• Tidak ada hasil yang ditemukan

TURBIN AIR Dan Turbin Uap Penggerak Mu

N/A
N/A
Protected

Academic year: 2018

Membagikan "TURBIN AIR Dan Turbin Uap Penggerak Mu"

Copied!
44
0
0

Teks penuh

(1)

MAKALAH TURBIN AIR

UNTUK MEMENUHI TUGAS MATA KULIAH Mesin Konversi Energi II

Yang dibina oleh Bpk.Prof. Dr. Ir. H. Djoko Kustono

Oleh :

Christian Asri Wicaksana (130511616242) Faqih Fadillah (130511616241)

UNIVERSITAS NEGERI MALANG FAKULTAS TEKNIK

JURUSAN TEKNIK MESIN

(2)

KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT yang telah memberikan limpahan rahmat dan hidayahNya sehingga penulis dapat menyelesaikan makalah sistem pembangkit tenaga listrik. Makalah ini disusun berdasar dari berbagai sumber yang menjadi referensi penulis.

Tujuan dari penyusunan makalah ini adalah untuk menyelesaikan salah satu tugas mata kuliah Mesin Konversi Energi II di jurusan Teknik Mesin Fakultas Teknik Universitas Negeri Malang dan juga diharapkan menjadi salah satu bahan referensi bagi pembaca. Dalam makalah ini terdapat bahasan mengenai sistem pembangkit tenaga listrik, hal tersebut dimaksudkan agar pembaca mengerti bagaimana melakukan pekerjaan terhadap pembangkit tenaga listrik.

Pada kesempatan ini penulis menyampaikan terima kasih kepada yang terhormat Bpk. Prof. Dr. Ir. H. Djoko Kustono selaku Dosen pengampu mata kuliah Teknik Tenaga Listrik yang telah memberikan bimbingan serta pengarahan mengenai isi dari makalah ini.

Dalam penulisan makalah ini, penulis sudah berusaha secara maksimal untuk menyusun makalah dengan bahasa yang kiranya mudah dipahami bagi penulis dan pembaca. Namun karena keterbatasan yang ada, penulis menyadari masih banyak kekurangan dalam makalah ini hingga perlu penyempurnaan di penulisan yang berikutnya. Untuk itu kritik dan saran pembaca yang sifatnya membangun sangat penulis harapkan.

Akhirnya penulis berharap semoga makalah ini bermanfaat bagi para pembaca.

Malang, 28 Oktober 2015

(3)

DAFTAR ISI

Halaman Sampul ... i

Kata Pengantar ... ii

Daftar Isi ... iii

BAB 1 PENDAHULUAN ... 1

1.1Latar Belakang ... 1

1.2Rumusan Masalah ... 2

1.3Tujuan Khusus ... 2

1.4Manfaat ... 2

BAB 2 ISI ... 3

2.1 Pengertian Umum Turbin Air ... 3

2.2Sejarah Turbin Air... 5

2.3Jenis Turbin Air ... 7

2.4Komponen Umum Turbin Air ... 24

2.5Gejala Turbin Air ... 26

2.6Parameter Turbin Air ... 27

2.7Implementasi Turbin Air ... 31

2.8Pengaruh Turbin Air Pada Lingkungan ... 36

BAB 3 PENUTUP ... 37

3.1 Soal Objektif ... 37

3.2 Soal Uraian ... 38

3.2 Kesimpulan ... 40

3.3 Saran ... 40

(4)

BAB 1 PENDAHULUAN

1.1LATAR BELAKANG

Turbin air tergolong mesin konversi energi yang mengubah energi translasi gerak lurus menjadi energi gerak rotasi. Energi air tergolong energi terbarukan atau renewable energy. Renewable energy adalah energi yang tidak memiliki batasan masa/waktu. Energi gerak air termasuk energi yang mudah dan relatif mudah didapat. Energi gerak air terjadi karena adanya beda ketinggian permukaan, secara umum air bergerak dari permukaan tinggi menuju permukaan yang rendah atau dapat dikatakan bahwa air bergerak pada tekanan yang tinggi menuju tekanan rendah. Energi gerak air dapat dimanfaatkan dikarenakan dalam air

mengandung energi potensial berupa perbedaan ketinggian pada air dan energi kinetik yang disebabkan oleh kecepatan aliran air. Pada hukum newton dikatakan bahwa energi tidak dapat diciptakan atau dilenyapkan, energi memiliki sifat mutlak sebagaimana dinyatakaan dalam hukum kekekalan energi. Masyarakat modern sangat lekat dengan kemajuan teknologi, teknologi dapat membantu dan meringkas kebutuhan hidup manusia. Dengan teknologi masyarakat dapat dengan mudah memenuhi kebutuhan energi, salah satu contoh adalah energi listrik hasil pengolahan mesin konversi energi. Mesin konversi energi yang digunakan untuk mengkonversi energi air menjadi listrik terdiri dari beberapa sistem kerja. Sistem kerja tersebut terdiri dari bendungan air, pintu masuk air, penyaring air, turbin air, generator dll. Menurut KBBI turbin adalah mesin atau motor yg roda penggeraknya berporos dengan sudu (baling-baling) yg digerakkan oleh aliran air, uap, atau udara. Sementara kincir air adalah barang yg bundar berupa lingkaran, bersumbu, dan dapat berputar (roda) dari rotan atau jaring berbingkai untuk mengangkat air dari bandar (sungai) yg akan dialirkan ke sawah. Perkembangan turbin air mulai nampak pada awal abad 18. Sejak awal abad 18 kincir air banyak dimanfaatkan sebagai penggerak penggilingan gandum, penggergajian kayu dan mesin tekstil. Memasuki abad 19 turbin air mulai dikembangkan. Perkembangan turbin air hingga saat ini mulai memuncak sampai akhirnya ditemukan microhidro, microhidro

(5)

masuk ke dalam Terowongan Tekan (Headrace Tunnel). Sebelum memasuki Pipa Pesat (Penstock), air harus melewati Tangki Pendatar (Surge Tank) yang berfungsi untuk mengamankan pipa pesat apabila terjadi tekanan kejut atau tekanan mendadak yang biasa disebut sebagai pukulan air (water hammer) saat Katup Utama (Inlet Valve) ditutup seketika. Setelah Katup Utama dibuka aliran air yang bergerak memutar Turbin dan dari turbin, air mengalir keluar melalui Pipa Lepas (Draft Tube) dan selanjutnya dibuang ke Saluran Pembuangan (Tail Race). Poros turbin yang berputar tersebut dikopel dengan poros

Generator sehingga menghasilkan energi listrik. Melalui Trafo Utama (Main Transformer), energi listrik disalurkan melewati Saluran Udara Tegangan Tinggi (SUTT) ke konsumen melalui Gardu Induk.

