• Tidak ada hasil yang ditemukan

PENGARUH BEBAN PELAKSANAAN TERHADAP KESTABILAN TIMBUNAN DIATAS TANAH LUNAK - Diponegoro University | Institutional Repository (UNDIP-IR)

N/A
N/A
Protected

Academic year: 2017

Membagikan "PENGARUH BEBAN PELAKSANAAN TERHADAP KESTABILAN TIMBUNAN DIATAS TANAH LUNAK - Diponegoro University | Institutional Repository (UNDIP-IR)"

Copied!
9
0
0

Teks penuh

(1)

Noerhadi Yuniarto2, Muhrozi, Bagus Priyatno3

ABSTRACT

Banjir Kanal Timur Bridge, located in Semarang between Tanjung Mas Harbour and Kaligawe road, is built on soft soil. The bridge is supported by foundation piles, which did not reached hard soil layer, therefore it is very sensitive to the lateral forces or horizontal forces, may be caused by construction a new road or bridge close to it.

For that reason, the research is needed to anticipate the existing bridge stability disturbance due to the new bridge construction.

The research is carried out which in four location points surrounding the area of Banjir Kanal Timur Bridge Pier (1, 2, 3 and 4) covers soil test in the field and laboratory test. The result of soil test show that the soil in this area at deepth of – 0.00 m up to – 14.00 m is very soft clay to soft clay, while at depth of – 14.00 m up to – 23.00 m represents soft to firmness clay, the critical thickness embankment Hcr without load is 2.30 m with slip length (L) = 17.12 m and Hcr with load is 1.90 m with slip length (L) = 16.60 m with Factor of Safety (FS) = 1.2. It is conclude that the construction of new bridge would not disturb the stability of the existing bridge when built at least 17.12 m away from the existing bridge, and the embankment is need high than 1.90 m.

1

PILARVolume 12, Nomor 1, April 2003 : halaman 30 - 38 2

PU Bina Marga 3

Pengajar Jurusan Teknik Sipil Fakultas Teknik Universitas Diponegoro Semarang

PENDAHULUAN

Di negara-negara berkembang jumlah penduduk cenderung meningkat, termasuk di Indonesia laju pertumbuhan penduduk sekitar 1.75 % per tahun dan pada akhir-akhir ini laju pertumbuhan penduduk di Jawa Tengah terus meningkat sekitar 3.50 % pertahun.

Pertumbuhan penduduk tersebut akan membawa dampak bagi perkembangan suatu wilayah, dimana kegiatan ekonomi akan meningkat guna melayani pemenuhan kebutuhan masyarakat di wilayah tersebut dan untuk mempercepat pertumbuhan ekonomi seiring dengan pertumbuhan penduduk yang ada perlu didukung sarana dan prasarana transportasi yang memadai, sehingga arus pergerakan barang dan manusia dapat berjalan dengan lancar.

Kota Semarang sebagai ibu kota Propinsi Jawa Tengah yang terletak di jalur pantai utara Pulau Jawa mempunyai peranan yang sangat vital,

selain sebagai ibu kota propinsi Jawa Tengah, kota Semarang juga berfungsi sebagai kota yang menghubungkan antara kota Surabaya dengan ibu kota Jakarta, hal ini tentunya berdampak terhadap pertumbuhan arus lalu lintas yang ada di kota Semarang cenderung terus meningkat dan menimbulkan kemacetan di tengah perkotaan, terutama pada jam-jam sibuk. Kemacetan arus lalu lintas terutama terjadi di perlintasan rel kereta api jalan Kaligawe dan bundaran Kalibanteng.

(2)

PERMASALAHAN

Jalan Lingkar Utara Semarang seksi 3 tahap I yang dimulai dari pintu IV Pelabuhan Tanjung Mas sampai dengan pertigaan jalan Kaligawe dan pertemuan dengan jalan Tol seksi C sepanjang 3 km (2 lajur) dibangun pada tahun 1996 melalui program SSUDP dilaksanakan oleh PT. Aempe Pluit Bataco Raya Jakarta. Pada saat penggalian tanah untuk konstruksi

footing jembatan Banjir Kanal Timur galian tanah tersebut mengalami kelongsoran dan menyebabkan sebagain besar tiang pancang patah dan bergerak mengumpul di luar titik semula yang dipancang.

