• Tidak ada hasil yang ditemukan

Makalah Turbin Uap

N/A
N/A
Protected

Academic year: 2021

Membagikan "Makalah Turbin Uap"

Copied!
16
0
0

Teks penuh

(1)

Kata Pengantar

Puji syukur kami panjatkan kehadirat Tuhan Yang Maha Esa karena dengan rahmat, karunia, serta taufik dan hidayah-Nya kami dapat menyelesaikan makalah tentang turbin uap ini dengan baik meskipun banyak kekurangan didalamnya. Kami sangat berharap makalah ini dapat berguna dalam rangka menambah wawasan serta pengetahuan kita mengenai turbin uap. Kami juga menyadari sepenuhnya bahwa di dalam makalah ini terdapat kekurangan dan jauh dari kata sempurna. Oleh sebab itu, kami berharap adanya kritik, saran dan usulan demi perbaikan makalah yang telah kami buat di masa yang akan datang, mengingat tidak ada sesuatu yang sempurna tanpa saran yang membangun.

Semoga makalah sederhana ini dapat dipahami bagi siapapun yang membacanya. Sekiranya laporan yang telah disusun ini dapat berguna bagi kami sendiri maupun orang yang membacanya. Sebelumnya kami mohon maaf apabila terdapat kesalahan kata-kata yang kurang berkenan dan kami memohon kritik dan saran yang membangun demi perbaikan di masa depan.

Jakarta, 6 November 2015

(2)

Daftar Isi

BAB I PENDAHULUAN

1.1 Latar Belakang... 3

1.2 Rumusan Masalah... 3

1.3 Tujuan... 4

1.4 Metode Penyusunan Makalah... 4

BAB II ISI A. Pengertian... 5

B. Klasifikasi Turbin... 8

C. Komponen... 9

D. Prinsip Kerja... 13

BAB III KESIMPULAN 3.1 Kesimpulan... 15

3.2 Saran... 15

Daftar Pustaka... 16

(3)

PENDAHULUAN

1.1 LATAR BELAKANG

Turbin merupakan sebuah alat yang salah satunya digunakan untuk membangkitkan suatu energi. Di Indonesia telah tersebar berbagai macam turbin, mulai dari turbin gas, turbin air dan turbin uap. Turbin sangat membantu dalam kehidupan sehari-hari kita, salah satunya untuk memenuhi kebutuhan kita yang tidak lepas dari alat tersebut, yaitu listrik. Dengan turbin kita dapat melakukan kegiatan malam tanpa harus dalam kondisi gelap. Kegiatan malam akan berjalan lancar dengan adanya listrik yang tidak lepas dari turbin tersebut.

Semakin banyaknya turbin dan pesatnya perkembangan turbin tersebut, kini turbin tak asing lagi. Segala macam cara dilakukan untuk memodifikasi kembali turbin tersebut hanya untuk meningkatkan kenyamanan bagi pemakai, baik individu maupun kelompok. Terlebih lagi dengan adanya perkembangan teknologi saat ini, proses pemodifikasian turbin tersebut menjadi lebih mudah dilakukan.

Dengan adanya berbagi macam turbin tersebut yang telah tersebar hingga dipelosok Indonesia, maka kami berupaya untuk menulis sebuah makalah yang menyangkut permasalahan tersebut yaitu Turbin Uap.

1.2 Rumusan Masalah

1. Apa yang dimaksud dengan turbin uap? 2. Apa saja klasifikasi dari turbin uap?

3. Apa saja komponen-komponen dari turbin uap? 4. Bagaimanakah prinsip kerja dari turbin uap?

(4)

Tujuan dari penulisan makalah ini adalah sebagai berikut : 1. Dapat mengidentifikasikan pengertian dari turbin uap 2. Mengklasifikasikan turbin uap

3. Menentukan komponen-komponen dari turbin uap 4. Mengetahui prinsip kerja dari turbin uap

1.4 Metode Penyusunan Makalah

Metode yang saya gunakan untuk memperoleh semua informasi dan data adalah metode kajian pustaka, yang berarti mengumpulkan informasi sebanyak-banyaknya dari berbagai sumber media tertulis, seperti buku rujukan, artikel, juga media elektronik (artikel internet atau jurnal).

