• Tidak ada hasil yang ditemukan

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2014) 1-5 1

N/A
N/A
Protected

Academic year: 2021

Membagikan "JURNAL TEKNIK POMITS Vol. 1, No. 1, (2014) 1-5 1"

Copied!
5
0
0

Teks penuh

(1)

Abstrak—Usaha untuk meningkatkan efisiensi DSSC terus dilakukan seperti mencampurkan berbagai pewarna atau membuat layer pewarna atau yang biasa disebut co-sensitization. Selain itu, variasi fraksi volume TiO2 juga dilaporkan mampu meningkatkan efisiensi. Berdasarkan penelitian sebelumnya, 90% anatase : 10% rutile merupakan fraksi volume TiO2 yang optimum. Penelitian ini menggunakan kulit manggis, bunga jengger ayam, buah bit merah dan kulit pisang mas sebagai pewarna yang masing-masing mengandung pigmen anthocyanin (A), betalain (B) dan carotenoidoid (C). Pewarna tersebut dikarakterisasi menggunakan UV-Vis dan menunjukkan absorpsi pada panjang gelombang 400,5 nm dan 440 nm untuk kulit manggis, 387 nm dan 475 nm untuk bunga jengger ayam, 485 nm untuk buah bit merah serta 420 nm, 440 nm, 475 nm dan 665 nm untuk kulit pisang mas. Dari berbagai pewarna tersebut akan divariasikan dengan susunan single layer komposit dan multi layer. TiO2 disintesis menggunakan metode co-precipitation. Ukuran partikel yang dihasilkan adalah 20,06 nm untuk anatase and 69,07 nm untuk rutile dengan menggunakan persamaan Scherrer. DSSC difabrikasi dengan variasi fraksi volume TiO2 100% anatase dan 90% anatase : 10% rutile. Kurva arus-tegangan (I-V) DSSC yang dihasilkan oleh sampel dengan pigmen anthocyanin-carotenoid baik susunan single layer komposit maupun multi layer sebesar 0,039% dan 0,047%. Variasi dengan tambahan pigmen betalain hanya menghasilkan efisiensi yang rendah disebabkan oleh cepatnya laju degradasi pewarna.

Kata kunci: DSSC, single layer, multi layer, fraksi volume.

I. PENDAHULUAN

aat ini minyak bumi masih menjadi sumber energi utama bagi negara Indonesia. Berdasarkan data dari Kementerian Energi dan Sumber Daya Mineral menyebutkan bahwa penggunaan minyak bumi mencapai 50,9%. [1]. Upaya yang dapat dilakukan untuk mengatasi permasalahan tersebut adalah dengan cara menggunakan sumber energi terbarukan. Salah satu energi terbarukan yang berpotensi di wilayah Indonesia yaitu sel surya. Namun dalam pembuatan sel surya konvensional membutuhkan biaya yang mahal dan proses yang sulit [2].

Pada tahun 1991, Brian O’Regan dan Michael Grätzel mengembangkan sel surya tersensitasi atau bisa disebut Dye

Sensitized Solar Cells (DSSC) [3]. Dalam proses pembuatan

DSSC tidak memerlukan biaya yang banyak jika dibandingkan

dengan sel surya konvensional. Selain itu, DSSC juga ramah lingkungan. DSSC tersusun dari beberapa komponen yaitu semikonduktor oksida, pewarna, counter elektroda dan elektrolit [4].

Di dalam DSSC, pewarna memiliki peranan yang penting dimana berfungsi sebagai penyerap foton dari sinar matahari [5]. Pada penelitian sebelumnya, DSSC yang menggunakan pewarna yang berasal dari ruthenium complex menghasilkan efisiensi sebesar 11-12 % [4]. Namun proses sintesisnya sulit dan membutuhkan biaya yang mahal sehingga pewarna alami menjadi pilihan yang dapat digunakan sebagai zat pewarna karena jumlahnya yang melimpah dan harganya yang murah [6].

Secara umum pewarna alami yang digunakan pada DSSC berasal dari bunga, daun dan buah. Selain harganya yang murah dan jumlahnya melimpah, proses pembuatan pewarna alami terbilang mudah [4]. Namun beberapa pewarna yang telah digunakan merupakan sumber pangan seperti kunyit, beras hitam, bayam dan kol merah. Oleh karena itu, terdapat alternatif penggunaan pewarna alami dari bunga, daun maupun buah seperti kulit buah manggis, bunga jengger ayam, kulit pisang mas yang masih jarang digunakan.