Dari hasil penyelidikan yang dilakukan oleh pihak proyek, konsultan dan kontraktor dengan dibantu oleh Pusat Penelitian dan Pengembangan (Puslitbang) jalan Bandung disimpulkan bahwa tiang pancang yang ada sebagian besar patah pada kedalaman –6.00 m sampai –8.00 m dari pangkal tiang pancang maka untuk mengatasi hal tersebut diperlukan penambahan tiang pancang, penambahan tiang pancang tersebut harus tetap mengikuti kedalaman tiang pancang yang sudah ada (-32.00 m) dari permukaan tanah karena konstruksi tiang pancang yang ada terletak pada lapisan tanah lunak (soft soil) maka konstruksi tiang pancang tersebut sangat rawan terhadap bahaya penurunan dan gaya lateral / horisontal.

MAKSUD DAN TUJUAN

Penelitian ini dimaksudkan untuk mengetahui pengaruh beban pelaksanaan terhadap

kestabilan timbunan diatas tanah lunak yang diakibatkan oleh beban pelaksanaan pembangunan jalan dan jembatan baru yang akan dibangun disamping jembatan Banjir Kanal Timur existing.

HASIL PENELITIAN DAN PEMBAHASAN

Untuk menganalisa kestabilan lereng digunakan suatu program komputer Slope/W. Dalam hal ini program yang digunakan adalah versi student.

Slope/W adalah suatu program yang

menggunakan metode kesetimbangan batas untuk memecahkan (mencari faktor keamanan). Program ini dibuat oleh Geo-Slope International Ltd, Calgary, Alberta, Canada.

Hasil perhitungan yang dipakai adalah hasil dari metode Bishop. Perhitungan dengan program ini bertujuan untuk mengetahui panjang maximum bidang gelincir dari suatu timbunan, sehingga dapat ditentukan jarak yang aman untuk membangun bangunan yang baru di samping bangunan yang telah ada. Hasil perhitungan yang dipakai adalah hasil dari metode Bishop. Perhitungan dengan program ini bertujuan untuk mengetahui panjang maximum bidang gelincir dari suatu timbunan, sehingga dapat ditentukan jarak yang aman untuk membangun bangunan yang baru di samping bangunan yang telah ada.

PEMBAHASAN

Hubungan (korelasi) Antara Nilai qc Dengan Cu pada Salah Satu Penelitian. Tabel di bawah ini menunjukkan korelasi nilai qc dan Cu pada salah satu penelitian.

Tabel 1. Korelasi Nilai qc dan Cu pada Salah Satu Penelitian

(3)

-2.8 6.66 0.057 -15.2 3.66 -3.2 7.00 -15.6 4.66 -3.6 6.33 -16.0 4.33 -4.0 4.33 -16.4 4.33 -4.4 3.00 -16.8 5.00 -4.8 2.00 -17.2 5.00 -5.2 1.33 -17.6 6.00 -5.6 1.00 -18.0 6.66 -6.0 1.00 -18.4 7.00 -6.4 1.00 -18.8 6.66 -6.8 1.00 -19.2 5.33 -7.2 1.00 -19.6 5.66 -7.6 1.00 -20.0 7.00 -8.0 2.00 -20.4 7.00 -8.4 2.33 -20.8 6.33 -8.8 2.00 -21.2 6.00 -9.2 2.00 -21.6 6.66 -9.6 2.00 -22.0 7.33 -10.0 2.00 -22.4 8.00 -10.4 2.00 -22.8 8.00 -10.8 2.00 -11.2 1.66 -11.6 1.00 -12.0 1.00 -12.4 1.66

y = -0.0013x + 0.0907

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

0 1 2 3 4 5 6 7 8 9 10

qc (kg/cm

2

)

Cu (kg/cm

2

)

(4)

Dengan menempatkan nilai konus resistance (qc) dari Sondir dengan nilai Cu dari vane shear maka didapat hubungan antara Cu dan qc sebagai berikut :

Cu = 0.0815 qc atau qc

Cu = (kg/cm2). 12.26

Keterangan :

Penelitian yang dilakukan Sanglerat (1972),

qc

Cu = (kg/cm2). 10 - 20

Menentukan Nilai Cudesign dan qcdesign pada Kedalaman 0.00 m – 14.00 m

™ Pada Salah Satu Titik Sondir Perhitungan qcdesign

qcdesign = qcrata-rata – 1.64 (Nilai Standar Deviasi S4)

dimana Standar Deviasi S4 = 0.60331 (lihat Tabel 2. Menentukan Cudesign pada kedalaman 0.00 m – 14.00 m)

= 1.91286 – 1.64 (0.60331) = 0.98377 kg/cm2

Perhitungan Cudesign Cudesign = qcdesign / 11.02

= 0.08918 / 11.02 = 0.08927 kg/cm2

Perhitungan tinggi timbunan kritis (Hcr) Data Cudesign dapat dilihat pada hasil perhitungan menentukan nilai Cudesign dan qcdesign pada kedalaman 0.00 m – 14.00 m dan γ timbunan dari uji laboratorium sebesar 1.85 kg/cm3.