(5)

PEMBAHASAN

A. PENGERTIAN

Siklus Renkine setelah diciptakan langsung diterima sebagai standar untk pembangkit daya yang menggunakan uap (steam). Siklus Renkine nyata yang digunakan dalam instalasi pembangkit daya jauh lebih rumit dari pada siklus renkine ideal asli yang sederhana. Siklus ini merupakan siklus yang paling banyak digunakan untuk pembangkit daya listrik sekarang ini. Oleh karena itu, siklus renkine merupakan siklus uap cair maka paling baik siklus itu digambarkan dengan diagram P-v dan T-s dengan garis yang menunjukan uap jenuh dan cair jenuh. Fluida kerjanya adalah air (H2O).

Turbin uap merupakan suatu penggerak mula yang mengubah energi potensial uap menjadi energi kinetik dan selanjutnya diubah menjadi energi mekanis dalam bentuk putaran poros turbin. Poros turbin, langsung atau dengan bantuan roda gigi reduksi dihubungkan dengan mekanisme yang akan digerakkan. Tergantung pada jenis mekanisme yang digunakan , turbin uap digunakan pada berbagai bidang seperti pada bidang industri, untuk pembangkit tenaga listrik dan untuk transportasi. Pada bidang pembangkit tenaga listrik, turbin uap adalah salah satu komponen dasar dalam pembangkit listrik tenaga uap. Dimana komponen utama dari sistem tersebut yaitu : ketel, kondensor, pompa air ketel, dan turbin itu sendiri. Uap yang berfungsi sebagai fluida kerja dihasilkan oleh ketel uap, yaitu suatu alay yang berfungsi untuk mengubah air menjadi uap.

(6)

Q in Q out 2 3 Wp WT 1 4

Siklus ideal yang terjadi didalam turbin adalah siklus Renkine ; Air pada siklus 1 dipompakan, kondisinya adalah isentropik s1 = s2 masuk ke boiler dengan tekanan yang sama

dengan tekanan di kondenser tetapi Boiler menyerap panas sedangkan kondenser melepaskan panas, kemudian dari boiler masuk ke turbin dengan kondisi super panas h3 = h4 dan keluaran

dari turbin berbentuk uap jenuh dimana laju aliran massa yang masuk ke turbin sama dengan laju aliran massa keluar dari turbin, ini dapat digambarkan dengan menggunakan diagram

(7)

3 T Cp 2 4 1 s

Menurut Hukum pertama Thermodinamika, kerja yang dihasilkan oleh suatu proses siklus adalah sama dengan Jumlah Perpindahan Kalor pada fluida kerja selama proses siklus tersebut berlangsung. Jadi untuk proses Siklus

1 – 2 – 2’ – 3 – 3’ – 4 – 1 Dengan rumus: W =  T dS

W = Kerja per satuan berat fluida kerja

Ds = Luas 1 – 2 - 2 – 2’ – 3 – 4 - 1 pada diagaram ( T – s )

Dalam kenyataan Siklus sistem Turbin Uap menyimpang dari Siklus Ideal (Siklus Rankine) antara lain karena faktor tersebut dibawah ini :

1. Kerugian dalam pipa atau saluran fluida kerja, misalnya kerugian gesekan dan kerugian kalor ke atmosfer disekitarnya .

2. Kerugian tekanan dalam ketel uap

(8)

3. Kerugian energi didalam turbin karena adanya gesekan pada fluida kerja dan bagian-bagian dari turbin.

B. KLASIFIKASI TURBIN UAP

Turbin Uap dapat diklasifikasikan menjadi beberapa kategori yang berbeda berdasarkan pada konstruksinya, prinsip kerjanya dan menurut proses penurunan tekanan uap sebagai berikut:

1. Berdasarkan Prinsip Kerjanya.

a. Turbin Impulse

Turbin impuls atau turbin tahapan impuls adalah turbin sederhana berrotor satu atau banyak (gabungan) yang mempunyai sudu-sudu pada rotor itu. Sudu biasanya simetris dan mempunyai sudut masuk dan sudut keluar.