Selain zat pewarna, semikonduktor juga memiliki peranan penting untuk meningkatkan efisiensi DSSC. Semikonduktor yang biasa digunakan pada DSSC yaitu TiO2[2]. Secara

umum, TiO2 memiliki tiga fasa yaitu anatase, rutile dan

brookite. Namun fasa yang sering ditemukan yaitu fasa

anatase dan rutile.

Berdasarkan penjelasan di atas, pada penelitian ini akan dilakukan fabrikasi DSSC dengan menggunakan pewarna komposit yang berasal dari kulit manggis yang mengandung pigmen anthocyanin, campuran bunga jengger ayam dan buah bit merah yang mengandung pigmen betalain serta kulit pisang mas yang mengandung pigmen carotenoid dengan fraksi volume TiO2 sebesar 100 % anatase dan 90% anatase :

10% rutile.

II. URAIANPENELITIAN

Pewarna alami yang digunakan pada penelitian ini terdiri dari 4 macam yaitu kulit manggis, bunga jengger ayam, buah bit merah dan kulit pisang mas. Ekstraksi kulit manggis menggunakan soxhlet extractor dengan perbandingan bubuk

Fabrikasi

Dye Sensitized Solar Cell

(DSSC) dengan

Sintesis

Dye

Komposit dari

Garcinia mangostana,

Celosia cristata, Beta vulgaris rubra

dan

Musa

aromatica

pada Fraksi Volume TiO

2

Optimum

Rizki Amelia, Doty Dewi Risanti, dan Dyah Sawitri

Jurusan Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS)

Jl. Arief Rahman Hakim, Surabaya 60111

e-mail

: amelia10@mhs.ep.its.ac.id

(2)

kulit manggis terhadap ethanol 96% sebesar 1:5. Proses ini dilakukan pada suhu 200oC selama 3-5 jam. Untuk ekstraksi bunga jengger ayam dilakukan dengan menjemur bunga jengger ayam. Kemudian di oven selama 2-3 jam dengan suhu 100oC. Ekstraksi dilakukan dengan cara melarutkan bubuk bunga jengger ayam sebanyak 10 gram dalam 50 ml ethanol

96% dengan magnetic stirrer selama 10 menit pada suhu 25oC. Ekstraksi buah bit merah menggunakan metode perendaman dengan perbandingan buah bit merah terhadap larutan HCl 0,1M sebesar 1:5 selama 24 jam dalam wadah gelap. Kemudian larutan di-centrifuge dengan kecepatan 4000 rpm selama 10 menit [7]. Sedangkan ekstraksi kulit pisang mas dilakukan dengan menjemur kulit pisang mas. Kemudian dioven selama 4 jam pada suhu 80oC. Selanjutnya kulit pisang mas direndam dalam larutan ethanol 96% dengan perbandingan sebesar 1:5 selama 2 minggu [8].

Nanopartikel TiO2 disintesis menggunakan metode

co-precipitation yang mengacu pada penelitian [9]. Endapan yang

didapatkan, dioven dengan suhu 150oC selama 45 menit. Kemudian endapan dikalsinasi dengan suhu 300oC selama 4 jam untuk menghasilkan fasa anatase dan dengan suhu 1000oC selama 7 jam untuk menghasilkan fasa rutile [10]. Bubuk TiO2 yang didapatkan dari proses kalsinasi dihaluskan

menggunakan mortar.

Tahapan selanjutnya yaitu pelapisan TiO2 pada kaca TCO

yang mengacu pada penelitian [9]. Pada tahap ini, terdapat dua macam fraksi volume TiO2 yaitu 100% anatase dan 90%

anatase: 10% rutile. Setelah kaca TCO yang berlapis TiO2

di-sinter, kemudian didinginkan selama beberapa menit.

Selanjutnya kaca TCO direndam dalam larutan pewarna. Waktu perendaman untuk pigmen anthocyanin dan carotenoid

selama 12 jam. Sedangkan waktu perendaman untuk pigmen

betalain selama 6 jam. Dalam penelitian ini, terdapat 7 sampel

yang terbagi menjadi susunan single layer dan multi layer

seperti yang ditunjukkan pada Tabel 1. Setelah itu, DSSC dirakit menggunakan struktur sandwich yang mengacu pada . penelitian [9].