Hcr = Cu design.Nc/γtimbunan = 0.8927.5,5/1.85

= 2.65 m

Perhitungan Angka Keamanan (FS)

Data Cudesign dapat dilihat pada hasil perhitungan menentukan nilai Cudesign dan qcdesign pada kedalaman 0.00 m – 14.00 m, γ timbunan dari uji laboratorium sebesar 1.85 kg/cm3 dan Hcr dapat dilihat pada perhitungan tinggi timbunan kritis.

FS pada salah satu penelitian : FS = Cu design.Nc/γtimbunan Hcr FS = 0.8927. 5,5/1.85 2.65

= 1.0001

Tabel 2. Menentukan Cudesign dari Nilai Konus Resistance (qc) pada Kedalaman 0.00 – 14.00 m

Nilai konus resistance qc (kg/m2) Kedalaman (m)

S1 S2 S3 S4

-0.4 5 2 1.5 3.33

-0.8 4.33 2 1.33 3.33

-1.2 2.66 2 1 3.33

-1.6 2 2 1.33 3

-2.0 2.66 2 2.66 3

-2.4 2.66 2.33 3.33 2.33

-2.8 2 2 2.66 3.66

-3.2 2 1.33 2 2

-3.6 2 1.33 2 2.33

-4.0 2 1.33 2.33 2.33

-4.4 2 1 4 3

-4.8 2 1 4 2

-5.2 1.66 1 5 1.33

-5.6 1 1.66 4 1

(5)

-6.4 1 1.66 2 1

-6.8 1 1 2 1

-7.2 1 1 1.33 1

-7.6 1 1 1 1

-8.0 1.33 1 1 2

-8.4 2 1.33 1 2.33

-8.8 2 2 1.33 2

-9.2 1.66 2 2 2

-9.6 2 2 2 2

-10.0 2 2 2 2

-10.4 2.33 2.33 2 2

-10.8 3 3 2.33 2

-11.2 2.33 2.33 3 1.66

-11.6 2 2 3 1

-12.0 2.66 2.33 3.33 1

-12.4 3 3.66 2.33 1.66

-12.8 3.33 3.33 4 2

-13.2 4 2 4.66 2.33

Standart deviasi 0.7004 0.5073 0.89388 0.60331

Rata-rata 2.0746 1.7414 2.27 1.91286

qc design (kg/cm2) 0.00 m s/d -14.00 m 0.9259 0.9094 0.98281 0.98377

Cu design = qc design/11.02 0.084 0.0825 0.08918 0.08927

100 100 100 100

Cu x 100 (KN/m2) 8.4023 8.2526 8.91839 8.9271

Cu (T/m2) 0.84 0.82 0.89 0.89

Analisa Kestabilan Lereng

Untuk menganalisa kestabilan lereng digunakan suatu program komputer Slope/W. Dalam hal ini program yang digunakan adalah versi student.

Untuk perhitungan standar, Slope/W dalam perhitungannya menggunakan :

1.Metode Fellenius 2.Metode Bishop 3.Metode Janbu

Hasil perhitungan yang dipakai adalah hasil dari metode Bishop. Perhitungan dengan program ini bertujuan untuk mengetahui panjang maximum bidang gelincir dari suatu timbunan, sehingga dapat ditentukan jarak yang aman untuk membangun bangunan yang baru di samping bangunan yang telah ada. Dimensi bangunan dan data tanah dapat dilihat pada Gambar 2 berikut;

γtimb = 18,5 KN/m3 C = 20 KN/m2

φ =150 15 m

1

1

γ = 16,2 KN/m3

Cu = titik 1 = 8,4 KN/m2 titik 2 = 8,25 KN/m2 titik 3 = 8,918 KN/m2 titik 4 = 8,927 KN/m2 φ = 0

(6)

Gambar 2. Dimensi Timbunan dan Data Tanah pada Penelitian 1,2,3, dan 4. Tabel 3. Hasil Perhitungan Analisa Kestabilan Lereng pada Salah Satu Penelitian.

FS (Angka Keamanan) L (Panjang Bidang Gelincir) Timbunan (m) Tanpa Beban

Pelaksanaan

Dari Tabel Hasil Perhitungan Analisa Kestabilan Lereng pada salah satu penelitian dapat dihitung tinggi timbunan kritis (Hcr) pada

faktor keamanan FS = 1.2 yang dapat dilihat pada gambar dibawah ini:

0

Tanpa Beban Pelaksanaan Dengan Beban Pelaksanaan

H = 2.30 M H = 1.90 M

Gambar 3. Grafik Faktor Keamanan (FS) terhadap Tinggi Timbunan (H) pada Salah Satu Penelitian.

