• Tidak ada hasil yang ditemukan

BIBLIOGRAPHY. Antal, M. J The Art, Science, and Technology of Charcoal Production

N/A
N/A
Protected

Academic year: 2021

Membagikan "BIBLIOGRAPHY. Antal, M. J The Art, Science, and Technology of Charcoal Production"

Copied!
6
0
0

Teks penuh

(1)

BIBLIOGRAPHY

Al-wabel, M. I., Al-omran, A., El-naggar, A. H., Nadeem, M., and Usman, A. R. A. 2013. Bioresource Technology Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379. https://doi.org/10.1016/j.biortech.2012.12.165

Antal, M. J. 2003. The Art , Science , and Technology of Charcoal Production †. 1619–1640. https://doi.org/10.1021/ie0207919

Basri, O., and Azis, A. 2011. Arang Hayati (BIOCHAR) sebagai Bahan Pembenah Tanah. V(6).

Bech, N., Larsen, M. B., Jensen, P. A., and Dam-Johansen, K. 2009. Modelling solid-convective flash pyrolysis of straw and wood in the Pyrolysis Centrifuge Reactor. Biomass and Bioenergy, 33(6–7), 999–1011. https://doi.org/10.1016/j.biombioe.2009.03.009

Bhavsar, P. A., Jagadale, M. H., Khandetod, Y. P., and Mohod, A. G. 2018. Proximate Analysis of Selected Non Woody Biomass. International Journal

of Current Microbiology and Applied Sciences, 7(09), 2846–2849.

https://doi.org/10.20546/ijcmas.2018.709.353

Enders, A., Hanley, K., Whitman, T., Joseph, S., and Lehmann, J. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644–653. https://doi.org/10.1016/j.biortech.2012.03.022

Enders, A., and Lehmann, J. 2012. Communications in Soil Science and Plant Analysis Comparison of Wet-Digestion and Dry-Ashing Methods for Total Elemental Analysis of Biochar Comparison of Wet-Digestion and Dry-Ashing. 3624. https://doi.org/10.1080/00103624.2012.656167

Fachry, A. R., Astuti, P., and Puspitasari, T. G. 2013. Pembuatan Bioetanol dari Limbah Tongkol Jagung dengan Variasi Konsentrasi Asam Klorida dan Waktu Fermentasi. Jurnal Teknik Kimia, 19(1), 60–69.

Ghani, W. A. W. A. K., Mohd, A., da Silva, G., Bachmann, R. T., Taufiq-Yap, Y. H., Rashid, U., and Al-Muhtaseb, A. H. 2013. Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: Chemical and physical characterization. Industrial Crops and Products, 44, 18–24. https://doi.org/10.1016/j.indcrop.2012.10.017

Hadi, R. R., Imam, A., Shidiq, A., Ayu, S., Genyai, N., and Pertiwi, G. K. 2016. Pembuatan biobriket dari limbah dedaunan. Jurusan Teknik Kimia Fakultas

(2)

Teknologi Indutri Universitas Islam Indonesia, Teknoin (22), 698–703.

Hartanto, S., and Ratnawati. 2010. Pembuatan Karbon Aktif dari Tempurung Kelapa Sawit dengan Metode Aktivasi Kimia. Jurnal Sains Materi Indonesia,

12(1), 12–16. http://jurnal.batan.go.id/index.php/jsmi/article/view/4588/4002

Hutapea, S., MP, G., and Aziz, R. 2016. Iptek Bagi Masyarakat (IbM) Pembuatan Biochar. Fakultas Pertanian Universitas Medan Area.

International Biochar Initiative. 2011. Biochar Technology. http://www.biochar-international.org. Downloaded on 3 April 2020.

Iskandar, T., and Rofiatin, U. 2017. Karakteristik Biochar Berdasarkan Jenis Biomassa Dan Parameter Proses Pyrolisis. Jurnal Teknik Kimia, 12(1), 28–34. https://doi.org/10.33005/tekkim.v12i1.843

Istomo, Farida, N. E. 2017. Above ground carbon storage potential of stand of Acacia nilotica L . ( Willd ) ex . Del . in. Jurnal Pengelolaan Sumberdaya

Alam Dan Lingkungan, 7(2), 155–162.

https://doi.org/10.19081/jpsl.2017.7.2.155

Kalderis, D., Kotti, M. S., Méndez, A., and Gascó, G. 2014. Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth,

5(1), 477–483. https://doi.org/10.5194/se-5-477-2014

Kambo, H. S., and Dutta, A. 2015. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications.