Tabel 1.

Sampel DSSC berdasarkan jenis layer

Jenis Layer Nama

Sampel Jenis Sampel

Single Layer

AB Anthocyanin + Betalain

AC Anthocyanin + Carotenoid

ABC Anthocyanin + Betalain +Carotenoid

Multi Layer

A’B’ Anthocyanin + Betalain

A’C’ Anthocyanin + Carotenoid

A’B’C’ Anthocyanin + Betalain +Carotenoid A’C’B’ Anthocyanin + Carotenoid + Betalain

Pewarna yang digunakan dalam penelitian ini seperti kulit manggis, bunga jengger ayam, buah bit merah dan kulit pisang mas serta campuran dari beberapa pigmen seperti pigmen

anthocyanin dan betalain, anthocyanin dan carotenoid serta

anthocyanin, betalain dan carotenoid diuji menggunakan

UV-Vis spectrophotometer. Sebelum pengujian, larutan pewarna

tersebut diencerkan sebanyak 10 kali agar dapat dibaca oleh alat uji karena UV1100 Spectrophotometer tidak dapat membaca nilai spektrum absorbansi apabila larutan pewarna terlalu keruh maupun terlalu pekat. Panjang gelombang yang

digunakan pada pengujian ini sebesar 380 – 700 nm.

Selain itu, serbuk TiO2 juga perlu diuji menggunakan XRD. Pengujian ini dilakukan untuk mengetahui ukuran partikel dan tingkat kristalinitas dari TiO2 yang menggunakan sudut 15o hingga 65o. Dari hasil pengujian XRD, akan didapatkan ukuran kristal dari TiO2 dengan menggunakan persamaan

Scherrer (1) [11].

( )

FWHM

k

D

*

cos

θ

λ

=

(1)

Dimana D adalah ukuran kristal suatu bahan (nm), k adalah konstanta (k = 0,89), λ adalah panjang gelombang sinar-X (Cu Kλ) yang bernilai 0,154 nm, FWHM adalah Full Width Half

Maximum (dalam radian), dan θ adalah sudut difraksinya.

Untuk mengidentifikasi fasa yang terbentuk digunakanlah standar JCPDS 21-1272 untuk fasa anatase sedangkan untuk JCPDS 21-1276 untuk fasa rutile. Setelah DSSC siap, kemudian diuji IPCE dan diukur nilai arus tegangan yang dihasilkan. Proses ini mengacu pada penelitian [12].

III. HASILDANPEMBAHASAN

A. Pengujian XRD Serbuk TiO2

Gambar 4.1 merupakan hasil XRD TiO2 untuk fasa anatase

dan rutile. Dari gambar tersebut dapat terlihat puncak dari

masing-masing fasa. Untuk ukuran partikel fasa anatase

sebesar 20,06 nm sedangkan ukuran partikel fasa rutile

sebesar 69,07 nm. -200 0 200 400 600 800 1000 1200 1400 1600 1800 20 30 40 50 60 70 220 240 260 280 300 320 340 360 380 400 420 440 Int ens itas Rutile R R R R R R Int ens itas 2θ Anatase A A A

Gambar 1. Hasil uji XRD TiO2 fasa anatase dan rutile

B. Pengujian UV-Vis Pewarna

Gambar 2 menunjukkan hasil pengujian UV-Vis untuk ekstrak kulit manggis, bunga jengger ayam, buah bit merah dan kulit pisang mas. Dari pengujian ini didapatkan spektrum serapan kulit manggis berada pada 400,5 nm dan 440 nm. Rentang absorbansi untuk anthocyanin berada pada 400-500 nm [13]. Untuk bunga jengger ayam terdapat dua spektrum serapan pada 387 nm dan 475 nm. Sedangkan untuk buah bit merah memiliki spektrum serapan yang berada pada 485 nm. Kedua pewarna alami tersebut termasuk dalam pigmen

betalain yang memiliki spektrum serapan yang berada pada

400-600 nm [7]. Untuk kulit pisang mas memiliki empat spektrum serapan yaitu 420 nm, 440 nm, 475 nm dan 665 nm. Kulit pisang mas merupakan salah satu contoh dari pigmen

carotenoid yang memiliki spektrum serapan yang berada pada

(3)

400 450 500 550 600 650 700 0,0 0,5 2,5 A bs or bans i Panjang Gelombang (nm)

Kulit Pisang Mas Bunga Jengger Ayam Bit Merah Manggis 400 450 500 550 600 650 700 0,0 0,2 0,4 0,6 0,8

Bit Merah (Calogero, dkk., 2010)

A bs or bans i Panjang Gelombang (nm)

Gambar 2. Hasil uji UV-Vis pewarna

Dalam penilitian ini, pigmen betalain diperoleh dari bunga jengger ayam dan buah bit merah. Maka dari itu, adanya kombinasi antara kedua pewarna tersebut. Hasil campuran kedua pewarna tersebut seperti ditunjukkan dalam Gambar 3.

