Using Data
Improvemen
Improvemen
TRISASI LESTARI - 2017
ta for Quality
ent
Puskesma
Yogyakar
pelaya
kesehatann
berm
berm
as mana di
karta yang
ayanan
annya paling
rmutu?
Rumah Sakit
paling ba
penangana
Demam B
Demam B
kit mana yang
baik untuk
Spesialis Be
yang operas
aman dan o
bai
bai
Bedah mana
rasinya paling
outcomenya
aik?
USNEWS
RANKING
2016-2017
USNEWS
RANKING
2016-2017
Pertanyaan 2: Bagaima
perubahan yang terjad
perbaikan?
Sulitnya mengukur
Makan waktu, menambah pekerjaan Makan waktu, menambah pekerjaan
Harus memastikan akurasi data dan konsistensi metode pengambilan data Harus memastikan akurasi data dan konsistensi metode pengambilan data
Terlalu banyak indikator, tapi bukan indikator yang tepat Terlalu banyak indikator, tapi bukan indikator yang tepat Terlalu banyak indikator, tapi bukan indikator yang tepat Terlalu banyak indikator, tapi bukan indikator yang tepat
Indikator terima jadi, tanpa ada proses diskusi Indikator terima jadi, tanpa ada proses diskusi
Bagaimana menggunakan data yg sudah dikumpulkan Bagaimana menggunakan data yg sudah dikumpulkan
Pengumpulan data manual atau otomatis Pengumpulan data manual atau otomatis
Hasil analisis tidak sesuai dengan pendapat manajemen Hasil analisis tidak sesuai dengan pendapat manajemen
ur mutu
Makan waktu, menambah pekerjaan
Harus memastikan akurasi data dan konsistensi metode pengambilan data Harus memastikan akurasi data dan konsistensi metode pengambilan data
Terlalu banyak indikator, tapi bukan indikator yang tepat Terlalu banyak indikator, tapi bukan indikator yang tepat Terlalu banyak indikator, tapi bukan indikator yang tepat Terlalu banyak indikator, tapi bukan indikator yang tepat
Indikator terima jadi, tanpa ada proses diskusi Indikator terima jadi, tanpa ada proses diskusi
Bagaimana menggunakan data yg sudah dikumpulkan Bagaimana menggunakan data yg sudah dikumpulkan
Pengumpulan data manual atau otomatis Pengumpulan data manual atau otomatis
Manfaat Pengumpu
Membantu mengidentifikasi masalah yang sebenarnya Membantu pengambilan keputusan
Meningkatkan kepercayaan diri manajer Meningkatkan kepercayaan diri manajer
Menjadi petunjuk apa yang sedang terjadi : karakteristik masalah, kapan terjadinya, pola dan trend
Menunjukkan peluang perbaikan mutu
Menunjukkan seberapa jauh proses untuk mencapai target
pulan Data
Membantu mengidentifikasi masalah yang sebenarnya
Meningkatkan kepercayaan diri manajer Meningkatkan kepercayaan diri manajer
Menjadi petunjuk apa yang sedang terjadi : karakteristik masalah, kapan terjadinya, pola dan trend
Menunjukkan peluang perbaikan mutu
Manfaat Pengumpu
Sebagai pembanding terhadap standar
Membantu tim fokus dan memilih prioritas masalah yang harus ditangani Membantu tim menjual ide perbaikan mutu pada manajemen/direksi Membantu tim menjual ide perbaikan mutu pada manajemen/direksi Membantu memahami hubungan antar bagian
Menghindari tim menyelesaikan masalah hasil dugaan seseorang saja.
Membantu tim mengidentifikasi apakah sudah terjadi perubahan kepada perbaikan atau belum
pulan Data
(
lanjutan
)
Membantu tim fokus dan memilih prioritas masalah yang harus ditangani Membantu tim menjual ide perbaikan mutu pada manajemen/direksi Membantu tim menjual ide perbaikan mutu pada manajemen/direksi Membantu memahami hubungan antar bagian
Menghindari tim menyelesaikan masalah hasil dugaan seseorang saja.
The more effort you put into understanding
and utilizing data, the more you will be
rewarded in terms of solving the right
problem in the right way .
(The Victorian Quality Council Safety and Quality in Health)
The more effort you put into understanding
and utilizing data, the more you will be
rewarded in terms of solving the right
problem in the right way .
(The Victorian Quality Council Safety and Quality in Health)
The more effort you put into understanding
and utilizing data, the more you will be
rewarded in terms of solving the right
problem in the right way .
