• Tidak ada hasil yang ditemukan

Institutional Repository | Satya Wacana Christian University: Penelitian Sistem Audio Stereo dengan Media Transmisi Jala-Jala Listrik

N/A
N/A
Protected

Academic year: 2017

Membagikan "Institutional Repository | Satya Wacana Christian University: Penelitian Sistem Audio Stereo dengan Media Transmisi Jala-Jala Listrik"

Copied!
51
0
0

Teks penuh

(1)

INTRODUCTION:

Frequency modulation, or FM, is an important method of impressing information on a carrier. It has

many advantages over AM. First, since FM only changes the frequency, and not the amplitude of the

carrier wave, FM receivers can be built to ignore amplitude (voltage) changes. This is important,

because most external noise is in the form of voltage variations that are "added" to the carrier wave as

it makes its way from transmitter to receiver. An AM receiver directly responds to these with the

familiar sounds of static interference; an FM receiver ignores the amplitude changes, almost

eliminating the effect of the noise.

Second, it is much easier to design systems to reproduce high-fidelity sound using FM. "High-fidelity"

means accurate signal reproduction, with a minimum of distortion. The reproduced information signal

is a very close replica of the original in an FM system. It's difficult to build hi-fi AM receivers, partly

due to the inherent nonlinear distortion created in a conventional AM diode detector, and also partly

due to the limited transmission bandwidth (8 kHz) allotted for AM broadcast.

These advantages do come at a price; that price is increased bandwidth. A typical FM broadcast station

uses up to 75 kHz of signal deviation (the peak frequency change), which results in a typical bandwidth

of 150 to 200 kHz. Because of the high bandwidth requirements, FM broadcasting is done in the VHF

band between 88 and 108 MHz. FM receivers and detectors are slightly more complex than those for

AM; and the higher frequencies used for FM (VHF) complicate overall transmitter and receiver design.

The circuitry in this lab operates on a carrier frequency of 100 kHz, which is in the VLF band. At such

a low carrier frequency, the frequency deviation needs to be limited so that the available bandwidth is

not used up. FM systems with limited deviation are very commonly used where the highest fidelity is

not needed. Voice-only communication systems in the amateur, business, and government radio

services are typical "narrowband" FM applications. Most narrowband FM communications occurs in the

VHF and UHF bands, where the reduced bandwidth requirement allows more stations to share the

available range of radio frequencies.

CIRCUIT ANALYSIS:

This experiment is in two parts, an FM modulator and an FM detector. The circuitry is designed to

operate in the VLF band at a carrier frequency of 100 kHz. The voltage-controlled-oscillator (VCO)

section of an LM565 PLL is used to create the FM waveform, and a second LM565 phase-locked-loop

(PLL) operates as the FM detector.

FM Modulator

(2)

C1

0.1 uF

R2

4.7K

R4

4.7K

R3

10K

R1

2.2 K

C2

0.001 uF

U1

LM565

IN 2 IN 3 VIN 5 TRES 8 TCAP 9 VCC-1 VCC+ 10 VCON 7 VOUT 4 REF 6

R5

10K

C4

0.01 uF

R6

1K

C3

10 uF

+

FM Output (Square W ave)

AF Input

Figure 1: FM Modulator Employing the LM565

The frequency produced by the LM565 VCO is expressed by the following equation:

(1)

RtCtVcc

Vc

Vcc

f

=

2

.

4

(

)

Where: Rt = The timing resistance on pin 8,

Ct = The timing capacitance on pin 9,

Vcc = The power supply voltage,

Vc = The control voltage on pin 7.

(3)

t

LM565 Pin 7 Voltage Vaverage AC Information Signal

Notice that the audio signal is now riding on top of a DC level. Potentiometer R3 sets this DC level,

which controls the carrier center frequency. As the DC voltage rises, the VCO frequency decreases

in direct proportion to the amount of rise. The voltage "rise" is actually the same thing as the

amplitude of the information. Thus, positive information causes negative carrier frequency change or

deviation. The opposite effect happens on the negative peak of the intelligence; when the control

voltage falls, the VCO frequency increases. In other words, frequency modulation occurs.

Considerable amounts of RF signal from the VCO may “leak” out of pin 7 of the LM565. Components

R6 and C4 form a low-pass filter to prevent this RF energy from passing back to the audio input.

Modulator Sensitivity

The amount of frequency deviation produced in the VCO is directly proportional to the amplitude of the

information signal. The amount of deviation can be predicted by using the following equation:

(2)

δ

=

VmK

0

Where: K

0

is the modulator sensitivity, in Hz/Volt.