400 450 500 550 600 650 700 0,0 0,5 1,0 1,5 2,0 2,5 3,0 A bs or bans i Panjang Gelombang (nm) % J : % B 10 : 90 20 : 80 30 : 70 40 : 60 50 : 50 60 : 40 70 : 30 80 : 20 90 ; 10

Gambar 3. Hasil uji UV-Vis campuran buah bit merah dan jengger ayam

Dari Gambar 3 dapat diketahui bahwa kombinasi antara 10% bunga jengger ayam dan 90% buah bit merah memiliki nilai absorbansi yang paling tinggi jika dibandingkan dengan kombinasi yang lain. Semakin lebar spektrum serapan menunjukkan bahwa pewarna akan diserap pada nanopartikel TiO2 dengan baik sehingga akan meningkatkan absorpsi

cahaya oleh nanopartikel TiO2 pada daerah cahaya tampak

[14]. 400 450 500 550 600 650 700 0,0 0,5 1,0 1,5 2,0 2,5 3,0 A bs or bans i Panjang Gelombang (nm) Anthocyanin + Betalanin

Gambar 4. Hasil uji UV-Vis campuran pewarna kulit manggis dengan bunga jengger ayam dan buah bit merah

Gambar 4 menunjukkan hasil uji UV-Vis untuk pewarna komposit yang berasal daripigmen anthocyanin dan betalain. Terdapat penambahan spektrum serapan pada 400 nm dan 525

nm. Selain itu terjadi pergeseran spektrum serapan yang semula berada pada 485 nm berubah menjadi 525 nm.

400 450 500 550 600 650 700 0,0 0,5 1,0 1,5 2,0 2,5 3,0 A bs or bans i Panjang Gelombang (nm) Anthocyanin + Caroten

Gambar 5. Hasil uji UV-Vis campuran pewarna kulit manggis dengan kulit pisang mas

Gambar 5 menunjukkan pewarna komposit yang berasal dari pigmen anthocyanin dan carotenoid. Terdapat pergeseran yang semula berada pada 440 nm menjadi 449 nm. Sedangkan untuk pigmen carotenoid mengalami penurunan spektrum serapan yang semula memiliki spektrum serapan pada 475 nm dan 665 nm menjadi tidak muncul.

400 450 500 550 600 650 700 0,0 0,5 1,0 1,5 2,0 2,5 3,0 A bs or bans i Panjang Gelombang (nm)

Anthocyanin + Betalanin + Caroten

Gambar 6. Hasil uji UV-Vis campuran pewarna kulit manggis dengan bunga jengger ayam, buah bit merah dan kulit pisang mas

Gambar 6 menunjukkan hasil uji UV-Vis pewarna komposit dengan menggunakan campuran pigmen

anthocyanin, betalain dan carotenoid. Puncak dari pigmen

anthocyanin masih tampak (~ 400,5 nm). Begitu pula untuk

pigmen betalain dan carotenoid (~ 550 nm dan 665 nm) namun kedua puncak tersebut mengalami penurunan nilai absorbansi.

C. Spektrum IPCE

Gambar 7 menunjukkan nilai spektrum IPCE dari multi

layer,single layer kompositdan pigmen anthocyanin, betalain

dan carotenoid. Didapatkan hasil bahwa pigmen betalain

memiliki nilai IPCE tertinggi sebesar 0,00485% . Untuk susunan single layer komposit, sampel AB (90:10) memiliki nilai IPCE tertinggi sebesar 0,00918%. Sedangkan untuk susunan multi layer, sampel A’B’C’ (100) memiliki nilai IPCE tertinggi sebesar 0,00463%. Setelah proses fabrikasi, sampel harus segera diuji IPCE agar pewarna tidak mengalami degradasi yang mengakibatkan nilai IPCE menurun.