1.2RUMUSAN MASALAH

Untuk mememanfaatkan energi terbarukan sebagai pengganti energi yang tidak dapat diperbaruhi, maka diperlukan untuk mempelajari mengenai mesin konversi energi. Salah satu mesin konversi energi berbasis renewable energi adalah turbin air. Batasan topik tentang turbin angin terdiri dari:

1. Apa yang dimaksud dengan turbin air?

2. Bagaimana perkembangan turbin air konvensional hingga modern? 1.3TUJUAN

Materi turbin air memiliki peran penting dalam perkembangan energi terbarukan. Turbin air dapat digunakan untuk mengkonversi energi gerak menjadi energi yang dibutuhkan oleh masyarakat. Tujuan dari mempelajari turbin air adalah:

1. Mengetahui hal khusus dan umum tentang turbin air.

2. Mengetahui analisis dari turbin air beserta perkembangan turbin air konvensional hingga modern.

1.4MANFAAT

Manfaat yang dapat diambil dari mempelajari turbin air adalah:

(6)

BAB 2 ISI 2.1. Pengertian Umum Turbin Air

Turbin air merupakan mesin yang berputar diakibatkan oleh energi kinetik dan potensial dari aliran fluida. Fluida yang bergerak menjadikan blade pada turbin berputar dan menghasilkan energi untuk menggerakkan rotor. Perbedaan dasar antara turbin air awal dengan kincir air terletak pada komponen. Komponen pada turbin lebih optimal dan dapat memanfaatkan air dengan putaran lebih cepat serta dapat memanfaatkan head yang lebih tinggi. Komponen kincir lebih sederhana dengan biaya peralatan dan perawatan yang lebih murah. Turbin berfungsi untuk mengubah energi potensial dan kinetik menjadi energi mekanik. gaya jatuh air yang mendorong baling-baling menyebabkan turbin berputar. Komponen-komponen utama pada turbin air terdiri dari rotor dan stator. Rotor merupakan bagian yang berputar pada sistem turbin air. Stator merupakan bagian yang diam pada turbin air.

a. Bagian Rotor:

1. Sudu pengarah berfungsi untuk mengontrol kapasitas aliran masuk turbin.

2. Poros berfungsi untuk meneruskan aliran tenaga yang berupa gerak putar yang dihasilkan oleh sudu.

3. Bantalan berfungsi sebagai perapat-perapat komponen-komponen dengan tujuan agar tidak mengalami kebocoran pada sistem.

4. Runner berfungsi untuk merubah energi potensial fluida menjadi energi mekanik.

b. Bagian Stator:

1. Pipa pengarah/nozzle berfungsi untuk meneruskan alira fluida sehingga tekanan dan kecepatan alir fluida yang digunakan di dalam sistem besar.

2. Rumah turbin berfungsi sebagai rumah kedudukan komponen komponen dari turbin.

(7)

(yang terdiri dari energi potensial, tekanan, kecepatan) yang tersedia menjadi energi kinetik untuk memutar turbin, sehingga menghasilkan energi kinetik. Energi potensial air diubah menjadi energi kinetik pada nozle. Air keluar nozle yang mempunyai kecepatan tinggi membentur sudu turbin. Setelah membentur sudu arah kecepatan aliran berubah sehingga terjadi perubahan momentum (impulse). Contoh dari turbin impuls adalah turbin pelton, cross-flow dan turgo. Turbin Reaksi adalah turbin yang cara kerjanya merubah seluruh energi air yang tersedia menjadi energi kinetik. Sudu pada turbin reaksi mempunyai profil khusus yang menyebabkan terjadinya penurunan tekanan air selama melalui sudu. Perbedaan tekanan ini memberikan gaya pada sudu sehingga runner (bagian turbin yang berputar) dapat berputar. Turbin reaksi terdiri dari turbin Francis dan Kaplan.

Umumnya, turbin impuls digunakan untuk tempat dengan head tinggi, dan turbin reaksi digunakan untuk tempat dengan head rendah. Untuk merencanakan turbin diperlukan beberapa pertimbangan, pertimbangan yang digunakan untuk menentukan jenis turbin yang ditempatkan disuatu daerah tergantung dari ketinggian dan debit air. Secara bentuk turbin air terbagi atas beberapa jenis turbin yaitu turbin Pelton, Francis, Banki dan Kaplan.

(8)

Dapat dilihat pada grafik diatas bahwa turbin kaplan adalah turbin yang beroperasi pada head yang rendah dengan kapasitas aliran yang tinggi atau bahkan beroperasi pada kapasitas yang sangat rendah. Hal ini karena sudu-sudu turbin kaplan dapat diatur secara manual atau otomatis untuk merespon perubahan kapasitas. Turbin pelton adalah turbin yang beroperasi pada head tinggi dengan kapasitas yang rendah. Untuk turbin francis mempunyai karakteristik yang berbeda dengan yang lainnya yaitu turbin francis dapat beroperasi pada head yang rendah atau beroperasi pada head yang tinggi. Pemilihan turbin kebanyakan didasarkan pada head air yang didapatkan dan kurang lebih pada rata-rata alirannya.Turbin Kaplan baik digunakan untuk semua jenis debit dan head, efisiensinya baik dalam segala kondisi aliran. Aplikasi penggunaan turbin berdasarkan tinggi head yang didapatkan adalah sebagai berikut ini :

a. Turbin Kaplan : 2 < H < 100 meter b. Turbin Francis : 5 < H < 500 meter c. Turbin Pelton : H < 30 meter d. Turbin Banki : 2 < H < 200 meter

(9)
(10)

kerja. Sebuah turbin reaksi membutuhkan air yang penuh dalam proses transfer energi. Pada tahun 1866, tukang pembuat gilingan di California, Samuel Knight menemukan sebuah mesin yang mengerjakan tuntas sebuah konsep yang berbeda jauh. Terinspirasi dari system jet tekanan tinggi yang digunakan dalam lapangan pengeboran emas hidrolik, Knight mengembangkan ceruk kincir yang dapat menangkap energi dari semburan jet, yang ditimbulkan dari energi kinetik air. Pada sumber yang cukup tinggi (ratusan kaki) yang dialirkan melalui sebuah pipa saluran. Turbin ini disebut turbin impulse atau turbin tangensial. Aliran air mendorong ceruk disekeliling kincir turbin pada kecepatan maksimum dan jatuh keluar sudu dengan tanpa kecepatan. Pada tahun 1879, Lester Pelton, melakukan percobaan dengan kincir Knight, dikembangkanlah desain ceruk ganda yang membuang air kesamping, menghilangkan beberapa energi yang hilang pada kincir Knight yang membuang sebagian air kembali melawan kincir. Sekitar tahun 1895, William Doble mengembangkan ceruk setengah silinder milik Pelton menjadi ceruk berbentuk bulat memanjang, termasuk sebuah potongan didalamnya yang memungkinkan semburan untuk membersihkan masukan ceruk. Turbin ini merupakan bentuk modern dari turbin Pelton yang saat ini dapat memberikan efisiensi hingga 92%. Pelton telah memprakarsai desain yang efektif, kemudian Doble mengambil alih perusahaan Pelton dan tidak mengganti namanya menjadi Doble karena nama Pelton sudah dikenal. Turgo dan turbin aliran silang merupakan desain turbin impulse selanjutnya. Turbin air terdapat dalam suatu pembangkit listrik berfungsi untuk mengubah energi potensial yang dimiliki air menjadi energi kinetik. Selanjutnya energi kinetik ini akan dirubah menjadi energi elektrik melalui generator.

