• Tidak ada hasil yang ditemukan

Catatan Kuliah Fismat 2b part 2

N/A
N/A
Protected

Academic year: 2018

Membagikan "Catatan Kuliah Fismat 2b part 2"

Copied!
11
0
0

Teks penuh

(1)

BAB IX. Persamaan Differensial Parsial (PDP/PDE)

9.1Contoh – Contoh PDD

1. Persamaan laplace: ∇ =

Dimana dalam gravitasi tidak ada massa, dalam potensila listrik tidak ada muatan, dalam temperatur yang steady tidak ada sumber dan dalam kecepatan aliran tidak ada vortex, sumber dan sink.

2. Persamaan poisson: ∇ = , , Dimana f(x,y,z) adalah densitas sumber. 3. Persamaan difusi (aliran panas): ∇ =

� ∙ �

Dengan � adalah konstanta difusitas, dan u adalah unsteady temperatur yang merupakan konsentrasi dari suatu besaran yang difusi.

4. Persamaan gelombang: ∇ = ∙� �

Dengan u adalah besaran fisis yang bervibrasi atau nilainya yang berisolasi. 5. Persamaan helmholtz: ∇ � + � =

9.2Contoh Persamaan Laplace

Biasanya digunakan pada kasus steady state temperatur (T) pada plat datar, dengan tujuan mencari T(x,y).

∇ = , = x . y

Gunakan separasi variabel: �

Karena konstan maka dipilih nilai –k2dimana k≥0 �

� = − {sin�os dan �

� = {

Kemudian keempat solusi tersebut dikombinasikan menjadi: , = . sin

. �os |

. sin. �os | Dengan syarat batas:

, = , =

, = , =

Kemudian lakukan langkah-langkah berikut:

1. Apakah salah satu solusi memenuhi syarat – syarat batas tersebut? Tidak ada 2. Tentukan nilai T(x,y) nya

, = { ℎ , =

{

(2)

3. Cek dengan menggunakan syarat batas , =

. sin = → = � → =

∴ , = − � . sin � 4. Cek dengan menggunakan syarat batas , =

= , = =

Tidak ada nilai x yang memenuhi → gunakan ekspansi deret

, = ∑ . − � . sin � …

= Masukan nilai y=0

, = ∑ . sin �

=

= ∫ . sin �

= ∫ . sin � = ∙ � ∙ −�os � |

= − � ∙ [ − − ] = { �

Maka solusi yang diinginkan dari persamaan 2 adalah sebagi berikut: ∴ , = ∑ � ∙ − � ∙ sin �

Separasi Variabel

1. Asumsikan solusi merupakan produk dari fungsi-fungsi yang variablenya independen

Misalkan , = .

2. Pisahkan dengan melakukan separasi dari bentuk PDP menjadi PDB Misalkan ∙�

� = − ∙ �

� = − , ≥ 3. Cari solusi-solusi PDB tersebut

4. Kombinasikan solusi-solusi tersebut dengan menyertakan konstanta separasi (misalkan –k)

5. Cari nilai konstanta separasi dan kombinasikan linier solusi yang tepat. Caranya adalah dengan mengecek syarat awal dan syarat batas.

9.3Persamaan Difusi (Aliran Panas)

(3)

Gunakan pendekatan ruang dan waktu untuk separasi variabel. 2. Hasilnya kalikan dengan

��: �∇ � =� �

Solusi umumnya adalah:

∴ , = � .

9.4 Persamaan Gelombang Vibrasi dari Tali �

� = ∙

� � … .