(4)

350 400 450 500 550 600 650 700 0,000 0,002 0,004 0,006 0,008 0,010 IPC E ( % ) Panjang Gelombang (nm) AB (100) AC(100) ABC (100) AB (90:10) AC (90:10) ABC (90:10) A'B' (100) A'C' (100) A'B'C' (100) A'C'B' (100) A'B' (90:10) A'C' (90:10) A'B'C' (90:10) A'C'B' (90:10) Anthocyanin (100) Betalain (100) Carotenoid (100)

Gambar 7. Spektrum IPCE pewarna tunggal single layer komposit dan multi

layer. Pigmen anthocyanin diambil dari penelitian [9]

D. Performansi DSSC

Gambar 8 menunjukkan karakteristik I-V pigmen

anthocyanin, betalain dan carotenoid pada 100% anatase.

Karakteristik I-V menunjukkan bahwa pigmen betalain dan

carotenoid memiliki nilai Jsc dan Voc yang tidak jauh

berbeda. Namun pigmen anthocyanin memiliki nilai Jsc dan Voc yang lebih rendah dibandingkan dengan pigmen betalain

dan carotenoid. Hal tersebut dikarenakan transfer elektron dari

pigmen betalain dan carotenoid ke pita konduksi semikonduktor TiO2 berlangsung cepat.

0 50 100 150 200 250 0 2 4 6 8 10 12 14 16 18 20 Ar u s ( µΑ ) Tegangan (mV) Anthocyanin (100) Betalain (100) Carotenoid (100)

Gambar 8. Kurva I-V pewarna tunggal. Pigmen anthocyanin diambil dari penelitian [9]

Gambar 9 menunjukkan karakteristik I-V pada single layer

komposit pada fraksi volume TiO2 100% anatase. Gambar 9

menunjukkan single layer komposit AC pada 100% anatase

memiliki nilai Jsc dan Voc tertinggi. Meskipun hasil UV-Vis antara pigmen anthocyanin dengan single layer komposit AC memiliki hasil yang tidak jauh berbeda akan tetapi hasil karakteristik I-V untuk single layer komposit AC lebih besar daripada pigmen anthocyanin.

0 50 100 150 200 250 0 5 10 15 20 25 Ar u s ( µ A) Tegangan (mV) AB (100) AC (100) ABC (100) Anthocyanin (100)

Gambar 9. Kurva I-V DSSC dengan susunan single layer kompositdengan fraksi volume 100% anatase. Pigmen anthhocyanin diambil dari penelitian [9]

Gambar 10 menunjukkan karakteristik I-V pada single

layer komposit pada fraksi volume TiO2 90% anatase : 10%

rutile Gambar 10 menunjukkan single layer komposit ABC

pada 90% anatase :10% rutile memiliki nilai Jsc tertinggi. Sedangkan nilai Voc tertinggi terdapat pada sampel

anthocyanin 90% anatase : 10% rutile.

0 50 100 150 200 250 300 350 0 5 10 15 20 25 30 Ar u s ( µ A) Tegangan (mV) AB (90:10) AC (90:10) ABC (90:10) Anthocyanin (90:10)

Gambar 10. Kurva I-V DSSC dengan susunan single layer kompositdengan fraksi volume 90% anatase : 10% rutile. Pigmen anthocyanin diambil dari penelitian [12]

Gambar 11 menunjukkan karakteristik I-V pada multi

layer pada fraksi volume TiO2 100% anatase. Gambar 11

menunjukkan karakteristik I-V pada multi layer pada fraksi volume TiO2 100% anatase. Terlihat bahwa sampel A’C’

memiliki bentuk kurva yang mendekati ideal dengan nilai Jsc dan Voc yang hampir sama dengan sampel A’B’.

0 50 100 150 200 250 300 0 5 10 15 20 Ar u s ( µ A) Tegangan (mV) A'B' (100) A'C' (100) A'B'C' (100) A'C'B' (100)

Gambar 11. Kurva I-V DSSC dengan susunan multi layer dengan fraksi volume 100% anatase

Gambar 12 menunjukkan karakteristik I-V pada multilayer

pada fraksi volume TiO2 90% anatase : 10% rutile. Gambar

12 menunjukkan karakteristik I-V pada multilayer pada 90%

anatase :10% rutile. Terlihat bahwa sampel A’C’ memiliki

nilai Jsc tertinggi sebesar 24 mA.cm-2.