Vm = the peak information signal amplitude.

δ

= the deviation or peak frequency swing.

For example, if Vm=1/2 volt peak, and K

0

= 50 kHz / Volt, then the amount of deviation produced will

be:

KHz

V

KHz

V

VmK

0

=

(

0

.

5

)(

50

/

)

=

25

=

δ

(4)

The constant of the modulator in the experiment can be easily derived by differentiating equation (1)

with respect to Vc (recall that the control voltage Vc is the sum of the information signal, Vm(t) and

the average DC control voltage):

(3)

RtCtVcc

dVc

dF

K

0

2

.

4

=

=

(Hz/V)

This derivative is negative, indicating that positive intelligence voltage decreases the oscillator

frequency.

FM Detector:

Figure 2 shows the FM detector. It's based on the NE565 phase-locked-loop. The loop is set to free-run

at 100 kHz by C104 and the series combination of R107 and R106. Pot R106 allows adjustment of the

free-running frequency, which should be the same as the carrier or center frequency of the FM

transmitter.

V+ RT IN 1

IN 2

VCO OUT

PD VCO IN

V- C T 2 3 4 5 10 8 7 1 9 CTRL VLTG LM565

VCO Free Run Adjustment U101 R101 10 Ohms R106 10K R107 1K R109 10K R110 10K R108 47K C101 0.1 uF C102 0.1 uF C103 0.1 uF C104 470 pF C105 47 pF C106

47 pF C107150 pF C108.0022 C109.001 uF C110 10 uF + R102 4.7K R103 4.7K R104

10K R10510K

+15 V

FM INPUT

AF OUT

Figure 2: FM Detector using the LM565 PLL

(5)

corresponding to the "average" frequency going into the PLL from the FM modulator, and the other is

an AC level that is actually the detected information signal. This AC signal arises because of the PLL's

self-correcting action; as the transmitter deviates up or down in frequency, the PLL attempts to force

the VCO to follow this frequency

exactly

by varying its control voltage. Thus, the control voltage is a

copy of the original information signal.

(6)

LABORATORY PROCEDURE:

In this experiment you'll have two circuits to build. It is suggested that they be built on separate

breadboards, if possible.

1. Build the circuit of Figure 1. Don't connect anything to the AF INPUT yet.

2. Connect a frequency counter and scope to the FM OUTPUT of the circuit, and adjust R3 until a 100

kHz carrier wave is obtained. The waveshape from the VCO circuit will be a square wave.

3. Calculate K

0

, the modulator sensitivity, by using equation (3).

4. Now connect a signal generator to the AF INPUT. Adjust it for 5 kHz frequency, and correct peak

voltage for 10 kHz deviation. (Use the result from step 3).

5. Connect scope channel 1 to the AF INPUT, and scope channel 2 to the FM OUTPUT. Trigger off

scope channel 1. Adjust the controls appropriately. Record the oscilloscope graph: FM Output vs AF

INPUT. Can you see the frequency deviation taking place? Why or why not?

6. Using the Agilent 54622D’s spectrum analyzer feature, look at the spectrum being displayed on

channel 1. Record this spectrum. Calculate the theoretical spectrum and compare the results.

7. Build the circuit of Figure 2. Keep component lead lengths as short as possible.

8. Apply power to the demodulator circuit, but don't connect its FM INPUT to anything yet. First,

adjust R106 so that the free-running VCO output on pin 4 of the NE565 PLL is 100 kHz. Use a

frequency counter for this measurement (the frequency counter function of the digital scope is

sufficiently accurate for this adjustment.)

Important: You must use proper RF grounding techniques for this experiment to work properly.

Use only one bus for ground, and keep all wires and leads as short as possible.

TIP: To get the best picture of the FM signal on the ‘54622D, the following settings are

suggested:

Timebase: 100

µ

S/div (or 2 MSample/s)

Center Frequency: 100 kHz

Span: 100 kHz

Window: HANNING

(7)

grounds! Connect the scope probes as follows: Channel 1 to the AF INPUT of the FM modulator,

and Channel 2 to the AF OUT of the FM detector. Record the oscilloscope graph: Detected FM

Output vs AF Input.

Note: Make sure the amplitude and frequency of the function generator are set correctly as in step 4.

10. How accurate is the reproduction of the information at the detector, when compared to the original

information (scope channel 1)? Use the subtract feature of the oscilloscope to find out. Set up an

oscilloscope trace that is the difference of channels 1 and 2 (use the math menu). You may need to

scale the channels appropriately to get “null” on equal signals. A system that isn’t creating any

distortion will have an input-output difference signal of zero.