Dimana persamaan tersebut merupakan persamaan gelombang 1D. 1. Separasi Variable

, = . � masukan ke PDP �� = � � kemudian kalikan dengan

=

2. Sertakan separasi variabel (faktornya) –k2

′′ = ̈ = − { �′′+ = ̈ + = Nilai k2 tidak memiliki solusi yang memenuhi

3. Solusi PDB dari i dan ii

= {sin�os = { sin = sin �os = �os Besaran-besaran gelombang:

x: panjang gelombang f: frekuensi

= � : kecepatan rambat gelombang = � : frekuensi angular

= � = � = : bilangan gelombang 4. Solusi umum

= {sin�os } {�os }sin 5. Terapkan syarat batas

(4)

. = , = . = , = }

Untuk syarat batas 1, solusi dengan cos kx tidak memenuhi Untuk syarat batas 2, sin = → = sin � → = � Maka solusinya berdasarkan syarat batas 1 dan 2 adalah:

, = {sin �

sin � …

sin � �os � … 5.2. kondisi awal (syarat terkait waktu)

� = untuk setiap x dan pada t=0

berdasarkan syarat awal, yang memenuhi adalah solusi b , = sin � �os � dengan batas fungsi deret fourier

, = ∑ �n ∞

n=

sin � �os �

dengan syarat awal , = = = maka persamaan dengan batas deret fourier menjadi:

= ∑ sin �

dengan deret fourier, koefisien deret bn dapat dicari. Sehingga solusi akhirnya menjadi:

= � [sinℎ � �os � − (sin ( � ) �os ( � ))]

9.5 Persamaan Laplace dalam Sistem Koordinat Silinder

∇ = �

� ( � � ) +

� �� +

� � =

Dengan syarat awal / syarat batas sebagai berikut: = , �, = , �, = ° , �, → ∞ = °

Separasi variabel: = Θ �

Substitusikan PDP, kalikan dengan maka diperoleh:

(5)

Syarat suku PDP merupakan konstanta yang hanya berfungsi sebagai satu variabel, dan variable tersebut tidak muncul di suku yang lain.

Cek di suku ketiga: �

� = maka solusinya adalah = {

→ ℎ

Persamaan 1 ditulis ulang menjadi:

( ) +Θ � +Θ = …

Kemudian kalikan dengan r2

( ) +Θ Θ

� + =

Untuk suku kedua

Θ

� Θ

�� = − dimana n=integer dan harus negatif Maka solusinya menjadi: Θ= {sin nθ

�os nθ dengan θ dan θ + nπ

Berapapun nilai n, = { � � + �ℎ

Kemudian tulis ulang persamaan 2 �

� � ��

��

�� + − = kalika denga R: � ��

��

�� + − =

′ ′+ [ − ] = …

Maka solusi untuk persamaan 3 (persamaan bessel)

� = ∑ Γ + Γ+ + ( ) +

=

� = �os �. � sin �− �−

Solusi yang memenuhi adalah: R(r)=Jn(kr)

Berdasarkan syarat batas 1

(6)

Solusi dasar dari ketiga suku tersebut adalah

, �, = {� �os � sin � −

Cek untuk syarat batas 1-3, dimana semua tidak bergantung pada teta. Sehingga solusi akhirnya menjadi:

, = ∑ � −

=

=

Dimana deret tersebut merupakan deret fourier bessel dengan =

9.6 Persamaan Laplace dalam Sistem Koordinat Bola = .Θ � .Φ � distribusi dan kalikan dengan

�ΘΦ

Maka bentuk PDPnya menajadi:

ΘΦ ( ) + Φ

Kemudian kalikan dengan � sin ��ΘΦ sin �

Tulis ulang persamaan 1 menjadi: sin �

Untuk suku pertama:

(7)

Kemudian tulis ulang persamaan 2 menjadi: +Θsin θ � (sin θ Θ

�) − sin θ=

Kalikan dengan Θ:

sin θ �

�� sin θ �Θ

�� + −sin θ .Θ = dengan nilai = +

Persamaan legendre terasosiasi yang memiliki solusi Θ= � �os � dari suku pertama, solusinya = {

(8)

BAB X. Fungsi Dengan Variable Kompleks

10.1 Pendahuluan

Bilangan kompleks = +

= + = �

Aplikasinya diguakan untuk dasar-dasar fungsi, fungsi trigonometri, dan logaritma. Fungsi kompleksnya terdiri dari differensial, integral, dan deret pangkat. Dimana ketiganya mengandung persamaan differensial dan solusi persamaan differensial.