0 50 100 150 200 250 300 0 5 10 15 20 25 Ar u s ( µ A) Tegangan (mV) A'B' (90:10) A'C' (90:10) A'B'C' (90:10) A'C'B' (90:10)

Gambar 12. Kurva I-V DSSC dengan susunan multi layer dengan fraksi volume 90% anatase : 10% rutile

(5)

Nilai efisiensi dari masing-masing sampel dapat dilihat pada Tabel 2

Tabel 2

Hasil Pengukuran dan Perhitungan Melalui Persamaan (4-6) (* penelitian [9]), (** penelitian [12]) Pewarna Fraksi Volume (A:R) FF Jsc (mA/cm2) Voc (mV) η (%) Single Layer AB (100) 0,30 0,0516 165,33 0,017 AC (100) 0,21 0,100094 242 0,033 ABC (100) 0,16 0,050116 198 0,011 Anthocyanin* 0,47 0,028 198 0,015 AB (90:10) 0,33 0,0536 300 0,035 AC (90:10) 0,23 0,088 296 0,039 ABC (90:10) 0,13 0,1084 266,125 0,026 Anthocyanin** 0,42 0,104 347 0,076 Multi Layer A’B’ (100) 0,20 0,07696 255 0,027 A’C’ (100) 0,27 0,0724 243,29 0,031 A’B’C’ (100) 0,20 0,064 180,8889 0,016 A’C’B’ 0,26 0,062 84 0,009 A’B’ (90:10) 0,20 0,0692 163 0,015 A’C’ (90:10) 0,28 0,096 258,75 0,047 A’B’C’ (90:10) 0,23 0,0704 188,5455 0,020 A’C’B’ (90:10) 0,34 0,0588 267 0,036 Pewarna tunggal Anthocyanin* 0,47 0,028 198 0,015 Betalain 0,31 0,0704 238 0,035 Caroten 0,38 0,0596 227 0,034

Dari semua DSSC yang telah difabrikasi, susunan multi

layer memiliki efisiensi tertinggi terdapat pada sampel A’C’

(90:10) sebesar 0,047 %. Sedangkan untuk susunan single

layer, efisiensi terbaik terdapat pada sampel AC (90:10)

sebesar 0,039%. Sedangkan untuk pewarna yang tunggal yang memiliki efisiensi tertinggi terdapat pada sampel betalain

dengan efisiensi sebesar 0,035 %.

IV. KESIMPULAN

Berdasarkan hasil pengujian dan analisa yang telah dilakukan, dapat diambil kesimpulan bahwa susunan layer

mempengaruhi nilai efisiensi yang dihasilkan oleh DSSC. Susunan multi layer memiliki pengaruh yang signifikan terhadap eisiensi DSSC. Efisiensi yang terbaik dihasilkan oleh susunan multi layer dengan nilai sebesar 0,047% dengan sampel A’C’ 90:10. Sedangkan untuk susunan single layer

memiliki nilai efisiensi tertinggi sebesar 0,039% dengan sampel AC 90:10.

UCAPANTERIMAKASIH

Penulis mengucapkan terima kasih kepada Laboratorium Energi, Laboratorium XRD dan Laboratorium Lingkungan LPPM ITS atas bantuan penggunaan furnace dan karakterisasi

UV-Vis dan XRD. Penelitian ini merupakan bagian dari Hibah Penelitian Kompetitif Nasional skema “Strategis Nasional” yang didanai DIKTI dengan no. kontrak : 07555.28/IT2.7/PN.01.00/2014.

DAFTARPUSTAKA

[1] Kementerian Energi dan Sumber Daya Mineral, 2010. “Integrasi Kebijakan energi Regional dan Nasional”.

[2] M.Grätzel, 2003. “Review Dye-sensitized Solar Cells”. Journal of Photochemistry and Photobiology C, vol. 4, hal. 145 – 153.

[3] B. O’Regan., M. Grätzel, 1991. “A Low-Cost, High-Efficiency Solar Cell Based On Dye Sensitized Colloidal TiO2 Films” Nature.353, hal. 737–

740.

[4] H. Zhou, W. Liqiong, G. Yurong, M. Tingli, 2011. “Dye-Sensitized Solar Cells Using 20 Natural Dyes As Sensitizers”.Journal of Photochemistry and Photobiology A Chemistry 219, hal. 188–194.