2.3. Jenis Turbin Air

Turbin air dapat digolongkan menjadi dua yaitu turbin air berdasarkan model aliran air masuk runner dan berdasarkan bentuknya. Berikut ini akan diuraikan klasifikasi jnis turbin air.

2.3.1. Berdasarkan Arah Aliran

Berdasaran model aliran air masuk runner, maka turbin air dapat dibagi menjadi tiga tipe yaitu

(11)

Pada turbin ini air masuk runner dan keluar runner sejajar dengan poros runner, Turbin Kaplan atau Propeller adalah salah satu contoh dari tipe turbin ini. Turbin aliran aksial adalah turbin yang paling banyak digunakan dengan menggunakan fluida kompresibel.

b. Aliran Radial

Pola aliran radial terbagi atas sentripetasl dan sentrifugal. Pola aliran sentrifugal adalah pola aliran yang menyebar dari suatu puncak. Pola seperti ini terdapat pada daerah yang berbentuk kerucut atau gunung api. Pola aliran radial sentripetal merupakan pola aliran yang arahnya mengumpul menuju suatu pusat. Pola seperti ini terdapat pada suatu daerah yang berbentuk cekung atau basin.

c. Aliran Berubah

Aliran berubah beraturan (gradually varied flow), terjadi jika parameter hidrolis (kecepatan, tampang basah) berubah secara progresif dari satu tampang ke tampang yang lain. Apabila di ujung hilir saluran terdapat bendung maka akan terjadi profil muka air pembendungan dimana kecepatan aliran akan berkurang (diperlambat), sedangkan apabila terdapat terjunan maka profil aliran akan menurun dan kecepatan akan bertambah (dipercepat) contoh aliran pada sungai. Aliran berubah cepat (rapidly varied flow), terjadi jika parameter hidraulis berubah secara mendadak (saluran transisi), loncat air, terjunan, aliran melalui bangunan pelimpah dan pintu air.

d. Aliran Tangensial

Pada kelompok turbin ini posisi air masuk runner dengan arah tangensial atau tegak lurus dengan poros runner mengakibatkan runner berputar, contohnya Turbin Pelton dan Turbin Cross-Flow.

2.3.2. Berdasarkan Daya a. Mini Mikrohidro

(12)

Gambar 2.1. Kincir air di mesir b. Mikrohidro

(13)

Gambar 2.2. Gambar PLTMH c. Minihidro

Sedangkan untuk minihidro daya keluarannya berkisar antara 100 sampai 5000 W. Prinsip kerja dari minihidro hampir sama seperti mikrohidro, akan tetaapi daya yang dihasilkan berbeda, sehingga disebut minihidro.

Gambar 2.3. Animasi Minihidro 100-5000 W d. Turbin Hydropower

(14)

Gambar 2.4. Hydropower, tenaga yang dihasilkan diatas 20MW. Tempat bendungan contra Swiss

2.3.3. Berdasarkan Bentuk a. Turbin Implus

Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air (yang terdiri dari energi potensial, tekanan, kecepatan) yang tersedia menjadi energi kinetik untuk memutar turbin, sehingga menghasilkan energi kinetik. Energi potensial air diubah menjadi energi kinetik pada nozle. Air keluar nozle yang mempunyai kecepatan tinggi membentur sudu turbin. Setelah membentur sudu arah kecepatan aliran berubah sehingga terjadi perubahan momentum (impulse). Akibatnya roda turbin akan berputar. Turbin impuls adalah turbin tekanan sama karena aliran air yang keluar dari nozle tekanannya adalah sama dengan tekanan atmosfir sekitarnya. Semua energi tinggi tempat dan tekanan ketika masuk ke sudu jalan turbin dirubah menjadi energi kecepatan. Turbin impuls merubah aliran semburan air, semburan air membentuk sudut yang membentur turbin. Sebelum mengenai sudu turbin, tekanan air (energi potensial) dikonversi menjadi energi kinetik oleh sebuah nosel dan difokuskan pada turbin. Tidak ada tekanan yang dirubah pada sudu turbin, dan turbin tidak memerlukan rumahan untuk operasinya.

(15)

Gambar 3.1. Jarum katup dan tekanan tinggi pada nozel

i. Turbin Pelton

(16)

Gambar 3.2. Turbin pelton

Tidak semua sudu menerima pancaran air, hanya sebagaian – jarum katup air tekanan tinggi bagaian saja scara bergantian bergantung posisi sudut tersebut. Jumlah noselnya bergantung kepada besarnya kapasitas air, tiap roda turbin dapat dilengkapi dengan nosel 1 sampai 6. Ukuran-ukuran utama turbin pelton adalah diameter lingkar sudu yang kena pancaran air, disingkat diameter lingkaran pancar dan diameter pancaran air. Pengaturan nosel akan menentukan kecepatan dari turbin. Untuk turbin-turbin yang bekerja pada kecepatan tinggi jumlah nosel diperbanyak.

Gambar 3.3. Intalasi Turbin Pelton dalam bentuk gambar 2d.

(17)

1. Perkembangan Turbin Pelton Desain Sudu

Menurut penelitian dari Pamungkas irawan tentang efisiensi dari bentuk sudu mangkok dengan bentuk sudu silinder tertutup dibelah dua dapat disimpulkan sebagai berikut ―Besarnya daya yang dihasilkan oleh sistem dipengaruhi oleh head (H), debit (Q), percepatan grafitasi (g) dan pembebana generator pada tegangan yang konstan. Karena itu pada tiap pengujian akan didapat daya semakin besar dengan kenaikan debit dan head dan beban generator. Daya Kinetik pada Sudu Mangkok lebih tinggi dari Sudu Silinder Tertutup Dibelah Dua dengan selisih 0,17 Watt, tetapi Daya Hidrolik, Daya Turbin, dan Daya Generator terlihat lebih tinggi pada Sudu Silinder Dibelah Dua, selisih dayanya sebesar 57,07 Watt, 0,48 Watt, dan 17,60 Watt. Sedang untuk efisiensi, value tertinggi pada sudu silinder dibelah dua, dengan selisih 0,1 % untuk Efisiensi Turbin dan 0,83 % untuk Efisiensi Sistem. Secara umum terlihat bahwa Sudu Silinder tertutup Dibelah Dua lebih unggul dari pada Sudu Mangkok.‖

ii. Turbin Cross-flow

(18)