11. Increase the deviation at the modulator (by adjusting the amplitude of the signal generator) until

the detected output just begins to become distorted.

(8)

1. What characteristic of the carrier is varied during Frequency Modulation?

______________________________________________________________________

______________________________________________________________________

2. What controls the amount of deviation in an FM transmitter?

______________________________________________________________________

______________________________________________________________________

3. What did R3 adjust? Why was this important?

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

4. What causes the voltage at pin 7 of the FM demodulator (NE565) to follow the original information

signal?

______________________________________________________________________

______________________________________________________________________

(9)

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

Check for Samples:LM139-N,LM239-N,LM2901-N,LM3302-N,LM339-N

1

FEATURES

APPLICATIONS

2

Wide Supply Voltage Range

Limit Comparators

LM139/139A Series 2 to 36 V

DC

or ±1 to ±18 V

DC

Simple Analog-to-Digital Converters

LM2901: 2 to 36 V

DC

or ±1 to ±18 V

DC

Pulse, Squarewave and Time Delay Generators

LM3302: 2 to 28 V

DC

or ±1 to ±14 V

DC

Wide Range VCO; MOS Clock Timers

Very Low Supply Current Drain (0.8 mA) —

Multivibrators and High Voltage Digital Logic

Independent of Supply Voltage

Gates

Low Input Biasing Current: 25 nA

DESCRIPTION

Low Input Offset Current: ±5 nA

The LM139 series consists of four independent

Offset Voltage: ±3 mV

precision voltage comparators with an offset voltage

Input Common-Mode Voltage Range Includes

specification as low as 2 mV max for all four

GND

comparators. These were designed specifically to

operate from a single power supply over a wide range

Differential Input Voltage Range Equal to the

of voltages. Operation from split power supplies is

Power Supply Voltage

also possible and the low power supply current drain

Low Output Saturation Voltage: 250 mV at 4

is independent of the magnitude of the power supply

mA

voltage. These comparators also have a unique

characteristic in that the input common-mode voltage

Output Voltage Compatible with TTL, DTL,

range includes ground, even though operated from a

ECL, MOS and CMOS Logic Systems

single power supply voltage.

ADVANTAGES

The LM139 series was designed to directly interface

with TTL and CMOS. When operated from both plus

High Precision Comparators

and minus power supplies, they will directly interface

Reduced V

OS

Drift Over Temperature

with MOS logic— where the low power drain of the

Eliminates Need for Dual Supplies

LM339

is

a

distinct

advantage

over

standard

comparators.

Allows Sensing Near GND

Compatible with all Forms of Logic

(10)

One-Shot Multivibrator with Input Lock Out

Connection Diagrams

Figure 1. CDIP, SOIC, PDIP Packages – Top View

See Package Numbers J0014A, D0014A, NFF0014A

Figure 2. CLGA Package

(11)

Absolute Maximum Ratings

(1)

LM139/LM239/LM339

LM139A/LM239A/LM339A LM3302

LM2901

Supply Voltage, V+ 36 VDCor ±18 VDC 28 VDCor ±14 VDC

Differential Input Voltage(2) 36 VDC 28 VDC

Input Voltage −0.3 VDCto +36 VDC −0.3 VDCto +28 VDC

Input Current (VIN<−0.3 VDC)(3) 50 mA 50 mA

Power Dissipation(4)

PDIP 1050 mW 1050 mW

Cavity DIP 1190 mW

SOIC Package 760 mW

Output Short-Circuit to GND(5) Continuous Continuous

Storage Temperature Range −65°C to +150°C −65°C to +150°C

Lead Temperature (Soldering, 10 seconds) 260°C 260°C

Operating Temperature Range −40°C to +85°C

LM339/LM339A 0°C to +70°C

LM239/LM239A −25°C to +85°C

LM2901 −40°C to +85°C

LM139/LM139A −55°C to +125°C

Soldering Information

PDIP Package Soldering (10 seconds) 260°C 260°C

SOIC Package

Vapor Phase (60 seconds) 215°C 215°C

Infrared (15 seconds) 220°C 220°C

ESD rating (1.5 kΩin series with 100 pF) 600V 600V

(1) Refer to RETS139AX for LM139A military specifications and to RETS139X for LM139 military specifications.

(2) Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than−0.3 VDC(or 0.3 VDCbelow the magnitude of the negative power supply, if used) (at 25°C).

(3) This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V+voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than−0.3 VDC(at 25°C).