 Turbin satu tahap.

 Turbin impuls gabungan.

 Turbin impuls gabungan kecepatan. Ciri-ciri dari turbin impuls antara lain:

- Proses pengembangan uap / penurunan tekanan seluruhnya terjadi pada sudu diam / nosel.

- Akibat tekanan dalam turbin sama sehingga disebut dengan Tekanan Rata. b. Turbin Reaksi

Turbin reaksi mempunyai tiga tahap, yaitu masing-masingnya terdiri dari baris sudu tetap dan dua baris sudu gerak. Sudu bergerrak turbin reaksi dapat dibedakan dengan mudah dari sudu impuls karena tidak simetris, karena berfungsi sebagai nossel bentuknya sama dengan sudu tetap walaupun arahnya lengkungnya berlawanan.

(9)

- Penurunan tekanan uap sebagian terjadi di Nosel dan Sudu Gerak

- Adanya perbedaan tekanan didalam turbin sehingga disebut Tekanan Bertingkat.

2. Berdasarkan Pada Tingkat Penurunan Tekanan Dalam Turbin.

a. Turbin Tunggal (Singgle Stage)

Dengan kecepatan satu tingkat atau lebih turbin ini cocok untuk daya kecil, misalnya penggerak kompresoe, blower, dll.

b. Turbin Bertingkat (Aksi dan Reaksi)

Disini sudu-sudu turbin dibuat bertingkat, biasanya cocok untuk daya besar. Pada turbin bertingkat terdapat deretan sudu 2 atau lebih. Sehingga turbin tersebut terjadi distribusi kecepatan / tekanan.

3. Berdasarkan Proses Penurunan Tekanan Uap

a. Turbin Kondensasi

Tekanan keluar turbin kurang dari 1 atm dan dimasukkan kedalam kompresor. b. Turbin Tekanan Lawan

Apabila tekanan sisi keluar turbin masih besar dari 1 atm sehingga masih dapat dimanfaatkan untuk menggerakan turbin lain.

c. Turbin Ekstraksi

Didalam turbin ini sebagian uap dalam turbin diekstraksi untuk proses pemanasan lain misalnya proses industri.

C. KOMPONEN-KOMPONEN TURBIN UAP

(10)

1. CASSING

Adalah komponen yang berfungsi untuk menutup serta melindungi bagian-bagian utama turbin.

2. ROTOR

Komponen turbin yang berputar terdiri atas poros, sudu turbin, atau deretan sudu yang disebut stasionary blade dan moving blade. Untuk turbin bertekanan tinggi atau ukuran besar, khususnya unuk turbin jenis reaksi maka motor ini perlu di Balanceuntuk mengimbagi gaya reaksi yang timbul secara aksial terhadap poros.

3. SHAFT SEALS

Shaft seals merupakan salah satu bagian turbin terletak antara poros dengan casing yang berfungsi untuk mencegah uap air keluar dari dalam turbin melewati sela-sela antara poros dengan casing akibat perbedaan tekanan serta untuk mencegah udara agar tidak masuk ke dalam turbin selama turbin beroperasi.

4. TURBINE BEARINGS

Bearing / bantalan pada turbin uap memiliki fungsi sebagai berikut:

a. Menahan agar komponen rotor diam.

b. Menahan berat dari rotor.

c. Menahan berbagai gaya tidak stabil dari uap air terhadap sudu turbin.

d. Menahan ketidakseimbangan karena kerusakan sudu.

e. Menahan gaya aksial pada beban listrik yang bervariasi

(11)

a. Bearing Pendestal

Merupakan salah satu komponen turbin yang berfungsi sebagai bantalan untuk menumpu poros rotor.

b. Journal Bearing

adalah bagian turbin yang berfungsi untuk menahan gaya radial atau gaya tegak lurus rotor.

c. Thrust Bearing

Bagian turbin yang berfungsi untuk menahan atau menerima gaya aksial atau gaya sejajar terhadap poros yang merupakan gerakan maju mundurnya poros rotor.