γtimb = 18,5 KN/m3

(7)

Dari Gambar 3. Grafik FS terhadap H, dapat diketahui :

Untuk FS = 1.2 (tanpa beban pelaksanaan) didapat Hcr = 2.30 m

FS = 1.2 (dengan beban pelaksanaan) didapat Hcr = 1.90 m.

Dari Tabel 3. Hasil Perhitungan Analisa Kestabilan Lereng pada salah satu penelitian dapat dihitung panjang bidang gelincir (L) pada faktor keamanan FS = 1.2 yang dapat dilihat pada Gambar 4.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

15.2 15.4 15.6 15.8 16 16.2 16.4 16.6 16.8 17 17.2 17.4 17.6 17.8 18 18.2

PANJANG BIDANG GELINCIR (L)

FAKTOR KEAMANAN (F

S

Tanpa Beban Pelaksanaan Dengan Beban Pelaksanaan

L = 17.12 M L = 16.60 M

Gambar 4. Grafik Faktor Keamanan (FS) terhadap Tinggi Timbunan (H) pada Salah Satu Penelitian.

Dari Gambar 4. Grafik FS terhadap L, dapat diketahui :

Untuk FS = 1.2 (tanpa beban pelaksanaan) didapat L = 17.12 m

FS = 1.2 (dengan beban pelaksanaan) didapat L = 16.60 m.

Pada salah satu penelitian dapat diambil kesimpulan bahwa :

a. Hcr untuk timbunan tanah dengan beban pelaksanaan lebih kecil (Hcr = 1.90 m) dari pada Hcr timbunan tanah tanpa beban pelaksanaan (Hcr = 2.30 m).

b. Akibat dari turunnya tinggi timbunan kritis tersebut maka panjang bidang gelincir menjadi lebih pendek dari L = 17.12 m menjadi L = 16.60 m.

c. Pada FS < 0.821 dengan beban pelaksanaan dan FS < 0.949 tanpa beban pelaksanaan panjang bidang gelincir cenderung turun dan menjadi tidak menentu, hal ini disebabkan karena daya dukung tanah dasar tidak kuat menahan beban yang ada diatasnya sehingga panjang bidang gelincir tidak dapat dikontrol.

KESIMPULAN DAN SARAN Kesimpulan

(8)

–14.00 sampai dengan –23.00 terdapat lapisan lempung lunak sampai teguh.

2. Dari hasil penelitian didapat nilai korelasi antara Cu (kg/cm2) dari Vane Shear dan qc (kg/cm2) dari data sondir adalah sebagai berikut :

Cu = qc / 11,02 (kg/cm2)

Menunjuk Penelitian Sangrelat seorang pakar luar negeri telah melakukan penyelidikan dibeberapa lokasi dengan hasil :

Cu = qc / 10 (kg/cm2) (lokasi di Great Britain Inggis)

Cu = qc / 10 s/d 20 (kg/cm2) (lokasi di Annency Perancis) 3. Dari hasil perhitungan stabilitas lereng

dengan menggunakan Slope/W dapat disimpulkan bahwa tanah di lokasi penelitian mempunyai tinggi timbunan kritis (Hcr) dan panjang bidang gelincir (L) sebagai berikut :

Untuk FS = 1.2

Hcr (tanpa beban pelaksanaan) = 2.30 m Hcr (dengan beban pelaksanaan) = 1.90 m Untuk FS = 1.2

L (tanpa beban pelaksanaan)= 17.12 m L (dengan beban pelaksanaan) = 16.60 m Dari hasil diatas dapat disimpulkan bahwa dengan adanya penambahan beban pelaksanaan mengakibatkan turunnya tinggi timbunan kritis (Hcr), dengan turunnya Hcr tersebut maka panjang bidang gelincir menjadi lebih pendek.

4. Untuk FS < 0.821 dengan beban pelaksanaan dan FS < 0.949 tanpa beban pelaksanaan panjang bidang gelincir cenderung turun dan menjadi tidak menentu, hal ini disebabkan karena daya dukung tanah dasar tidak kuat menahan beban diatasnya. Sehingga panjang bidang gelincir tidak dapat dikontrol.

Dari hasil diatas dapat disimpulkan bahwa dengan adanya penambahan beban pelaksanaan mengakibatkan turunnya tinggi timbunan kritis (Hcr), dengan turunnya Hcr tersebut maka panjang bidang gelincir menjadi lebih pendek.