Pemakaian jenis Turbin Cross-Flow lebih menguntungkan dibanding dengan penggunaan kincir air maupun jenis turbin mikro hidro lainnya. Penggunaan turbin ini untuk daya yang sama dapat menghemat biaya pembuatan penggerak mula sampai 50 % dari penggunaan kincir air dengan bahan yang sama. Penghematan ini dapat dicapai karena ukuran Turbin Cross-Flow lebih kecil dan lebih kompak dibanding kincir air. Diameter kincir air yakni roda jalan atau runnernya biasanya 2 meter ke atas, tetapi diameter Turbin Cross-Flow dapat dibuat hanya 20 cm saja sehingga bahan-bahan yang dibutuhkan jauh lebih sedikit, itulah sebabnya bisa lebih murah. Demikian juga daya guna atau effisiensi rata-rata turbin ini lebih tinggi dari pada daya guna kincir air. Hasil pengujian laboratorium yang dilakukan oleh pabrik turbin Ossberger Jerman Barat yang menyimpulkan bahwa daya guna kincir air dari jenis yang paling unggul sekalipun hanya mencapai 70 % sedang effisiensi turbin Cross-Flow mencapai 82 %. Tingginya effisiensi Turbin Cross-Flow ini akibat pemanfaatan energi air pada turbin ini dilakukan dua kali, yang pertama energi tumbukan air pada sudu-sudu pada saat air mulai masuk, dan yang kedua adalah daya dorong air pada sudu-sudu saat air akan meninggalkan runner. Adanya kerja air yang bertingkat ini ternyata memberikan keuntungan dalam hal effektifitasnya yang tinggi dan kesederhanaan pada sistim pengeluaran air dari runner.

Turbin Cross Flow juga disebut Turbin Banki-Mitchel atau Turbin Ossbeger, dikarenakan jenis turbin ini disebut-sebut ditemukan oleh ilmuwan Australia Anthony Michell, Ilmuwan Australia Donat Banki, Ilmuwan Jerman Fritz Ossberger. Mereka masing-masing memiliki patent atas jenis turbin ini. Tak seperti kebanyakan turbin yang beputar dikarenakan aliran air secara axial maupun radial, pada turbin Cross Flow air mengalir secara melintang atau memotong blade turbin, Turbin Cross Flow didesain untuk mengakomodasi debit air yang lebih besar dan head yang lebih rendah dibanding Pelton. Headnya kurang dari 200 meter.

Tinggi Terjunan (head): H = 5—200 m Debit: Q = 0,03—13 m³/s

(19)

Turbin Crossflow adalah radial, turbin bertekanan kecil dengan injeksi tangensial dari putaran kipas dengan poros horisontal. Turbin ini digolongkan sebagai turbin berkecepatan rendah. Aliran air mengalir melalui pintu masuk pipa, dan diatur oleh baling-baling pemacu dan masuk ke putaran kipas turbin. Setelah air melewati putaran kipas turbin, air berada pada putaran kipas yang berlawanan, sehingga memberikan efisiensi tambahan. Akhirnya, air mengalir dari casing baik secara bebas atau melalui tabung dibawah turbin. Pada prakteknya, aliran air pada putaran kipas memberikan efek pembersihan sendiri. Setiap kotoran yang terdorong diantara putaran kipas akan masuk bersama air yang juga ditarik keluar oleh gaya sentrifugal. Setelah setengah putaran dari kipas, air mengambil kotoran yang keluar dan menyembur keluar kedalam kolam penenang. Jika aliran air berubah – ubah, maka turbin Crossflow dirancang dengan dua sel. Pembagian standar dari sel masuk adalah 1:2. Sel sempit memproses aliran air kecil dan sel lebar memproses aliran deras. Kedua sel bersama-sama memproses aliran penuh. Dengan pembagian ini, aliran air yang digunakan adalah 100 sampai 17% pada efisiensi optimal. Dengan demikian turbin Crossflow dapat digunakan pada aliran sungai yang sangat bervariasi, bahkan mencapai efisiensi 80%. Turbin Crossflow memiliki dua inlet, inlet horisontal dan inlet vertikal.

Gambar 3.5. Inlet horizontal dan vertikal pada Banki/Cross-Flow. Tingkat efisisensi turbin

(20)

efisiensi dari turbin yang yang dipakai. Dalam keadaan normal, turbin mencapai efisiensi tinggi, namun selama arus air kecil, efisiensi agak rendah, mencapai output tahunan yang lebih rendah ditempat-tempat dengan variabel aliran air dimana turbin dengan efisiensi kurva yang tetap datar.

Gambar 3.6.kurva efisiensi turbin crossflow, dibandingkan dengan turbin Francis adalah apabila arus dapat diatur oleh baling-baling panduan dalam pebandingan 1:2.

Keuntungan ke ekonomian

Dengan meningkatnya minat masyarakat akan kelestarian lingkungan dalam upaya mencari sumber daya alam yang dapat digunakan seperti memproduksi energi listrik dari sumber energi terbarukan. Sayangnya, penggunaan power hydro terbatas oleh faktor-faktor yang sangat signifikan sebagai berikut ini : tingginya biaya instalasi, termasuk desain dan perencanaan, dimensi, serta produk dari mesin yang dibutuhkan.

Oleh karena itu, insinyur serta konsultan dan desainer turbin telah mencoba untuk mengurangi total biaya dari turbin air yang standar. Pendekatan seperti ini hanya layak untuk turbin besar. Namun di sisi lain, hal ini mungkin dapat menyebabkan masalah dengan dimensi untuk turbin kecil, bila head (Ketinggian) yang diproyeksikan dan variasi aliran air sepanjang tahun diperhitungkan.

(21)

yang menyediakan dan merancang semua fungsi dengan harga yang baik pada waktu yang bersamaan.

Turbin crossflow memiliki purna jual yang panjang dan bebas perawatan. Selama pengoperasian, tidak diperlukan suku cadang yang mahal atau kompleks, maupun dapat di perbaiki langsung dilapangan. Keuntungan tertentu turbin crossflow adalah dapat digunakan dalam sistem air bersih gravitasi, bahkan di saluran yang sangat panjang, ataupun tidak menyebabkan dampak yang tidak diinginkan secara hidrolik dan dengan demikian tidak mempengaruhi kualitas air minum selama pengoperasian.

Turbin Cross-Flow adalah salah satu turbin air dari jeis turbin aksi (impulse turbine). Pemakaian jenis Turbin Cross-Flow lebih menguntungkan dibanding dengan pengunaan kincir air maupun jenis turbin mikro hidro lainnya. Penggunaan turbin ini untuk daya yang sama dapat menghemat biaya pembuatan penggerak mula sampai 50 % dari penggunaan kincir air dengan bahan yang sama. Penghematan ini dapat dicapai karena ukuran Turbin Cross-Flow lebih kecil dan lebih kompak dibanding kincir air.