Renewable and Sustainable Energy Reviews, 45, 359–378. https://doi.org/10.1016/j.rser.2015.01.050

Karimi, K., Kheradmandinia, S., and Taherzadeh, M. J. 2006. Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy (Vol. 30, Issue 3, pp. 247–253). https://doi.org/10.1016/j.biombioe.2005.11.015

Kurniawan, A., Haryono, B., Baskara, M., and Tyasmoro, Y. 2013. The effects of biochar application to planting media on the growth of sugarcane seeds

(Saccharum officinarum L) .Jurnal Produksi Tanaman, 4(2). 153 - 160.

Laird, D. A., Brown, R. C., Amonette, J. E., and Lehmann, J. 2009. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels, Bioproducts

and Biorefining, 6(3), 246–256. https://doi.org/10.1002/bbb

Lee, Y., Park, J., Ryu, C., Gang, K. S., Yang, W., Park, Y. K., Jung, J., and Hyun, S. 2013. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresource Technology, 148, 196–201. https://doi.org/10.1016/j.biortech.2013.08.135

(3)

Nutrient Availability and Leaching in an Archaeological Anthrosol and Ferralsol of the Central Amazon Basin: Fertilizer, Manure, and Charcoal Amandments. Entomologia Experimentalis et Applicata, 103(3), 239–248. https://doi.org/10.1023/A

Maghdalena, M., and Widiastuti, D. 2016. Meningkatkan Pendapatan Petani di Kabupaten Merauke. (Analysis Benefit Cost Ratio of Biochar in Agriculture

Land to Increase Income Household in Merauke Regency). 13(2).

Mazlan, M. A. F., Uemura, Y., Osman, N. B., and Yusup, S. 2015. Fast pyrolysis of hardwood residues using a fixed bed drop-type pyrolyzer. In Energy

Conversion and Management (Vol. 98, pp. 208–214). https://doi.org/10.1016/j.enconman.2015.03.102

Miles, T. 2008. Use of biochar (charcoal) to replenish soil carbon pools, restore

soil fertility and sequester CO2. December, 1–7.

Mohan, D., Pittman, C. U., and Steele, P. H. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels, 20(3), 848–889. https://doi.org/10.1021/ef0502397

Mopoung, S., and Udeye, V. 2015. Wood Charcoal and Wood Vinegar Production from Mango Tree Wood by Using 3 m 3 Carbonization Dome Kiln.

Nurhilal, O., and Sri, D. A. N. 2018. Pengaruh komposisi campuran sabut dan tempurung kelapa terhadap nilai kalor biobriket dengan perekat molase.

02(01), 8–14.

Nuswantara, P. 2019. Evaluasi Kecernaan Serat Berbagai Hijauan Pakan Pada Kambing Peranakan Ettawa dengan Uji In Vitro. 3(1), 86–93.

Okoroigwe, E. 2015. Combustion Analysis and Devolatilazation kinetics of Gmelina, Mango, Neem and Tropical Almond Woods under Oxidative Condition. International Journal of Renewable Energy Research, 5(4), 1024– 1033. https://doi.org/10.20508/ijrer.01946

Panyoyai, Numpon, Wongsiriamnuay, T., and Khamdaeng, T. 2018. Temperature Distribution Inside Biochar Kiln for Biochar Production. Proc. 10th

International Conference on Sciences, Technology and Innovation for Sustainable Well-Being (Vientiane: Laos)

Panyoyai, Numpon, Wongsiriamnuay, T., and Khamdaeng, T. 2019. Simulation of Temperature Distribution in Biochar Kiln with Different Feedstock Types. July. TGTK 55th Anniversary Thai-German Technical Institute Khon Kaen. Park, J., Lee, Y., Ryu, C., and Park, Y. K. 2014. Slow pyrolysis of rice straw:

Analysis of products properties, carbon and energy yields. Bioresource

(4)

Phetchaihan, L. 2018. Factors Effecting on Biochar Production From Agricultural Residue.Thesis in Faculty of Engineering and Agroindustry, Maejo University Petchaihan, L., Panyoyai, N., Khamdaeng, T., and Wongsiriamnuay, T. 2020. Test of a modified small-scale biochar kiln. IOP Conference Series: Earth and

Environmental Science, 463(1). https://doi.org/10.1088/1755-1315/463/1/012004

Pratama, B. S., Aldriana, P., Bambang, I., and Saptati, A. . D. 2018. Konversi Ampas Tebu Menjadi Biochar dan Karbon Aktif untuk Penyisihan Cr (VI).

Jurnal Rekayasa Bahan Alam Dan Energi Berkelanjutan, 2(1), 7–12.

http://rbaet.ub.ac.id/index.php/rbaet/article/view/45

Pratama, B. S., Aldriana, P., Bambang, I., and Saptati, A. . D. 2018. Konversi Ampas Tebu Menjadi Biochar dan Karbon Aktif untuk Penyisihan Cr (VI).