Fungsi kompleks biasanya dituliskan sebagai = , +

. , , = + , =

Bilangan kompleks = + . ≡

Fungsi kompleks f z =u x,y +i.v x,y ekuvalen dengan pasangan fungsi riil dari u x,y =x +y dan v x,y = xy dengan varia�el r i x dan y

Fungsi umumnya merujuk ke nilai yang unik (tunggal) sehingga untuk kasus tertentu seperti

ln z = ln |z| +i v+ nπ dengan tan θ=yx

dimana ln akan memiliki nilai yang banyaknya mendekati .namun jika dibatasi pada nilai 2π maka nilai ln (z) unik dan dikenal sebagai single branch. Metode inilah yang digunakan untuk menghasilkan fungsi yang unik.

10.2 Fungsi Analitik

Turunan fungsi f(z) adalah: f' z =dt

dz= lim∆z→ ∆f ∆z

∆f=f z+∆z -f z dan ∆z=∆x+i∆y

Fungsi f(z) disebut fungsi analitik (regular, holomorfik, atau homogenik) dalam suatu daerah (titik dan kurva bukan termasuk definisi daerah) pada bidang kompleks (complex plane) jika fungsi tersebut punya turunan yang unik di setiap titik dalam daerah tersebut.

Pernyataan : f(z) analitik di z=a

(9)

Teorema I

Jika f z =u x,y +iv x,y adalah fungsi analitik dalam suatu daerah R, maka ∂u

∂x .... syarat dari cauchy-riemann Teorema II

Jika u(x,y) dan v(x,y) beserta turunan parsialnya terhadap x dan y kontinu k memenuhi syarat R di dalam daerah R maka f(z) adalah analitik di semua titik dalam daerah tersebut namun tidak harus analitik di batas daerah R.

Definisi:

- Titik regular dari f(z) adalah titik dimana f(z) analitik - Titik singular dari f(z) adalah titik dimana f(z) tidak analitik

- Titik singular terisolasi adalah jika f(z) analitik di semua titik daerah sekitar titik singular

Teorema III

Jika f(z) analitik di daerah R, maka f(z) punya turunan untuk semua orde di semua titik dalam daerah R dan dapat diuraikan dalam deret taylor di sekitar titik Z0 dalam

daerah R dandpt diuraikan dalam deret taylor di sekitar titik Z0 dalam daerh R.

Deret pangkat tersebut konvergen di dalam lingkaran di sekitar Z yang membentang ke titik singular tersebut

Teorema IV

1. Jika f z =u x,y +iv x,y analitik di R, maka u dan v memenuhi persamaan laplace di R atau u dan v adalah fungsi harmonik.

2. Sembarang fungsi u atau v memenuhi persamaan laplace dalam daerah yang terhubung sederhana adalah merupakan bagian riil dan imajiner dari fungsi analitik f(z).

10.3 Integral Kontur: Integral Garis dalam Bilangan Kompleks Teorema V (teorema cauchy)

Misalkan C adalah suatu kurva tertutup sederhana (tidak berpotongan dengan dirinya sendiri) dengan lengkungan yang halus dan kontinu kecuali di sejumlah titik (yang jumlahnya berhingga). Jika f(z) analitik di dalam dan pada C atau ∮ f z dz= maka disebut sebagai integral kontur.

Teorema VI (formula integral cauchy)

Jika f (z) analitik di dalam dan pada C (kurva tertutup sederhana) maka nilai f(z) di z=a dimana a di dalam C adalah f a =

πi∮ f z

f a dz ... (persamaan 1) Atau dapat dihasilkan / dituliskan menjadi:

πi ∮ f z

(10)

Kemudian jika dilihat lebih jauh lagi dengan mendeferensialkan persamaan 1 dapat diperoleh persamaan baru berikut,

fn 10.4 Deret Laurenz

Teorema VII (deret laurent)