(4) For operating at high temperatures, the LM339/LM339A, LM2901, LM3302 must be derated based on a 125°C maximum junction temperature and a thermal resistance of 95°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM239 and LM139 must be derated based on a 150°C maximum junction temperature. The low bias dissipation and the “ON-OFF” characteristic of the outputs keeps the chip dissipation very small (PD≤100 mW), provided the output transistors are allowed to saturate.

(12)

Electrical Characteristics

(V+=5 V

DC, TA= 25°C, unless otherwise stated)

LM139A LM239A, LM339A LM139

Parameter Test Conditions Units

Min Typ Max Min Typ Max Min Typ Max

Input Offset Voltage See(1) 1.0 2.0 1.0 2.0 2.0 5.0 mV

DC Input Bias Current IIN(+)or IIN(−)with Output in 25 100 25 250 25 100 nADC

Linear Range(2), VCM=0V

Input Offset Current IIN(+)−IIN(−), VCM=0V 3.0 25 5.0 50 3.0 25 nADC Input Common-Mode V+=30 V

DC(LM3302, 0 V+−1.5 0 V+−1.5 0 V+−1.5 VDC Voltage Range V+= 28 V

DC)(3)

Supply Current RL=∞on all Comparators, 0.8 2.0 0.8 2.0 0.8 2.0 mADC

RL=∞, V+= 36V, 1.0 2.5 1.0 2.5 mADC

(LM3302, V+= 28 VDC)

Voltage Gain RL≥15 kΩ, V+= 15 VDC 50 200 50 200 50 200 V/mV VO= 1 VDCto 11 VDC

Large Signal VIN= TTL Logic Swing, VREF= 300 300 300 ns

Response Time

1.4 VDC, VRL= 5 VDC, RL= 5.1 kΩ

Response Time VRL= 5 VDC, RL= 5.1 kΩ(4) 1.3 1.3 1.3 μs

Output Sink Current VIN(−)= 1 VDC, VIN(+)= 0, 6.0 16 6.0 16 6.0 16 mADC VO≤1.5 VDC

Saturation Voltage VIN(−)= 1 VDC, VIN(+)= 0, 250 400 250 400 250 400 mVDC ISINK≤4 mA

Output Leakage VIN(+)= 1 VDC,VIN(−)= 0, 0.1 0.1 0.1 nADC

Current V

O= 5 VDC

(1) At output switch point, VO≃1.4 VDC, RS= 0Ωwith V+from 5 VDCto 30 VDC; and over the full input common-mode range (0 VDCto V+

−1.5 VDC), at 25°C. For LM3302, V+from 5 VDCto 28 VDC.

(2) The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.

(3) The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V+−1.5V at 25°C, but either or both inputs can go to +30 VDCwithout damage (25V for LM3302), independent of the magnitude of V+.

(13)

Electrical Characteristics

(V+= 5 V

DC, TA= 25°C, unless otherwise stated)

LM239, LM339 LM2901 LM3302

Parameter Test Conditions Units

Min Typ Max Min Typ Max Min Typ Max

Input Offset Voltage See(1) 2.0 5.0 2.0 7.0 3 20 mV

DC Input Bias Current IIN(+)or IIN(−)with Output in Linear 25 250 25 250 25 500 nADC

Range(2), V CM=0V

Input Offset Current IIN(+)−IIN(−), VCM= 0V 5.0 50 5 50 3 100 nADC Input Common-Mode V+= 30 VDC(LM3302, 0 V+−1.5 0 V+−1.5 0 V+−1.5 VDC

Voltage Range V+= 28 VDC)(3)

Supply Current RL=∞on all Comparators, 0.8 2.0 0.8 2.0 0.8 2.0 mADC

RL=∞, V+= 36V, 1.0 2.5 1.0 2.5 1.0 2.5 mADC

(LM3302, V+= 28 VDC)

Voltage Gain RL≥15 kΩ, V+= 15 VDC 50 200 25 100 2 30 V/mV VO= 1 VDCto 11 VDC

Large Signal VIN= TTL Logic Swing, VREF= 300 300 300 ns

Response Time 1.4 V

DC, VRL= 5 VDC, RL= 5.1 kΩ,

Response Time VRL= 5 VDC, RL= 5.1 kΩ(4) 1.3 1.3 1.3 μs

Output Sink Current VIN(−)= 1 VDC, VIN(+)= 0, 6.0 16 6.0 16 6.0 16 mADC VO≤1.5 VDC

Saturation Voltage VIN(−)= 1 VDC, VIN(+)= 0, 250 400 250 400 250 500 mVDC ISINK≤4 mA

Output Leakage VIN(+)= 1 VDC,VIN(−)= 0, 0.1 0.1 0.1 nADC Current

VO= 5 VDC

(1) At output switch point, VO≃1.4 VDC, RS= 0Ωwith V+from 5 VDCto 30 VDC; and over the full input common-mode range (0 VDCto V+

−1.5 VDC), at 25°C. For LM3302, V+from 5 VDCto 28 VDC.