5. MAIN OLI PUMP

Bagian turbin yang berfungsi sebagai pemompa oli dari tangki yang selanjutnya disalurkan menuju bagian – bagian yang berputar pada turbin .

Adapun fungsi dari Lube Oil adalah :

 Untuk melumasi bagian – bagian yang berputar, agar tidak aus. Hal ini juga

berpengaruh pada keawetan konstruksi turbin.

 Untuk mendinginkan ( Oil Cooler ) bagian turbin yang telah panas dan masuk ke bagian

turbin dan akan menekan atau terdorong keluar secara sirkuler.

 Untuk melapisi ( Oil Film ) bagian turbin yang bergerak secara rotasi.

 Untuk membersihkan ( Oil Cleaner ) oli yang telah kotor. Kekotoran oli sebagai akibat

dari benda-benda yang berputar dari turbin akan terdorong ke luar secara sirkuler oleh oli yang masuk.

(12)

Bagian turbin yang berfungsi sebagai Penyekat untuk menahan apabila terjadi kebocoran baik kebocoran Uap maupun kebocoran oli.

7. LABIRINTH RING

Bagian turbin yang mempunyai fungsi sama dengan gland packing, yaitu menyekat apabila terjadi kebocoran baik uap ataupun oli.

8. IMPULS STAGE

Bagian turbin sudu turbin tingkat pertama, terdapat 116 sudu di dalamnya.

9. STASIONARY BLADE

Sudu-sudu dalam turbin yang berfingsi untuk menerima dan mengarahkan kemana selanjutnya steam yang masuk.

10. MOVING BLADE

Beberapa sudu yang berfungsi menerima dan merubah Energi Steam yang masuk menjadi Energi Kinetik yang akan memutar generator.

11. TURBINE CONTROL VALVE

Katup yang bertugas mengatur jumlah steam yang masuk kedalam turbin sesuai dengan jumlah Steam yang diperlukan sesuai dengan sistem control yang bergantung pada besar beban listrik.

12. TURBINE STOP VALVES

Katup yang bertugas meneruskan atau menghentikan aliran steam sebelum menuju ke turbin. Disebut juga Emergency Stop Valve karena berfungsi untuk mengisolasi turbin dari supply uap air pada keadaan darurat untuk menghindari kerusakan atau juga overspeed.

(13)

Salah satu bagian turbin yang biasanya hanya dipasang pada turbin-turbin dengan kapasitas besar, berfungsi untuk menurunkan putaran poros rotor dari 5500 rpm menjadi 1500 rpm.

14. BALANCE PISTON

Berfungsi untuk melawan gaya aksial (gaya reaksi dari sudu yang berputar menghasilkan gaya aksial terhadap sisi belakang dari silinder pertama turbin) jumlah gaya 50%.

15. Turning Device

Mekanisme yang berfungsi untuk memutar rotor dari turbin pada saat start awal atau setelah shut down guna mencegah terjadinya distorsi/bending akibat proses pemanasan atau pendinginan yang tidak seragam pada rotor.

D. PRINSIP KERJA TURBIN UAP

Secara singkat prinsip kerja turbin uap adalah sebagai berikut :

a) Uap masuk kedalam turbin melalui nosel. Didalam nosel energi panas dari uap dirubah menjadi energi kinetis dan uap mengalami pengembangan.

Tekanan uap pada saat keluar dari nosel lebih kecil dari pada saat masuk ke dalam nosel, akan tetapi sebaliknya kecepatan uap keluar nosel lebih besar dari pada saat masuk ke dalam nosel.

Uap yang memancar keluar dari nosel diarahkan ke sudu-sudu turbin yang berbentuk lengkungan dan dipasang disekeliling roda turbin. Uap yang mengalir melalui celah-celah antara sudu turbin itu dibelokkan kearah mengikuti lengkungan dari sudu turbin. Perubahan kecepatan uap ini menimbulkan gaya yang mendorong dan kemudian memutar roda dan poros turbin.