(The Victorian Quality Council Safety and Quality in Health)
The more effort you put into understanding
and utilizing data, the more you will be
rewarded in terms of solving the right
problem in the right way .
Quality improvement bisa reactive dan proactive.
Reaktif terhadap masalah yang ditemukan dalam data/laporan rutin.
Proaktif dengan menganalisis data untuk mencari celah untuk perbaikan. Quality improvement bisa reactive dan proactive.
Reaktif terhadap masalah yang ditemukan dalam data/laporan rutin.
Jenis data
Administrative
Administrative
Demografi
Statistik
pelayanan
Data finansial
Readmission
Length of stay
Demografi
Statistik
pelayanan
Data finansial
Readmission
Length of stay
Data
Bangsal
HRD
Gizi
Data
Rawat Jalan Keuangan
HRD
Data
Farmasi
Pendaftaran
Data
PendaftaranIGD
Good Data
Reliable
Reliable
Reliable
Reliable
Unbiased
Unbiased
Valid
Valid
Valid
Valid
“If I had to reduce my
message for
management to just a
few words, I’d say it al
had to do with
reducing variation
”.
had to do with
reducing variation
”.
Principles of variatio
1. No two things are exactly alike.
2. Variation in a product or process can be measured
3. Things vary according to a definite pattern.
4. Whenever things of the same kind are measured, a large group of the measurements will tend to cluster around the middle
5. It's possible to determine the shape of the distribution curve for measurements obtained from any process.
6. Variations due to assignable causes tend to distort the normal distribution curve
1. No two things are exactly alike.
2. Variation in a product or process can be measured
3. Things vary according to a definite pattern.
4. Whenever things of the same kind are measured, a large group of the measurements will tend to cluster around the middle
5. It's possible to determine the shape of the distribution curve for measurements obtained from any process.
6. Variations due to assignable causes tend to distort the normal distribution curve
ation
1. No two things are exactly alike.
2. Variation in a product or process can be measured
3. Things vary according to a definite pattern.
4. Whenever things of the same kind are measured, a large group of the measurements will tend to cluster around the middle
5. It's possible to determine the shape of the distribution curve for measurements obtained from any process.
6. Variations due to assignable causes tend to distort the normal distribution curve
1. No two things are exactly alike.
2. Variation in a product or process can be measured
3. Things vary according to a definite pattern.
4. Whenever things of the same kind are measured, a large group of the measurements will tend to cluster around the middle
5. It's possible to determine the shape of the distribution curve for measurements obtained from any process.
Cause of variation
Insidental
n
Basic Data Presentation
1. Deskriptif Statistik
2. Percentage chan
Prevalence of pressure ulcers before and after intervention
ange
Histogram
Shows relative frequencies
Produced from grouped data
Determine the number of classes
2a 1 < n 2a
n=100, 26 < n 27= 7 classes
Get insight into the shape of of the distribution of population
Shows relative frequencies
Produced from grouped data
Determine the number of classes
2a 1 < n 2a
n=100, 26 < n 27= 7 classes
Get insight into the shape of of the distribution of population
Shows relative frequencies
Produced from grouped data
Determine the number of classes
2a 1 < n 2a
n=100, 26 < n 27= 7 classes
Get insight into the shape of of the distribution of population
Shows relative frequencies
Produced from grouped data
Determine the number of classes
2a 1 < n 2a
n=100, 26 < n 27= 7 classes
Control chart repr
nosocomial infect
presenting
Performance improvement Data Chest Pain in Emergency
Average CABG M
Before and After implemen
(Slide courtesy of IHI)
Mortality
A second look at th
2%
the Data
7%
Bagaimana variasi
sistem dengan berj
Shewhart 1920: variasi terkontrol dan tidak terkontrol (special cause)
si dalam sebuah
erjalannya waktu?
Jenis Variasi
Terkontrol (common cause)
Terkait dengan desain proses Akibat proses regular, penyebab natural, atau biasa.Mempengaruhi semua outcome proses
Hasilnya stabil
Bisa diprediksikan
Tidak terkontrol (special cause)
Bukan disebabkan karena desain prosesAkibat proses ireguler atau tidak alami
Mempengaruhi sebagian outcome tapi tidak seluruhnya
Hasilnya tidak stabil
Tidak bisa diprediksikan
Terkontrol (common cause)
Terkait dengan desain proses Akibat proses regular, penyebab natural, atau biasa.