5. Untuk FS < 0.821 dengan beban pelaksanaan dan FS < 0.949 tanpa beban pelaksanaan panjang bidang gelincir cenderung turun dan menjadi tidak menentu, hal ini disebabkan karena daya dukung tanah dasar tidak kuat menahan beban diatasnya. Sehingga panjang bidang gelincir tidak dapat dikontrol.

Saran

Untuk membangun jembatan baru disamping jembatan Banjir Kanal Timur

Existing disarankan mempunyai jarak minimal 17.12 m dengan tinggi timbunan 1.90 m, agar pengaruh akibat beban pelaksanaan pekerjaan proyek baru tidak mengganggu terhadap konstruksi jembatan Banjir Kanal Timur

Existing.

DAFTAR PUSTAKA

ASTM D 4318 – 95a (1997), Standar Test Method Liquid Limit, Plastic Limit and Plasticity Index of Soils, Annual Book of ASTM Standard, ASTM 100 Barr Harbor Drive, West Conshohocken, vol. 04.08, pp 522-532.

Bowels, JE. (1979) Foundation Analysis and Design, Mc. Graw Hill, New York.

Bowels, JE. (1984) Physical and Geotechnical Properties of Soil, Mc. Graw Hill, 1984. Das, B. M., (1984), Principles of Foundation

Engineering, Wadsworth Inc.

Das, B. M., (1985), Principles of Geothecnical Engineering, PW Kent publishing.

Das, B. M., (1985), Advanced Soil Mechanics, McGraw Hill Book Company.

James K. Michell (1976), Foundamental of Soil Behavior, John Willey and Sons, Inc. L.D. Wesley (1977), Mekanika Tanah, Badan

Penerbit Pekerjaan Umum, Cetakan ke VI. Pumia, BC (1982), Soil Mechanias and

(9)

Skempton (1954), The Pore Pressure Parameters A dan B Geotechnique, Vol.4, The Building Congress, London.

Sanglarat G. (1972), The Penetrometer and Soil Exploration, Elsevier Publishing Co. Amsterdam.

Taylor (1948), Fundamentals of Soil Mechanics, John Wiley and Sons, Inc., New York.

Terzaghi (1943), Theoretical Soil Mechanics, John Willy and Sons, Inc., New York. T. William Lambe / Robert V. Whitman

(1975), Soil Mechanics, John Willey and Sons.

Teng, W. C., (1981), Foundation Detiga,

Gambar

Gambar 1. Grafik Korelasi Nilai qc (Sondir) dan Cu (Vane Shear)  pada Salah Satu Penelitian
Tabel 2. Menentukan Cudesign dari Nilai Konus Resistance (qc)  pada Kedalaman 0.00 – 14.00 m
Gambar 3. Grafik Faktor Keamanan (FS) terhadap Tinggi Timbunan (H) pada Salah Satu Penelitian
Gambar 4. Grafik Faktor Keamanan (FS) terhadap Tinggi Timbunan (H)  pada Salah Satu Penelitian

Referensi

Dokumen terkait

Pengamatan fisik yang dilakukan terhadap pucuk tebu yang difermentasi menggunakan CaCO 3, urea dan molases setelah proses fermentasi selama21 hari termasuk

Penentuan variasi parameter tersebut sesuai dengan yang dimiliki mesin pembangkin gelombang (wave generator) yang digunakan dalam pengujian, selanjutnya adalah

Perancangan dan Implementasi Algoritma Aplikasi client menampilkan pilihan – pilihan kriteria yang berkenaan dengan lembaga kursus dan pelatihan di Kota Malang, yang secara

Dengan demikian diharapkan dapat mengetahui pengaruh dosis protein yang berbeda dalam pakan buatan berbentuk pasta terhadap performa pertumbuhan, rasio efisiensi

Ash secara tradisional digunakan pada body berkonstruksi tunggal, tapi kadang-kadang digunakan oleh desainer lebih kontemporer dalam multi- wood (berlapis) dan paling sering

Menurut semua tim dari SKRRI faktor yang mempengaruhi perilaku seks pra nikah ini adalah pengaruh dari tekanan teman sebaya (bisa juga dari pacar), ada dorongan

Telah dilakukan tindak lanjut atas sebagian besar pengaduan pelayanan untuk perbaikan kualitas pelayananc. Telah dilakukan tindak lanjut atas sebagian kecil pengaduan pelayanan

dikuatkan oleh hasil penelitian dari peneliti-peneliti sebelumnya, antara lain: 1) Juli Arniti, Ni Nyoman (2012: 106) menemukan bahwa aktivitas dan hasil belajar