Operasi karakteristik

Berkat desain turbin crossflow yang unik, bahaya akan kavitasi tidak ada. Sehingga kipas tidak perlu ditempatkan di bawah tingkat air tanah. Dengan demikian konstruksi biaya dan operasi merugikan dapat dihindari. Kontruksi yang digunakan untuk membuat turbin adalah baja.

iii. Turbin Turgo

(22)

Gambar 3.7.Kontruksi Turbin Turgo

b. Turbin Reaksi

Turbin Reaksi adalah turbin yang cara kerjanya merubah seluruh energi air yang tersedia menjadi energi kinetik. Turbin jenis ini adalah turbin yang paling banyak digunakan. Sudu pada turbin reaksi mempunyai profil khusus yang menyebabkan terjadinya penurunan tekanan air selama melalui sudu. Perbedaan tekanan ini memberikan gaya pada sudu sehingga runner (bagian turbin yang berputar) dapat berputar. Runner turbin reaksisepenuhnya tercelup dalam air dan berada dalam rumah turbin. Turbin reaksi terdiri dari turbin Francis dan Kaplan, berikut ini adalah macam-macam turbin reaksi.

i. Turbin Francis

(23)

Gambar 3.8.Kontruksi Turbin francis

Turbin francis bekerja dengan memakai proses tekanan lebih. Pada waktu air masuk ke roda jalan, sebagian dari enrgi tinggi jatuh telah bekerja di dalam sudu pengarah diubah sebagai kecepatan air masuk. Sisa energi tinggi jatuh dimanfaatkan dalam sudu jalan, dengan adanya pipa isap memungkinkan energi tinggi jatuh bekerja di sudu jalan dengan semaksimum mungkin. Turbin yang dikelilingi dengan sudu pengarah semuanya terbenam dalam air. Air yang masuk kedalam turbin dialirkan melalui pengisian air dari atas turbin atau melalui sebuah rumah yang berbentuk spiral (rumah keong). Semua roda jalan selalu bekerja.

Gambar 3.9.Sistem Kerja Turbin francis

(24)

alirannya akan berkurang dan tekanannya akan kembali naik sehingga air bisa dialirkan keluar lewat saluran air di bawah dengan tekanan seperti keadaan sekitarnya.

Gambar 3.10.Runner Turbin francis

Turbin francis mempunyai poros tegak dengan ukuran yang besar, sedangakan dengan ukuran yang kecil dengan ukuran mendatar. Turbin francis memakai roda propeller atau runner yang dapat berputar secara bebas. Konstruksi turbin terdiri dari dari sudu pengarah dan sudu jalan, dan kedua sudu tersebut, semuanya terendam di dalam aliran air. Air pertama masuk pada terusan berbentuk rumah keong. Perubahan energi seluruhnya terjadi pada sudu pengarah dan sudu gerak. Aliran air masuk ke sudu pengarah dengan kecepatan semakin naik degan tekanan yang semakin turun sampai roda jalan, pada roda jalan kecapatan akan naik lagi dan tekanan turun sampai di bawah 1 atm. Untuk menghindari kavitasi, tekanan harus dinaikan sampai 1 atm dengan cara pemasangan pipa hisap. Pengaturan daya yang dihasilkan yaitu dengan mengatur posisi pembukaan sudu pengarah, sehingga kapasitas air yang masuk ke roda turbin dapat diperbesar atau diperkecil. Turbin francis dapat dipasang dengan poros vertikal dan horizontal.

ii. Turbin Kaplan/Propeller

(25)

Gambar 3.11.Istalasi Turbin Kaplan/Propeller

Turbin Kaplan dan propeller merupakan turbin rekasi aliran aksial. Turbin ini tersusun dari propeller seperti pada perahu. Propeller tersebut biasanya mempunyai tiga hingga enam sudu. Tidak berbeda dengan turbin francis, turbin kaplan cara kerjanya menggunakan prinsip reaksi. Turbin ini mempunyai roda jalan yang mirip dengan baling-baling pesawat terbang. Bila baling-baling pesawat terbang berfungsi untuk menghasilkan gaya dorong, roda jalan pada kaplan berfungsi untuk mendapatkan gaya F yaitu gaya putar yang dapat menghasilkan torsi pada poros turbin. Berbeda dengan roda jalan pada francis, sudu-sudu pada roda jalan kaplan dapat diputar posisinya untuk menyesuaikan kondisi beban turbin.

(26)

Turbin kaplan banyak dipakai pada instalasi pembangkit listrk tenaga air sungai, karena turbin ini mempunyai kelebihan dapat menyesuaikan head yang berubah-ubah sepanjang tahun. Turbin kaplan dapat beroperasi pada kecepatan tinggi sehingga ukuran roda turbin lebih kecil dan dapat dikopel langsung dengan generator. Pada kondisi pada beban tidak penuh turbin kaplan mempunyai efisiensi paling tinggi, hal ini dikarenakan sudu-sudu turbin kaplan dapat diatur menyesuaikan dengan beban yang ada.Turbin kaplan adalah turbin yang beroperasi pada head yang rendah dengan kapasitas aliran air yang tinggi atau bahkan beroperasi pada kapasitas yang sangat rendah. Hal ini karena sudu-sudu trubin kaplan dapat diatur secara manual atau otomatis untuk merespon perubahan kapasitas.

Gambar 3.13. Turbin Kaplan/Propeller c. Turbin Aliran Bebas

i. Turbin Kinetik

(27)

Gambar 3.14. Turbin Kinetik 2.4. Komponen Umum Turbin Air

2.4.1. Turbin Cross-Flow a. Pegangan Baling

(28)

b. Rumah Turbin

Rumah turbin crossflow terbuat dari struktur baja, sehingga kuat dan tahan terhadap benturan dan beku.

c. Runner

Runner adalah bagian paling penting dari turbin, dilengkapi dengan lempengan yang terbuat dari profil baja dengan metode yang sudah terbukti. Kedua ujungnya dipasang dan di las pada bagian dalam ujung cakram dari runner tersebut. Runner dapat mempunyai lempengan sampai 37 buah tergantung dari ukuran turbin. Lempengan miring menciptakan sedikit kekuatan aksial, untuk itu pelumasan tidak diperlukan karena telah diperkuat oleh bantalan aksial. Lempengan pada runner yang lebar ditunjang oleh beberapa cakram. Sebelum instalasi akhir dari turbin, runner benar-benar diukur secara seimbang dan diuji untuk deteksi keretakan.

d. Bantalan

(29)

memungkinkan penggantian sederhana dari kipas tanpa mengeluarkan seluruh turbin keluar dari posisinya.

e. Draft Tube

Pada prinsipnya, turbin crossflow adalah turbin aliran bebas. Namun, dalam kasus dengan Ketinggian (head) dengan ukuran sedang atau rendah, diperlukan Draft Tube. Hal ini untuk memastikan bahwa ruang mesin bebas dari banjir dan sekaligus ketinggian seluruh ukuran Ketinggian terjunan dapat diterapkan. Jika aliran bebas turbin dengan skala luas digunakan, maka kolom air dalam Draft tube harus dikontrol. Hal ini dipastikan dengan menyeimbangkan katup udara, yang mempengaruhi tekanan bawah dalam rumah turbin. Dengan cara tersebut, turbin dengan tinggi hisap dari 1 sampai 3m dapat digunakan secara optimal tanpa ada bahaya kavitasi. Selain itu, apabila Ketinggian dengan ukuran yang rendah digunakan, pembuatan draft tube sebagai pipa baja pengumpul akan mengurangi biaya konstruksi yang jauh lebih rendah.