Misalkan C1 dan C2 adalah lingkaran yang berpusat di Z0. Misalkan f(z) analitik di daerah R, yaitu diantara C1 dan C2. Maka f(z) dapat diuraikan menjadi:

f z =a +a z-z +a z-z +…+z-z + z-z +… yang konvergen di R

Deret tersebut dikenal sebagai deret laurent. Bagian b dalam deret tersebut dikenal sebagai bagian utama (primary term) dari deret laureny]t.

an= πi z'-f zz 'n+ dz �n= πi

f z'

z'-z -n+ dz

Deret a adalah deret pangkat yang konvergen di dalam cincin C2. Deret b adalah deret pangkat yang konvergen di luar cincin C2. Definisi:

1. jika semua b=0 maka f(z) analitik di Z=Z0, dimana Z0 adalah titik singular

2. jika bn tidak sama dengan 0 , tapi semua b=0 setelahnya maka f(z) disebut memiliki kutub dengan orde n di Z=Z0. Dan jika n=1, f(z) disebut punya kutub

sederhana.

3. Jika terdapat tak hingga b yang tidak sama dengan nol, f(z) memiliki singularitas esensial di Z=Z0

4. Koefisien b1 dari 1/Z-Z0 disebut residu f(z) pada Z=Z0 yang dituliskan sebagai

R(Z0).

5. Jika Zmendekati Z0 dan F(z) mendekati tak hingga maka Z=Z0 disebut kutu dari

f(z).

10.5 Metode Memperoleh Residu 1. Deret laurent R Z =� dari

Z-Z

2. Kutub sederhana: jika f(z) punya kutub sederhana di Z=Z0 maka R dicari dengan

mengkalikan f(z) dengan Z=Z0 dan mengevaluasi hasilnya pada Z=Z0

3. Kutub banyak (multiple pole)

Jika f(z) mempunyai kutub orde n, maka - kalikan f(z) dengan (z-z0)m dengan m≥n

(11)

- evaluasi hasilnya pada z=z0

10.6 Teorema Residu dan Aplikasinya untuk Integral Tentu Teorema residu ∮ f z dz= πi :

Jumlah residu f(z) di dalam C dengan arah integral C berlawanan arah dengan jarum jam.

Dalam pengaplikasiannya, teorema residu ini didekati melalui 2 cara yaitu sebagi berikut:

1. Pendekatan untuk mengevaluasi integral dengan fungsi rasional (pecahan) dari sin θ atau �os θ dengan batas antara 0 sampai dengan π dengan syarat penyebut yang tidak sama dengan nol untuk nilai teta berapapun.

2. Pendekatan untuk mengevaluasi integral tentu I= ∫ P x Q x dx ∞

, dengan syarat: - P(x) dan Q(x) adalah polinomial

- Orde Q≥2 dengan orde p

Referensi

Dokumen terkait

Hasil penelitian terhadap perempuan (istri) pegawai tetap di Universitas HKBP Nommensen (Sihotang Maria, 2010), bahwa motivasi mereka bekerja untuk membantu

Jarak antara baris satu dengan baris berikutnya dalam pengetikan laporan kerja praktek adalah dua spasi. Khususnya untuk judul tabel, dan judul gambar yang lebih

JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNIK DAN ILMU KOMPUTER UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2009... cc c.c Perbandingan Kompresi Citra menggunakan Algoritma DMC

PERANCANGAN MEDIA BANTU ANAK MENGENAL AJARAN YESUS MELALUI ILUSTRASI DAN BUKU BERDASAR INJIL.. Dengan Studi Kasus

Tabel karakteristik responden Dusun Tongkoh, Desa Dolat

Metode yang ditempuh oleh penulis dalam penelitian skripsi ini adalah content analysis (teknik analisa) dengan pendekatan psikologis dan sufistik, yaitu dengan

Desa wisata adalah desa yang memiliki potensi keunikan dan daya tarik wisata yang khas, baik berupa karakter fisik lingkungan alam pedesaan maupun kehidupan sosial

Elektroda grafit-epoksi kaliksaren digunakan sebagai elektroda kerja untuk mengukur potensial larutan sampel dengan cara menghubungkan elektroda grafit- epoksi-kaliksaren dengan