[5] Z. X. Chemistry, 2012. “Characterization of the Dye Sensitized Solar Cell”. Major Qualifying Project, Worcester Polytechnic Institute. [6] K. Wongcharee, V. Meeyoo, S. Chavadej, 2007.” Dye-Sensitized Solar

Cell Using Natural Dyes Extracted from Rosella and Blue Pea Flowers”. Solar Energy Materials & Solar Cells, vol 91, hal 566–571.

[7] G. Calogero, G. Di Marco, S. Cazzanti, S. Caramori, R. Argazzi, A. Di Carlo, C.A. Bignozzi, 2010. “Efficient Dye Sensitized Solar Cells Using Red Turnip and Purple Wild Sicilian Prickly Pear Fruits”. International Journal of Molecular Sciences. 11, 254-267.

[8] E.C. Prima, B. Yuliarto, B., Suyatman, 2013. “Performance of Natural Carotenoids from Musa aromatica and Citrus medica var Lemon as Photosensitizers for Dye-Sensitized Solar Cells with TiO2 Nanoparticle”.

Advanced Materials Research. Vol 789, pp. 167-170.

[9] S. Agustini, 2013.“ Fabrikasi Dye Sensitized Solar Cell Berdasarkan Fraksi Volume TiO2 Anatase-Rutile Dengan Garcinia mangostana Dan

Rhoeo spatachea sebagai Dye Fotozensitizer”. Tugas Akhir, ITS. [10]A.L. Castro, M.R. Nunes, A.P. Carvalho, F.M. Costa, M.H. Florencio,

2008. “Synthesis of Anatase TiO2 Nanoparticles With High Temperature

Stability And Photocatalytic Activity”. Solid State Sciences vol. 10, hal. 602 – 606.

[11]M. Sardela, “X-ray Analysis Methods. Advanced Materials

Characterization Workshop”. The Frederick Seitz Materials Research

Laboratory – University of Illinois at Urbana-Champaign.

[12]B. Lestari, 2014. “Optimalisasi Fraksi Volume TiO2 Anatase dan Rutile

terhadap Efisiensi DSSC (Dye Sensitized Solar Cell”. Tugas Akhir, ITS. [13]H. Chang, danY.J. Lo, 2010. “Pomegranate Leaves And Mulberry Fruit

as Natural Sensitizers for Dye-Sensitized Solar Cells. Journal of Solar Energy vol. 84, hal. 1833 – 1847.

[14]K.V. Hemalatha, S.N. Karthick, C.J. Raj, N-Y Hong, S-K Kim, H-J Kim, 2012. “Performance of Kerria japonica and Rosa chinensis Flower Dyes as Sensitizers for Dye-Sensitized Solar Cells. Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy. 96, 305-309.

Referensi

Dokumen terkait

Jadi berdasarkan observasi dan wawancara yang dilakukan bahwa jenis- jenis hukuman dalam membentuk perilaku disiplin pada anak usia 5-6 tahun adalah bentuk hukuman yang

Kecepatan yang dimaksud adalah kecepatan pembangunan aplikasi menggunakan metode RAD, dibandingkan pembangunan aplikasi menggunakan metode RAD yang di buat oleh

Hasil pengalaman kami dengan produk ini dan pengetahuan kami mengenai komposisinya kami menjangka tidak terdapat bahaya selagi produk ini digunakan dengan cara yang sesuai

Kegiatan pengabdian masyarakat dengan judul Peningkatan Kualitas Tenaga Kerja Melalui Pelatihan Keterampilan Desain Grafis Sebagai Upaya Pengurangan Pengangguran di

Faktor-faktor yang akan digunakan untuk peramalan jumlah penumpang pesawat terbang dari Bandar Udara Abdulrachman Saleh adalah: pertumbuhan Jumlah Penduduk

menggunakan media pembelajaran yang memiliki kesesuaian antara materi pembelajaran dan media pembelajaran. Guru memilih, merancang, membuat, dan menggunakan media

Adapun beberapa strategi yang dapat diterapkan antara lain: pemerintah desa segera memetakan potensi ekowisata yang ada pada kawasan hutan Selelos dan merancang serta

Alhamdulillah, puji syukur kehadirat Allah SWT yang telah mencurahkan nikmat-Nya, rahmat, karunia serta hidayah-Nya sehingga terselesainya Skripsi ini dengan judul: Pengaruh