2.5. Gejala Turbin Air a. Kavitasi

(30)

b. Kecepatan Liar

Kecepatan liar yaitu suatu kecepatan yang terjadi akibat pada waktu turbin bekerja dimana tiba-tiba bebannya dihentikan dengan tiba-tiba. Dalam hal tersebut timbul gejala bahwa roda turbin akan berputar dengan sangat cepat. Kekuatan turbin harus diperhitungkan terhadap kecepatan liarnya untuk mencegah terjadinya kerusakan turbin atau generatornya. Kecepatan liar dapat diantisipasi atau dikurangi dengan cara, yaitu: pada bagian poros turbin dibuat suatu pengatur kecepatan (governor) yang dapat meredam putaran liar.

c. Water Hammer

Suatu peristiwa di mana timbulnya gelombang bertekanan akibat dari fluida yang mengalir tiba-tiba berhenti atau arah alirannya berubah (perubahan momentum). Water hammer juga terjadi akibat katup pada air keluar turbin di tutup secara tiba-tiba sehingga tekanan di dalam turbin meningkat. Selain tekanan tinggi juga terjadi gelombang kejut sehingga menimbulkan suara keras seperti suara menempa / pukulan. Ini dapat menyebabkan kerusakan pada turbin. Water hammer dapat diantisipasi atau dikurangi dengan cara, yaitu: dengan membuat surge tank pada bagian atas dekat sumber air. Surge tank ini akan menampung air yang membalik pada saat katup ditutup, sehingga water hammer dapat dihindari.

2.6. Parameter Turbin Air

a. Perhitungan Daya dan Energi Turbin Air

(31)

Sedangkan energi yang dibangkitkan turbin air adalah

Dimana:

P = daya turbin air (Watt) T = waktu

Secara sederhana dapat dinyatakan bahwa semakin tinggi jatuh air dengan kapasitas aliran akan mempunyai energi potensial yang ebih besar dibandingkan dengan tinggi jatuh air yang lebih rendah. Logika tersebut juga berlaku sebaliknya, yaitu untuk tinggi jatuh air yang sama, tetapi energi potensial yang dimiliki akan lebih besar apabila kapasitas aliran air juga besar.

Komponen energi potensial

Dimana :

W = Berat fluida (N)

z = Jarak tegak / Head diatassuatu elevasi acuan (m)

Komponen energi tekanan

Dimana:

P = tekanan air (N/m2) W= berat jenis fluida (N/m3)

Komponen energi kecepatan

c = kecepatan fluida

Dari persamaan diatas maka Energi totalnya adalah :

(32)

Putaran spesifik yaitu putaran turbin dimana dibangkitkan daya sebesar satu satuan daya per tinggi jatuh (head) satu satuan tinggi jatuh (head efektif). Kecepatan spesifik turbin dapat diartikan sebagai titik efisiensi maksimum. Perhitungan tepat ini menghasilkan performa turbin dalam jangkauan head dan debit tertentu. Dengan rumus sebagai berikut.

H efektif = Hgross - Hlosses

Adapun performa dan karakteristiknya dapat dilihat pada tabel berikut Jenis turbin Kecepatan

(33)

3 d. Penentuan Luas Penampang Saluran H

Diameter pipa dan luas penampang lintang saluran dalam turbin dapat dihitung dengan menggunakan persamaan kontinuitas. Yang dimaksud dengan luas penampang lintang saluran adalah suatu luasan permukaan irisan saluran yang dibuat tegak lurus dengan arah aliran cairan. Kecepatan aliran air akan besar pada penampang yang semakin kecil, pada kapasitas aliran air yang sama.

Dimana:

Q = kapasitas air yang mengalir (m3/detik) A = luas penampang pipa yang dipakai (m2) Cn = kecepatan aliran air (m/detik)

e. Tinggi Jatuh Air

Pemilihan dengan berdasarkan tinggi jatuh air diperoleh, maka dapat dilihat pada tabel berikut :

Tabel 3 : Pemilihan jenis turbin berdasarkan tinggi jatuh air No Tinggi jatuh air /

Kaplan atau Francis (lebih cocok Kaplan) Kaplan atau Francis (lebih cocok francis) Francis

Francis atau pelton (lebih cocok francis) Francis atau pelton(lebih cocok pelton) Pelton

f. Diameter Dan Lebar Runner

(34)

D1 = diameter luar runner ( m ) n = putaran turbin (rpm) U1 = kecepatan runner (m/s)

Luas pemasukan aliran adalah hasil kali lebar runner (b0) dengan panjang busur pemasukan (L).

dimana :

A = Luas penampang pipa pancar (m2) b0 = Lebar pipa pancar (m)

L = Panjang busur pemasukan (m)

2.7. Implementasi Turbin Air a. Kincir Air

Ribuan tahun yang lalu, manusia telah menemukan manfaat dari air yang mengalir. Dari pemanfaatan air yang sangat sederhana seperti penggunaan arus sungai untuk trasportasi, manusia terus mengembangkan cara- cara untuk menagkap energi air yang mengalir. Energi tersebut dapat dikonversikan menjadi energi mekanik. Hal ini dapat dilakukan dengan kincir atau turbin air dengan generator listrik. Dalam skala besar prinsip ini diterapkan pada sungai besar dengan membuat bendungan untuk pembangkit listrik tenaga air.

Pemanfaatan energi air dalam skala kecil dapat berupa penerapan kincir air dan turbin. Dikenal ada tiga jenis kincir air berdasarkan sistem aliran airnya, yaitu overshot, breast-shot, dan under-shot.

Pada kincir overshot, air melalui atas kincir dan kincir berada di bawah aliran air. Air memutar kincir dan air jatuh ke permukaan lebih rendah. Kincir bergerak searah jarum jam. Pada kincir breast-shot, kincir diletakkan sejajar dengan aliran air sehingga air mengalir melalui tengah-tengah kincir. Air memutar kincir berlawanan dengan arah jarum jam. Pada kincir under-shot, posisi kincir air diletakkan agak ke atas dan sedikit menyentuh air. Aliran air yang menyentuh kincir menggerakkan kincir sehingga berlawanan arah dengan jarum jam.

(35)

Jarang yang tahu bahwa beberapa tipe pompa air dapat diaplikasikan sebagai turbin air. Biasanya pompa digerakkan oleh motor listrik untuk menaikkan sejumlah air sampai ketinggian tertentu. Pada aplikasi sebagai turbin prinsip kerja pompa di balik, yaitu diberi jatuhan air dari ketinggian tertentu untuk memutar impeler pompa. Putaran impeler ini akan diteruskan untuk memutar generator sehingga dihasilkan tenaga listrik. Beberapa kelebihan aplikasi pompa sebagai turbin air adalah : sebagai produk industri yang massal pompa mudah diperoleh dengan berbagai vasiasi head – flow, tersedia dalam berbagai tipe dan ukuran, mudah dalam instalasinya, harga relatif murah, dan suku cadang mudah diperoleh. Aplikasi pompa dapat dikoneksi secara langsung dengan generator (direct drive) atau menggunakan transmisi mekanik pulley-belt (indirect drive) apabila putaran pompa sebagai turbin tidak sama dengan putaran generator (umumnya 1500 rpm).