Jurnal Rekayasa Bahan Alam Dan Energi Berkelanjutan, 2(1), 7–12.

http://rbaet.ub.ac.id/index.php/rbaet/article/view/45

Ramdja, A.F ., M. Halim, J. H. 2008. Pembuatan Karbon Aktif dari Pelepah Kelapa (Cocus nucifera). Jurnal Teknik Kimia, 15(0258), 1–8.

Razar, R. M., Nasaruddin, M., and Aris, M. 2018. Distribution in Seven Hevea

Species for Potential Incorporation in Rubber Forest Plantation. 17(2), 96–

114.

Ronsse, F., van Hecke, S., Dickinson, D., and Prins, W. 2013. Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5(2), 104–115. https://doi.org/10.1111/gcbb.12018

Saputra, J. 2012. Potensi Biochar dari Limbah Biomassa Perkebunan Karet Sebagai Amelioran dan Mengurangi Emisi Gas Rumah Kaca. Warta Perkaretan, 31(1), 43. https://doi.org/10.22302/ppk.wp.v31i1.265

Shobah, A. N., and Oktavia, S. n.d. Efek Penambahan Limbah Lokal Jerami Dan Sekam Padi Bagi Pertumbuhan Jamur Tiram Putih (Pleurotus ostreatus).

Journal Bioeksperimen, 5 (2) Pp. 70-76 .

Sukowati, D., Yuwono, T. A., and Nurhayati, A. D. 2019. Analisis Perbandingan Kualitas Briket Arang Bonggol Jagung dengan Arang Daun Jati. PENDIPA

Journal of Science Education, 3(3), 142–145.

https://doi.org/10.33369/pendipa.3.3.142-145

Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., and Yang, L. 2014. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240, 574–578. https://doi.org/10.1016/j.cej.2013.10.081

(5)

Surono, U. B. 2012. Peningkatan Kualitas Pembakaran Biomassa Limbah Tongkol

Jagung sebagai Bahan Bakar Alternatif dengan Proses Karbonisasi dan Pembriketan. 4(1), 13–18. https://doi.org/10.22146/jrekpros.570

Tajalli, A. 2015. Panduan Penilaian Potensi Biomassa Sebagai Sumber Energi Alternatif di Indonesia. Jakarta: Penabulu Alliance

Wannapokin, A., Ramaraj, R., and Unpaprom, Y. 2017. An investigation of biogas production potential from fallen teak leaves (Tectona grandis). Emergent Life

Sciences Research, February. https://doi.org/10.7324/elsr.2017.31110

Wilda, N., and Pandebesie, E. S. 2015. Hidrolisis Eceng Gondok dan Sekam Padi untuk Menghasilkan Gula Reduksi sebagai Tahap Awal Produksi Bioetanol.

Jurnal Teknis Its, 4(2), 2–6.

Wongsiriamnuay, T., Khamdaeng, T., and Panyoyai, P. 2019. Thermal Properties and Agricultural Products of Biochar Production. July. TGTK 55th Anniversary Thai-German Technical Institute Khon Kaen.

Yuwono, N. W. 2017. Teknologi Tribio Untuk Mempercepat Proses Perbaikan Kesuburan Tanah Di Lahan Kering. Prosiding Seminar Nasional-Perbaikan

Kualitas Lahan Kering, 2, 61–66.

Zulaechah, L. S., Chanief, A. Z., and Wahyudi, T. W. 2014. Penggunaan Radiasi

Gelombang Mikro untuk Sintesis Karbon Aktif dari Limbah Biomassa dan Aplikasinya dalam Pengurangan Kadar Congo Red 4BS. 3(3), 77–83.

(6)

Referensi

Dokumen terkait

efek dalam menurunkan kadar gula darah pada pasien diabetes melitus dengan. dosis 2 g, 3 kali sehari selama 14 hari yang diberikan secara oral

[r]

To find the market value proportion of debt, simply multiply the price of the firm’s bonds by multiply the price of the firm’s bonds by the number outstanding. This is equal to

Meskipun pengaruh interaksi tidak nyata, berdasarkan data hasil penelitian pada Tabel 1 menunjukkan bahwa baik perlakuan vertikultur secara vertikal (v1) maupun

Menurut Sharma and Sethuraman (1996) dalam [ CITATION Kar13 \l 1057 ], Sindrom Stevens-Johnson adalah bentuk penyakit mukokutan dengan tanda dan

Co-op co-op menurut Slavin (2008:229) adalah sebuah bentuk Group Investigation yang cukup familiar. Model ini menempatkan tim dalam kooperasi antara satu dengan

Pada hari Jum'at tanggal 28 September 2012 , kami Panitia Pengadaan Barang dan Jasa yang diangkat berdasarkan Surat Keputusan Dinas Bina Marga dan Pengairan Kab.. 719-

Demostrar que el n´ umero de collares primos con n perlas, cada una de las cuales tiene uno de q n colores posibles, es igual a n veces el n´ umero de collares primos con n 2..