Mempengaruhi semua outcome proses
Hasilnya stabil
Bisa diprediksikan
Tidak terkontrol (special cause)
Bukan disebabkan karena desain prosesAkibat proses ireguler atau tidak alami
Mempengaruhi sebagian outcome tapi tidak seluruhnya
Hasilnya tidak stabil
Tidak bisa diprediksikan
Tidak terkontrol (special cause)
Bukan disebabkan karena desain prosesAkibat proses ireguler atau tidak alami
Mempengaruhi sebagian outcome tapi tidak seluruhnya
Hasilnya tidak stabil
Tidak bisa diprediksikan
Tidak terkontrol (special cause)
Bukan disebabkan karena desain prosesAkibat proses ireguler atau tidak alami
Mempengaruhi sebagian outcome tapi tidak seluruhnya
Hasilnya tidak stabil
Shewhart’s Contro
H
as
il
p
e
n
g
u
ku
ran
H
as
il
p
e
n
g
u
ku
ran
Waktu
Biasanya diperlukan 15-20 data points
trol Chart
(CL)
UCL
Upper Control Limit Sigma Limit
(CL)
LCL
Average an
(Xbar-R) Ch
(Xbar-R) Ch
and Range
Chart
Characteristics of X
1. It comprised of two charts used in tandem
2. It is used when you can collect measurements in subgroups of between two and 10 observations.
3. The data is in time-order
4. The Xbar chart is used to evaluate consistency of process averages
5. It is efficient at detecting relatively large shifts (typically plus or minus 1.5 ? or larger)
6. The R chart is used to evaluate the consistency of process variation.
7. Look at the R chart first; if the R chart is out of control, then the control limits on the Xbar chart are meaningless.
1. It comprised of two charts used in tandem
2. It is used when you can collect measurements in subgroups of between two and 10 observations.
3. The data is in time-order
4. The Xbar chart is used to evaluate consistency of process averages
5. It is efficient at detecting relatively large shifts (typically plus or minus 1.5 ? or larger)
6. The R chart is used to evaluate the consistency of process variation.
7. Look at the R chart first; if the R chart is out of control, then the control limits on the Xbar chart are meaningless.
f Xbar-R chart
1. It comprised of two charts used in tandem
2. It is used when you can collect measurements in subgroups of between two and 10 observations.
3. The data is in time-order
4. The Xbar chart is used to evaluate consistency of process averages
5. It is efficient at detecting relatively large shifts (typically plus or minus 1.5 ? or larger)
6. The R chart is used to evaluate the consistency of process variation.
7. Look at the R chart first; if the R chart is out of control, then the control limits on the Xbar chart are meaningless.
1. It comprised of two charts used in tandem
2. It is used when you can collect measurements in subgroups of between two and 10 observations.
3. The data is in time-order
4. The Xbar chart is used to evaluate consistency of process averages
5. It is efficient at detecting relatively large shifts (typically plus or minus 1.5 ? or larger)
6. The R chart is used to evaluate the consistency of process variation.
Ice Cream Shop
2 scoops = + 6 ounces (~ 170grams)
Control : weigh five
samples every 30 minutes
Sum average range Ice Cream Shop
2 scoops = + 6 ounces (~ 170grams)
Control : weigh five
samples every 30 minutes
Rule
: a point between UCL and LCL is a
NORMAL VARIATION
or
controlled variation in the process
When the
average
is
outside the limits
the process is out of
control
Something has
happened, you may
be able to identify
the cause and you
have to correct it.
When the
average
is
outside the limits
the process is out of
control
Something has
When the
range
is
outside the limits
the process is out of
control
R-chart is used to
evaluate
consistency
of the process
If R-chart is out of
control
the average
chart is meaningless
When the
range
is
outside the limits
the process is out of
control
R-chart is used to
evaluate
consistency
of the process
If R-chart is out of
Determine contro
UCL=
See table constanta control chart
Choose D4 factor that corresponds to the sample size
UCL = D4 x R
UCL=2.114 x 1.35 = 2.854 LCL = 0 , sample size <6 UCL=
See table constanta control chart
Choose D4 factor that corresponds to the sample size
UCL = D4 x R
UCL=2.114 x 1.35 = 2.854 LCL = 0 , sample size <6
Decision chart
for working
SAMPLE SIZE=5 UCL=
See table constanta control chart
Find A2 factor that corresponds to the sample size
UCL = X + (A2xR)
UCL= 4.795 + (0.577x1.35) UCL= 4.795 + 0.779
UCL= 5.574 LCL = X-(A2xR) LCL = 4.795-0.779 LCL 4.016
Determine control
limit for Average
SAMPLE SIZE=5 UCL=
See table constanta control chart
Find A2 factor that corresponds to the sample size
UCL = X + (A2xR)
UCL= 4.795 + (0.577x1.35) UCL= 4.795 + 0.779
Decision chart for working with average
Once you have established the control limits and sta using them in regular operations, a different rule app even a single point, either range (R) or average (X), g
outside a control limit, do not throw out the point. Th clear indication that an assignable cause is present. must find the assignable cause, and correct it.