(2) The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.

(3) The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V+−1.5V at 25°C, but either or both inputs can go to +30 VDCwithout damage (25V for LM3302), independent of the magnitude of V+.

(14)

Electrical Characteristics

(V+= 5.0 V DC(1))

LM139A LM239A, LM339A LM139

Parameter Test Conditions Units

Min Typ Max Min Typ Max Min Typ Max

Input Offset Voltage See(2) 4.0 4.0 9.0 mV

DC Input Offset Current IIN(+)−IIN(−), VCM= 0V 100 150 100 nADC Input Bias Current IIN(+)or IIN(−)with Output in 300 400 300 nADC

Linear Range, VCM= 0V(3) Input Common-Mode V+=30 V

DC(LM3302, 0 V+−2.0 0 V+−2.0 0 V+−2.0 VDC Voltage Range V+= 28 V

DC)(4)

Saturation Voltage VIN(−)=1 VDC, VIN(+)= 0, 700 700 700 mVDC ISINK≤4 mA

Output Leakage Current VIN(+) =1 VDC, VIN(−)= 0, 1.0 1.0 1.0 μADC VO= 30 VDC, (LM3302,

VO= 28 VDC)

Differential Input Voltage Keep all VIN's≥0 VDC(or V−, if 36 36 36 VDC used)(5)

(1) These specifications are limited to−55°C≤TA≤+125°C, for the LM139/LM139A. With the LM239/LM239A, all temperature

specifications are limited to−25°C≤TA≤+85°C, the LM339/LM339A temperature specifications are limited to 0°C≤TA≤+70°C, and the LM2901, LM3302 temperature range is−40°C≤TA≤+85°C.

(2) At output switch point, VO≃1.4 VDC, RS= 0Ωwith V+from 5 VDCto 30 VDC; and over the full input common-mode range (0 VDCto V+

−1.5 VDC), at 25°C. For LM3302, V+from 5 VDCto 28 VDC.

(3) The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.

(4) The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V+1.5V at 25°C, but either or both inputs can go to +30 V

DCwithout damage (25V for LM3302), independent of the magnitude of V+.

(15)

Electrical Characteristics

(V+= 5.0 V DC(1))

LM239, LM339 LM2901 LM3302

Parameter Test Conditions Units

Min Typ Max Min Typ Max Min Typ Max

Input Offset Voltage See(2) 9.0 9 15 40 mV

DC Input Offset Current IIN(+)−IIN(−), VCM= 0V 150 50 200 300 nADC Input Bias Current IIN(+)or IIN(−)with Output in 400 200 500 1000 nADC

Linear Range, VCM= 0V(3) Input Common-Mode V+= 30 V

DC(LM3302, V+−2.0 0 V+−2.0 0 V+−2.0 VDC V+= 28 VDC)

Voltage Range See(4)

Saturation Voltage VIN(−)= 1 VDC, VIN(+)= 0, 700 400 700 700 mVDC ISINK≤4 mA

Output Leakage Current VIN(+) =1 VDC, VIN(−)= 0, VO= 30 1.0 1.0 1.0 μADC VDC, (LM3302, VO= 28 VDC)

Differential Input Voltage Keep all VIN's≥0 VDC(or V−, if 36 36 28 VDC used)(5)

(1) These specifications are limited to−55°C≤TA≤+125°C, for the LM139/LM139A. With the LM239/LM239A, all temperature

specifications are limited to−25°C≤TA≤+85°C, the LM339/LM339A temperature specifications are limited to 0°C≤TA≤+70°C, and the LM2901, LM3302 temperature range is−40°C≤TA≤+85°C.

(2) At output switch point, VO≃1.4 VDC, RS= 0Ωwith V+from 5 VDCto 30 VDC; and over the full input common-mode range (0 VDCto V+

−1.5 VDC), at 25°C. For LM3302, V+from 5 VDCto 28 VDC.

(3) The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.

(4) The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V+1.5V at 25°C, but either or both inputs can go to +30 V

DCwithout damage (25V for LM3302), independent of the magnitude of V+.

