kepadatan

(58)

meters apl

0

1,000

“r” (reprod

uctive rate)

0

+

r > 0 = sumber

r < 0 = saluran

Dinamika populasi

sumber-saluran

(“source-sink”)

(59)

kebanyakan habitat yg dihilangkan oleh

penebangan, kebakaran, dan konversi hutan adalah

habitat sumber (dataran rendah)

semakin banyak hutan tersisa adalah habitat saluran

semakin banyak habitat yang tersisa dalam kawasan

konservasi bukan “viable habitat”, jadi populasi dalam

kawasan lebih kecil daripada dipikirkan

hasil dari survei cepat bisa jadi berbahaya

Implikasi dari dinamika populasi

sumber-saluran

(60)

Ucapan terima kasih

Kementerian Riset, Teknologi dan Pendidikan Tinggi

Lembaga Ilmu Pengetahuan Indonesia

Kementerian Sumber Daya Alam dan Ekosistem

Balai Taman Nasional Gunung Palung

Universitas Tanjungpura, U Michigan

Yayasan Palung

Lande, Mi’an, Surya, Zakaria

Gambar

Figure 4 Fruiting behaviour over 68 months in a Bornean rainforest for different forest types
Fig. 9.5 Territory-specific population density (individuals/km 2 , defined as the territory specific

Referensi

Dokumen terkait

Keadaan masa yang datang tidak pasti (ragu-ragu) dan berubah, sehingga planning atau perencanan itu menjadi penting untuk memperkecil ketidak pastian

--- Pada hari ini, Rabu tanggal tujuh belas September tahun dua ribu empat belas pukul tigabelas Waktu Indonesia Barat, berdasarkan Surat Perintah Asisten

Guru sudah melaksanakan pembelajaran dengan cukup baik sesuai dengan Rencana Pelaksanaan Pembelajaran (RPP) yang telah direncanakan dan disusun sebelumnya. Guru

Oleh karena itu, perlu diadakan penelitian tindakan kelas untuk membuktikan bahwa melalui kolaborasi pemanfaatan media Pepisong dan pengelompokkan model Number Heads Together

[r]

pelaksanaan program/proyek dan perkiraan sumber dana yang terlibat di dalam3. pelaksanaan

Terjadinya peningkatan serangan dari awal pengamatan sampai fase generative tanaman berakhir diduga berhubungan dengan ketersedian tanaman muda yang

The results of this study indicate that (1) there is an effect of Functional Training exercise on Body Composition on the golden fitness and spa of Tanjung Morawa