Jenis pompa yang umum dipakai sebagai turbin adalah end-suction centrifugal pump untuk jatuhan 7 m – 100 m dengan debit kecil ( 50 liter/detik sd 150 liter/detik) dan mixed-flow pump untuk jatuhan rendah 4 – 15 m dengan debit cukup besar (100 – 400 liter/detik). Kapasitas daya aplikasi pompa sebagai turbin beragam 1 kW – 100 kW, dengan biaya peralatan yang lebih murah ( sd 50%) dibandingkan dengan menggunakan turbin air (costume product). Efisiensi pompa sebagai turbin relatif cukup baik berkisar 65% – 75%, umumnya selisih 3% dibandingkan efisiensi terbaik (bep, best efficiency point) sebagai pompa.

c. PLTA

(36)

beroperasi sesuai dengan perancangan sebelumnya, bila mempunyai Daerah Aliran Sungai (DAS) yang potensial sebagai sumber air untuk memenuh kebutuhan dalam pengoperasian PLTA tersebut. Pada operasi PLTA tersebut, perhitungan keadaan air yang masuk pada waduk / dam tempat penampungan air, beserta besar air yang tersedia dalam waduk / dam dan perhitungan besar air yang akan dialirkan melalui pintu saluran air untuk menggerakkan turbin sebagai penggerak sumber listrik tersebut, merupakan suatu keharusan untuk dimiliki, dengan demikian kontrol terhadap air yang masuk maupun yang didistribusikan ke pintu saluran air untuk menggerakkan turbin harus dilakukan dengan baik, sehingga dalam operasi PLTA tersebut, dapat dijadikan sebagai dasar tindakan pengaturan efisiensi penggunaan air maupun pengamanan seluruh sistem, sehingga PLTA tersebut, dapat beroperasi sepanjang tahun, walaupun pada musim kemarau panjang. Kapasitas PLTA diseluruh dunia ada sekitar 675.000 MW ,setara dengan 3,6 milyar barrel minyak atau sama dengan 24 % kebutuhan listrik dunia yang digunakan oleh lebih 1 milyar orang. Dalam penentuan pemanfaatan suatu potensi sumber tenaga air bagi.

i. Jenis-Jenis PLTA

Potensi tenaga air didapat pada sungai yang mengalir di daerah pegunungan. Untuk dapat memanfaatkan potensi dari sungai ini, maka kita perlu membendung sungai tersebut dan airnya disalurkan ke bangunan air PLTA. Ditinjau dari cara membendung air, PLTA dapat dibagi menjadi 2 kategori yaitu :

PLTA run off river

Pada PLTA run off river, air sungai dialihkan dengan menggunankan dam yang dibangun memotong aliran sungai. Air sungai ini kemudian disalurkan ke bangunan air PLTA. Pada PLTA run off river, daya yang dapat dibangkitkan tergantung pada debit air sungai, tetapi PLTA run off river biaya pembangunannya lebih murah

PLTA dengan kolam tando (reservoir)

(37)

mana debit air sungai besarnya melebihi kapasitas penyaluran air bangunan air PLTA, air dapat ditampung dalam kolam tando. Pada musim kemarau di mana debit air sungai lebih kecil daripada kapasitas penyaluran air bangunan air PLTA, selisih kekurangan air ini dapat diatasi dengan mengambil air dari timbunan air yang ada dalam kolam tando. Inilah keuntungan penggunaan kolam tando pada PLTA. PLTA dengan kolam tando (reservoir) memiliki biaya instalasi lebih mahal, karena kolam tando memerlukan bendungan yang besar dan juga memerlukan daerah genangan yang luas.

ii. Prinsip Plta Dan Konversi Energi

Pada prinsipnya PLTA mengolah energi potensial air diubah menjadi energi kinetis dengan adanya head, lalu energi kinetis ini berubah menjadi energi mekanis dengan adanya aliran air yang menggerakkan turbin, lalu energi mekanis ini berubah menjadi energi listrik melalui perputaran rotor pada generator. Jumlah energi listrik yang bisa dibangkitkan dengan sumber daya air tergantung pada dua hal, yaitu jarak tinggi air (head) dan berapa besar jumlah air yang mengalir (debit).

iii. Cara Kerja PLTA

(38)

menampung air dalam jumlah besar karena turbin memerlukan pasokan air yang cukup dan stabil. Selain itu dam juga berfungsi untuk pengendalian banjir. Contoh waduk Jatiluhur yang berkapasitas 3 miliar kubik air dengan volume efektif sebesar 2,6 miliar kubik.

iv. Komponen-Komponen PLTA 1. Bendungan

Bendungan atau dam adalah konstruksi yang dibangun untuk menahan laju air menjadi waduk, danau, atau tempat rekreasi. Bendungan juga digunakan untuk mengalirkan air ke sebuah Pusat Listrik Tenaga Air. Kebanyakan dam juga memiliki bagian yang disebut pintu air untuk membuang air yang tidak diinginkan secara bertahap atau berkelanjutan. Jenis bendungan antara lain:

a). Bendungan Beton (Bendungan Gravitasi, Bendungan Busur, Bendungan Rongga)

b). Bendungan Urugan (Bendungan Urugan Batu, Bendungan Tanah) c). Bendungan Kerangka Baja

d). Bendungan Kayu 2. Turbin

Turbin merupakan peralatan yang tersusun dan terdiri dari beberapa peralatan suplai air masuk turbin, diantaranya sudu (runner), pipa pesat (penstock), rumah turbin (spiral chasing), katup utama (inlet valve), pipa lepas (draft tube), alat pengaman, poros, bantalan (bearing), dan distributor listrik. Menurut momentum air turbin dibedakan menjadi dua kelompok yaitu turbin reaksi dan turbin impuls. Turbin reaksi bekerja karena adanya tekanan air, sedangkan turbin impuls bekerja karena kecepatan air yang menghantam sudu.

(39)

posisinya tetap (tidak bisa digerakkan). Air yang digunakan untuk membangkitkan listrik bisa berasal dari bendungan yang dibangun diatas gunung yang tinggi, atau dari aliran sungai bawah tanah. Karena sumber air yang bervariasi, maka turbin air didesain sesuai dengan karakteristik dan jumlah aliran airnya.

3. Generator

Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanis. Generator terdiri dari dua bagian utama, yaitu rotor dan stator. Rotor terdiri dari 18 buah besi yang dililit oleh kawat dan dipasang secara melingkar sehingga membentuk 9 pasang kutub utara dan selatan. Jika kutub ini dialiri arus eksitasi dari Automatic Voltage Regulator (AVR), maka akan timbul magnet. Rotor terletak satu poros dengan turbin, sehingga jika turbin berputar maka rotor juga ikut berputar. Magnet yang berputar memproduksi tegangan di kawat setiap kali sebuah kutub melewati ―coil‖ yang terletak di stator. Lalu tegangan inilah yang kemudian menjadi listrik. Agar generator bisa menghasilkan listrik, ada tiga hal yang harus diperhatikan, yaitu: Putaran, Kumparan, Magnet. 2.8. Pengaruh Turbin Air Pada Lingkungan

(40)

BAB III PENUTUP

3.1 Soal Objektif

1. Bagian turbina air yang berfungsi untuk meneruskan aliran fluida sehingga tekanan dan kecepatan fluida dapat dikendalikan sesuai dengan kebutuhan yaitu ...