(16)

Typical Performance Characteristics

LM139/LM239/LM339, LM139A/LM239A/LM339A, LM3302

Supply Current Input Current

Figure 3. Figure 4.

Response Time for Various Input Overdrives –

Output Saturation Voltage Negative Transition

Figure 5. Figure 6.

Response Time for Various Input Overdrives – Positive Transition

(17)

Typical Performance Characteristics

LM2901

Supply Current Input Current

Figure 8. Figure 9.

Response Time for Various Input Overdrives –

Output Saturation Voltage Negative Transition

Figure 10. Figure 11.

Response Time for Various Input Overdrives – Positive Transition

(18)

Application Hints

The LM139 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the

output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only

during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not

required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling.

Reducing this input resistors to < 10 k

Ω

reduces the feedback signal levels and finally, adding even a small

amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray

feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output

oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform,

with relatively fast rise and fall times, hysteresis is not required.

All pins of any unused comparators should be tied to the negative supply.

The bias network of the LM139 series establishes a drain current which is independent of the magnitude of the

power supply voltage over the range of from 2 V

DC

to 30 V

DC

.

It is usually unnecessary to use a bypass capacitor across the power supply line.

The differential input voltage may be larger than V

+

without damaging the device. Protection should be provided

to prevent the input voltages from going negative more than

0.3 V

DC

(at 25°C). An input clamp diode can be

used as shown in the applications section.

(19)

Typical Applications

(V

+

= 5.0 V

DC

)

Figure 13. Basic Comparator

Figure 14. Driving CMOS

Figure 15. Driving TTL

(20)

Typical Applications

(V

+

= 15 V

DC

)

Figure 18. One-Shot Multivibrator

(21)

Figure 20. One-Shot Multivibrator with Input Lock Out

(22)
(23)
(24)

Figure 27. Squarewave Oscillator

Figure 28. Basic Comparator

(25)

* Or open-collector logic gate without pull-up resistor

Figure 31. Output Strobing

Figure 32. Crystal Controlled Oscillator

V+= +30 VDC

250 mVDC≤VC≤+50 VDC 700 Hz≤fO≤100 kHz

(26)
(27)

Split-Supply Applications

(V

+

= +15 V

DC

and V

=

15 V

DC

)

Figure 36. MOS Clock Driver

(28)
(29)

REVISION HISTORY

Changes from Revision C (March 2013) to Revision D Page

(30)

www.ti.com 12-Jul-2014

PACKAGING INFORMATION

Orderable Device Status

(1)

Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6)

MSL Peak Temp

(3)

Op Temp (°C) Device Marking

(4/5)

Samples

LM139AJ/PB ACTIVE CDIP J 14 25 TBD Call TI Call TI -55 to 125 LM139AJ

LM139J/PB ACTIVE CDIP J 14 25 TBD Call TI Call TI -55 to 125 LM139J

LM239J ACTIVE CDIP J 14 25 TBD Call TI Call TI -25 to 85 LM239J

LM2901M NRND SOIC D 14 55 TBD Call TI Call TI -40 to 85 LM2901M

LM2901M/NOPB ACTIVE SOIC D 14 55 Green (RoHS & no Sb/Br)

CU SN Level-1-260C-UNLIM -40 to 85 LM2901M

LM2901MX NRND SOIC D 14 2500 TBD Call TI Call TI -40 to 85 LM2901M

LM2901MX/NOPB ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br)

CU SN Level-1-260C-UNLIM -40 to 85 LM2901M

LM2901N/NOPB ACTIVE PDIP NFF 14 25 Green (RoHS & no Sb/Br)

CU SN Level-1-NA-UNLIM -40 to 85 LM2901N

LM2901N/PB LIFEBUY PDIP NFF 14 25 TBD Call TI Call TI LM2901N

LM339AM NRND SOIC D 14 55 TBD Call TI Call TI -25 to 85 LM339AM

LM339AM/NOPB ACTIVE SOIC D 14 55 Green (RoHS & no Sb/Br)

CU SN Level-1-260C-UNLIM -25 to 85 LM339AM

LM339AMX NRND SOIC D 14 2500 TBD Call TI Call TI -25 to 85 LM339AM

LM339AMX/NOPB ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br)

CU SN Level-1-260C-UNLIM -25 to 85 LM339AM

LM339AN/NOPB ACTIVE PDIP NFF 14 25 Green (RoHS & no Sb/Br)