(14)

b) Jika uap masih mempunyai kecepatan saat meninggalkn sudu turbin berarti hanya sebagian yang energi kinetis dari uap yang diambil oleh sudu-sudu turbin yang berjalan. Supaya energi kinetis yang tersisa saat meninggalkan sudu turbin dimanfaatkan maka pada turbin dipasang lebih dari satu baris sudu gerak. Sebelum memasuki baris kedua sudu gerak. Maka antara baris pertama dan baris kedua sudu gerak dipasang satu baris sudu tetap ( guide blade ) yang berguna untuk mengubah arah kecepatan uap, supaya uap dapat masuk ke baris kedua sudu gerak dengan arah yang tepat.

c) Kecepatan uap saat meninggalkan sudu gerak yang terakhir harus dapat dibuat sekecil mungkin, agar energi kinetis yang tersedia dapat dimanfaatkan sebanyak mungkin. Dengan demikian effisiensi turbin menjadi lebih tinggi karena kehilangan energi relatif kecil.

(15)

BAB III

PENUTUP

A. KESIMPULAN

Dari pembahasan diatas maka dapat disimpulkan bahwa turbin uap merupakan suatu penggerak mula yang mengubah energi potensial uap menjadi energi kinetik dan selanjutnya diubah menjadi energi mekanis.

Turbin uap digunakan pada berbagai bidang seperti pada bidang industri, untuk pembangkit tenaga listrik dan untuk transportasi.

Turbin uap dapat diklasifikaasikan menjadi berbagai macam yaitu menurut prinsip kerjanya, menurut penurunan tekanan dalam turbin dan menurut penurunan tekanan uap.

B. SARAN

Makalah ini merupakan bagian dari media pembelajaran, maka dengan itu kepada semua pihak bisa menggali ilmunya dengan mendalami makalah ini. Dan untuk penulis makalah selanjutnya agar bisa lebih mengembangkan isi makalah agar lebih baik dari apa yang sudah penulis tulis ini.

(16)

DAFTAR PUSTAKA

http://indrianaptmuns.blogspot.co.id/2015/06/komponen-turbin-uap.html

Moran, Michael dan Howard N. Saphiro. 2004. Termodinamika Teknik. JAKARTA: Erlangga https://id.wikipedia.org/wiki/Turbin_uap

Referensi

Dokumen terkait

Instalasi pembangkit daya terdiri dari ketel uap dan turbin uap, turbin uap adalah mesin konversi energi yang dapat mengubah energi potensial uap menjadi energi mekanik

Pada proses perubahan energi potensial menjadi energi mekanisnya yaitu dalam bentuk putaran poros dilakukan dengan berbagai cara.Pada dasarnya turbin uap terdiri dari

Prestasi mesin pada turbin uap adalah ukuran berapa besar randemen atau efisiensi yang dihasilkan turbin uap tersebut. Hubungan Daya efektif dan Daya Internal Turbin yang

Setelah menyelesaikan materi Instruksi Kerja Pemeliharaan Turbin Uap dan alat bantunya, peserta mampu menjelaskan Instruksi Kerja Pemeliharaan Turbin

Prinsip Kerja Turbin Uap Uap bertekanan yang dihasilkan boiler, dialirkan melalui pipa menuju Turbin melalui governor valve turbin, disini governor valve berfungsi untuk mengatur

Skema Siklus pembangkit Listrik Tenaga Uap [p2] Pada dasarnya prinsip kerja turbin uap adalah siklus rankine, dimana uap  berasal dari air yang dipompa kedalam boiler dan dirubah

Turbin Reaksi (tekanan lebih) adalah turbin bila tekanan uap didepan dan dibelakang sudu jalan tidak sama besarnya atau tekanan uap didepan sudu jalan lebih besar dari

Steam Turbine adalah suatu mesin yang berfungsi untuk mengubah energi panas dalam uap menjadi energi mekanik dalam bentuk putaran poros. Konstruksinya terdiri dari rumah turbin