2. Turbin yang sudut sudu geraknya dapat diatur sesuai dengan kondisi aliran saat itu adalah ...

3. Untuk mencari daya turbin air di tentukan dengan rumus yaitu .... a.

4. Turbin yang efektif pada head rendah adalah? a. Turbin Kaplan : Jawaban b. Turbin Tangensial

c. Turbin Crossflow d. Turbin Francis e. Turbin Pelton

5. Fungsi turbin air yang memiliki pengaruh baik pada lingkungan, kecuali? a. Sebagai tenaga listrik yang tergolong renewable energy.

b. Alternatif pembangkit listrik yang ramah lingkungan.

c. Bendungan pada turbin air memiliki peran ganda untuk mengatur sistem irigrasi persawahan.

d. Bendungan pada turbin air memiliki peran ganda untuk memelihara ikan sebagai alternatif kelangkaan wilayah. : Jawaban

(41)

3.2 Soal Uraian

1. Jelaskan apa yang anda ketahui mengenai turbin air ? Jawaban:

Turbin air merupakan mesin yang berputar diakibatkan oleh energi kinetik dan potensial dari aliran fluida. Fluida yang bergerak menjadikan blade pada turbin berputar dan menghasilkan energi untuk menggerakkan rotor. Perbedaan dasar antara turbin air awal dengan kincir air terletak pada komponen. Komponen pada turbin lebih optimal dan dapat memanfaatkan air dengan putaran lebih cepat serta dapat memanfaatkan head yang lebih tinggi. Komponen kincir lebih sederhana dengan biaya peralatan dan perawatan yang lebih murah. Komponen-komponen utama pada turbin air terdiri dari rotor dan stator. Rotor merupakan bagian yang berputar pada sistem turbin air. Stator merupakan bagian yang diam pada turbin air.

2. Berdasarkan karakteristiknya turbin dibagi menjadi 4, yakni Turbin Pelton, Turbin Bankis, Turbin Kaplan dan Turbin Francis. Dari ke empat jenis turbin tersebut jelaskan secara singkat tentang apa yang anda ketahui mengenai keempat turbin tersebut?

Jawab:

Turbin Pelton bekerja pada ketinggian air (head) = 200 s.d 2000 meter. Debit air = 4 s.d 15 m3/s. Turbin pelton digolongkan ke dalam jenis turbin impuls atau tekanan sama. Karena selama mengalir di sepanjang sudu-sudu turbin tidak terjadi penurunan tekanan.

(42)

di bagian keluar. Turbin Francis menggunakan sudu pengarah. Sudu pengarah mengarahkan air masuk secara tangensial.

Turbin Kaplan dan propeller merupakan turbin rekasi aliran aksial. Turbin ini tersusun dari propeller seperti pada perahu. Propeller tersebut biasanya mempunyai tiga hingga enam sudu. Tidak berbeda dengan turbin francis, turbin kaplan cara kerjanya menggunakan prinsip reaksi. Turbin ini mempunyai roda jalan yang mirip dengan baling-baling pesawat terbang.

3. Jelaskan pengaruh istalasi turbin air terhadap lingkungan? Jawab:

Turbin air mempunyai pengaruh positif dan negatif bagi lingkungan. Turbin adalah salah satu penghasil tenaga terbersih,

(43)

3.3 KESIMPULAN

Turbin adalah sebuah mesin berputar yang mengambil energi dari aliran fluida. Turbin sederhana memiliki satu bagian yang bergerak, "asembli rotor-blade". Fluida yang bergerak menjadikan baling-baling berputar dan menghasilkan energi untuk menggerakkan rotor. Berdasaran model aliran air masuk runner, maka turbin air dapat dibagi menjadi tiga tipe yaitu :Turbin Aliran Tangensial, Turbin Aliran Aksial, Turbin Aliran Aksial - Radial. Berdasarkan Perubahan Momentum Fluida Kerjanya turbin dibagi menjadi menjadi dua yaitu: Turbin Implus dan Turbin Reaksi. Jenis – Jenis Turbin Impuls adalah Turbin Pelton, Turbin Cross-Flow dan Turbin Turgo. Jenis – Jenis Turbin Reaksi adalah Turbin Francis dan Turbin Kaplan & Propeller.

3.3. SARAN

(44)

Daftar Pustaka

Pudjanarsa dan Nursuhud. 2006. Mesin konversi energi. Yogyakarta: Andi Susanti, Aprilia. 2014. Makalah turbin air. (online).

http://tulisanakhwat.blogspot.com/2014/02/makalah-turbin-air.html. Diakses

tanggal 7 maret 2015

Tanpa nama. Turbin crossflow. (online).

http://cink-hydro-energy.com/id/turbin-crossflow. Diakses tanggal 7 maret 2015

Tanpa nama. Macam-macam turbin. (online).

http://artikel-teknologi.com/macam-macam-turbin/. Diakses tanggal 7 maret 2015

Tanpa Pengarang. 2011. Makalah Turbin Air (PLTA), (Onlain), (http://www.

MAKALAH TURBIN AIR-PLTA _aphroditestory.htm), diakses 26

Gambar

Gambar 2.1. Kincir air di mesir
Gambar 2.3. Animasi Minihidro 100-5000 W
Gambar 2.4. Hydropower, tenaga yang dihasilkan diatas 20MW. Tempat
Gambar 3.1. Jarum katup dan tekanan tinggi pada nozel
+7

Referensi

Dokumen terkait

Model turbin aliran silang (Turbine Banki) yang diteliti memiliki metode penelitian yang dilakukan pada penelitian ini adalah dengan metode eksperimen, dimana

terjadi perubahan momentum (impulse). Akibatnya roda turbin akan berputar.. Turbin impuls adalah turbin tekanan sama karena aliran air yang keluar dari nosel. tekanannya adalah

a) Faktor tinggi jatuhan air efektif (Net Head) dan debit yang akan dimanfaatkan untuk operasi turbin merupakan faktor utama yang mempengaruhi pemilihan jenis turbin,

Turbin reaksi aliran ke dalam (inward), adalah turbin reaksi dimana air memasuki roda pada bagian lingkaran luar dan mengalir menuju kedalam melalui sudu (yaitu menuju

Dari beberapa penjelasan tersebut penggunaan turbin jenis Cross-flow merupakan solusi yang tepat untuk memasok energi di Indonesia dengan memanfaatkan potensi

Shaft seals merupakan salah satu bagian turbin terletak antara poros dengan casing yang berfungsi untuk mencegah uap air keluar dari dalam turbin melewati sela-sela antara poros

Turbin uap merupakan salah satu jenis mesin yang menggunakan metode external combustion engine (mesin pembakaran luar).Pemanasan fluida kerja (uap) dilakukan di luar

Dalam perencanaan runner turbin cross flow (turbin aliran silang) terlebih dahulu harus menghitung diameter terluar dan lebar pemasukan aliran air pada runner berdasarkan debit