CU SN Level-1-NA-UNLIM -25 to 85 LM339AN

LM339AN/PB LIFEBUY PDIP NFF 14 25 TBD Call TI Call TI LM339AN

LM339J ACTIVE CDIP J 14 25 TBD Call TI Call TI -25 to 85 LM339J

LM339M NRND SOIC D 14 55 TBD Call TI Call TI -25 to 85 LM339M

(31)

www.ti.com 12-Jul-2014

Orderable Device Status

(1)

Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6)

MSL Peak Temp

(3)

Op Temp (°C) Device Marking

(4/5)

Samples

LM339N/PB LIFEBUY PDIP NFF 14 25 TBD Call TI Call TI LM339N

MLM339P LIFEBUY PDIP NFF 14 25 TBD Call TI Call TI LM339N

(1)

The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2)

Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that

lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

in homogeneous material)

(3)

MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4)

There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5)

Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6)

Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

(32)

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device Package Type

Package Drawing

Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant

LM2901MX SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 LM2901MX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 LM339AMX SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 LM339AMX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 LM339MX SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1 LM339MX/NOPB SOIC D 14 2500 330.0 16.4 6.5 9.35 2.3 8.0 16.0 Q1

(33)

*All dimensions are nominal

Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

LM2901MX SOIC D 14 2500 367.0 367.0 35.0

LM2901MX/NOPB SOIC D 14 2500 367.0 367.0 35.0

LM339AMX SOIC D 14 2500 367.0 367.0 35.0

LM339AMX/NOPB SOIC D 14 2500 367.0 367.0 35.0

LM339MX SOIC D 14 2500 367.0 367.0 35.0

LM339MX/NOPB SOIC D 14 2500 367.0 367.0 35.0

(34)
(35)
(36)
(37)

issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

(38)

LM380 2.5W Audio Power Amplifier

Check for Samples:LM380

1

FEATURES

DESCRIPTION

The LM380 is a power audio amplifier for consumer

Wide Supply Voltage Range: 10V-22V

applications. In order to hold system cost to a

Low Quiescent Power Drain: 0.13W (V

S

= 18V)

minimum, gain is internally fixed at 34 dB. A unique

Voltage Gain Fixed at 50

input stage allows ground referenced input signals.

The output automatically self-centers to one-half the

High Peak Current Capability: 1.3A

supply voltage.

Input Referenced to GND

The output is short circuit proof with internal thermal

High Input Impedance: 150k

limiting. The package outline is standard dual-in-line.

Low Distortion

The LM380N uses a copper lead frame. The center

Quiescent Output Voltage is at One-Half of the

three pins on either side comprise a heat sink. This

Supply Voltage

makes the device easy to use in standard PC layouts.

Standard Dual-In-Line Package

Uses

include

simple

phonograph

amplifiers,

intercoms, line drivers, teaching machine outputs,

alarms, ultrasonic drivers, TV sound systems, AM-FM

radio, small servo drivers, power converters, etc.

A selected part for more power on higher supply

voltages is available as the LM384. For more

information see

SNAA086

.

Connection Diagrams

[image:38.612.53.558.136.600.2]

(Dual-In-Line Packages, Top View)

Figure 1. 14-Pin PDIP

Figure 2. 8-Pin PDIP

(39)
[image:39.612.93.522.99.629.2]

Block and Schematic Diagrams

Figure 3. 14-Pin PDIP

Figure 4. 8-Pin PDIP

(40)

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

(1) (2)

Supply Voltage 22V

Peak Current 1.3A

Package Dissipation 14-Pin PDIP(3) 8.3W

8-Pin PDIP(3) 1.67W

Input Voltage ±0.5V

Storage Temperature −65°C to +150°C

Operating Temperature 0°C to +70°C

Junction Temperature +150°C

Lead Temperature (Soldering, 10 sec.) +260°C

ESD rating to be determined

Thermal Resistance θJC(14-Pin PDIP) 30°C/W

θJC(8-Pin PDIP) 37°C/W

θJA(14-Pin PDIP) 79°C/W

θJA(8-Pin PDIP) 107°C/W

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

(3) The package is to be derated at 15°C/W junction to heat sink pins for 14-pin pkg; 75°C/W for 8-pin.

Electrical Characteristics

(1)

Symbol Parameter Conditions Min Typ Max Units

POUT(RMS) Output Power RL= 8Ω, THD = 3%(2) (3) 2.5 W

AV Gain 40 50 60 V/V

VOUT Output Voltage Swing RL= 8Ω 14 Vp-p

ZIN Input Resistance 150k Ω

THD Total Harmonic Distortion See(3) (4) 0.2 %

PSRR Power Supply Rejection Ratio See(5) 38 dB

VS Supply Voltage 10 22 V

BW Bandwidth POUT= 2W, RL= 8Ω 100k Hz

IQ Quiescent Supply Current 7 25 mA

VOUTQ Quiescent Output Voltage 8 9.0 10 V

IBIAS Bias Current Inputs Floating 100 nA

ISC Short Circuit Current 1.3 A

(1) VS= 18V and TA= 25°C unless otherwise specified.

(2) With device Pins 3, 4, 5, 10, 11, 12 soldered into a 1/16″epoxy glass board with 2 ounce copper foil with a minimum surface of 6 square inches.

(3) CBYPASS= 0.47μfd on Pin 1.

(41)

Heat Sink Dimensions

(42)

Typical Performance Characteristics

[image:42.612.84.538.81.690.2]

Maximum Device Dissipation vs Ambient Temperature Device Dissipation vs Output Power—4ΩLoad

Figure 6. Figure 7.

Device Dissipation vs Output Power—8ΩLoad Device Dissipation vsOutput Power—16ΩLoad

Figure 8. Figure 9.

(43)

Typical Performance Characteristics (continued)

[image:43.612.77.529.71.633.2]

Output Voltage Gain and Phase vs Frequency Total Harmonic Distortion vs Output Power

Figure 12. Figure 13.

Device Dissipation vs Output Power Supply Decoupling vs Frequency

(44)
[image:44.612.99.519.79.657.2]

Typical Applications

Figure 16. Phono Amplifier

Figure 17. Bridge Amplifier

(45)
[image:45.612.98.524.78.626.2]
(46)

REVISION HISTORY

Changes from Revision B (April 2013) to Revision C Page

(47)

www.ti.com 27-Mar-2014

PACKAGING INFORMATION

Orderable Device Status

(1)

Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6)

MSL Peak Temp

(3)

Op Temp (°C) Device Marking

(4/5)

Samples

LM380N LIFEBUY PDIP NFF 14 25 TBD Call TI Call TI 0 to 70 LM380N

LM380N-8/NOPB ACTIVE PDIP P 8 40 Green (RoHS & no Sb/Br)

CU SN Level-1-NA-UNLIM 0 to 70 LM 380N-8 LM380N/NOPB ACTIVE PDIP NFF 14 25 Pb-Free (RoHS

Exempt)

CU SN Level-1-NA-UNLIM 0 to 70 LM380N

(1)

The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2)

Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that

lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

in homogeneous material)

(3)

MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4)

There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5)

(48)

www.ti.com 27-Mar-2014

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

(49)
(50)
(51)

issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

Gambar

Figure 1: FM Modulator Employing the LM565
Figure 2 shows the FM detector. It's based on the NE565 phase-locked-loop. The loop is set to free-run
Figure 1. CDIP, SOIC, PDIP Packages – Top ViewSee Package Numbers J0014A, D0014A, NFF0014A
Figure 3.Figure 4.
+7

Referensi

Dokumen terkait

Mengingat pentingnya acara tersebut diharap kehadiran saudara tepat waktu dengan membawa dokumen asli berikut stempel perusahaan. Demikian, atas perhatian dan kerjasama

Peserta yang diundang menghadiri tahap pembuktian kualifikasi adalah pimpinan perusahaan yang tertera di dalam Akta atau staff yang diberikan kuasa oleh pimpinan

Dengan ini kami beritahukan bahwa perusahaan Saudara telah masuk dalam Calon Daftar Pendek Penyedia Jasa Konsultansi untuk pekerjaan Kajian Peta Jalan Sektor ESDM dalam

Pengembangan sistem informasi penjualan berbasis web memberikan kemudahan bagi perusahaan dalam pelayanan penjualan yang online secara terus menerus.. Media web juga mampu

Dalam suatu wawancara, Lukman sebagai nara sumber menceritakan bahwa prestasi yang diperolehnya dalam bidang sepakbola sesuai dengan hobinya, karena sejak kecil dia sudah suka

Dengan ini kami beritahukan bahwa perusahaan Saudara telah masuk dalam Calon Daftar Pendek Penyedia Jasa Konsultansi untuk pekerjaan Kajian Pola Kerja sama untuk peningkatan

” Analisis Elastisitas Penyerapan Tenaga Kerja Pada Sektor Industri Kecil Pengolahan Hasil Kehutanan di Kabupaten Lumajang ”. Skripsi ini tidak

ANALISIS FAKTOR YANG MEMPENGARUHI JUMLAH TABUNGAN MUDHARABAH PADA BANK SYARIAH DI INDONESIA PADA TAHUN. 2002.I – 2009.IV Yang dipersiapkan dan