Decision chart for working with average
start
pplies: If
, goes
Median and
(Xbar-R) Ch
(Xbar-R) Ch
nd Range
Chart
MEDIAN AND
RANGE CHART
It is a good chart to use when you know that the process for
delivering or producing a service delivering or producing a service
(1)follows a normal
(bell-shaped) distribution, (2)is not
very often disturbed by
assignable causes, and (3) can be
easily adjusted by the employee. If the process does not meet
I-MR Chart
I-MR Chart
Individual and Moving
rt
rt
• Use if you are only able to take one reading during a time period.
• I chart
• one data point is collected at each point in time
• monitor the process average, process variation and time
• Is used to detects trend and shifts in the data The Individual data must be time-ordered
MR chart
is the difference between consecutive observations
It shows short term variability in the data
It is used to assess stability of the process
Use if you are only able to take one reading during a time period.
I chart
one data point is collected at each point in time
monitor the process average, process variation and time
• Is used to detects trend and shifts in the data
• The Individual data must be time-ordered
• MR chart
• is the difference between consecutive observations
• It shows short term variability in the data
• It is used to assess stability of the process
Use if you are only able to take one reading during a time period.
I chart
one data point is collected at each point in time
monitor the process average, process variation and time
Is used to detects trend and shifts in the data
The Individual data must be time-ordered
MR chart
is the difference between consecutive observations
It shows short term variability in the data
It is used to assess stability of the process
Use if you are only able to take one reading during a time period.
I chart
one data point is collected at each point in time
monitor the process average, process variation and time
Is used to detects trend and shifts in the data
The Individual data must be time-ordered
MR chart
is the difference between consecutive observations
It shows short term variability in the data
UCL RANGE
See table constanta control chart
Find A2 factor that corresponds to the sample size
Number of Sample = 2 UCLR= (D4xRa)
UCLR= 3.267 x Ra
Ra= total R/number of sample Ra= 38.8 / 24 =1.616
UCLR= 3.267 x 1.616 UCLR= 5.28
LCL = 0 (sample <6)
UCL AVERAGE
X= total sample/25 = 701.5/25=28.06 UCLx =X+(2.66xR)
UCLx = 28.06+(2.66x1.616)=32.35 LCLx = 28.06-(2.66x1.616)=23.76
UCL RANGE
See table constanta control chart
Find A2 factor that corresponds to the sample size
Number of Sample = 2 UCLR= (D4xRa)
UCLR= 3.267 x Ra
Ra= total R/number of sample Ra= 38.8 / 24 =1.616
UCLR= 3.267 x 1.616 UCLR= 5.28
LCL = 0 (sample <6)
UCL AVERAGE
X= total sample/25 = 701.5/25=28.06 UCLx =X+(2.66xR)
UCLx = 28.06+(2.66x1.616)=32.35 LCLx = 28.06-(2.66x1.616)=23.76
Zone B Zone A
Pembagian Zona d
Chart
Zone A Zone B Zone C
Zone C
(CL)
UCL
Upper Control Limit +2 SL
+3 SL
dalam Control
(CL)
LCL
Lower Control Limit -3 SL
Aturan Control Cha
mengidentifikasi ad
Rule 1: ada 1 point yang terletak di luar +/-3SL
Rule 2: ada 8 point berturut-turut yang terletak diatas atau dibawah center line
Rule 2: ada 8 point berturut-turut yang terletak diatas atau dibawah center line
Rule 3: ada 6 atau lebih point yang terus naik/turun
Rule 4: ada 2 dari 3 point berturut-turut yang terletak di zona A atau melewati zona A
Rule 5: ada 15 point berturut-turut yang terletak di zona C pada kedua sisi
hart untuk
adanya variasi
Rule 1: ada 1 point yang terletak di luar +/-3SL
Rule 2: ada 8 point berturut-turut yang terletak diatas atau dibawah center line
Rule 2: ada 8 point berturut-turut yang terletak diatas atau dibawah center line
Rule 3: ada 6 atau lebih point yang terus naik/turun
Rule 4: ada 2 dari 3 point berturut-turut yang terletak di zona A atau melewati zona A
Variasi yang unik (special
cause) tidak selalu berarti
jelek, bisa juga menunjukkan
perbaikan dan harus
dianalisis untuk membantu
pengambilan keputusan.
Variasi yang unik (special
cause) tidak selalu berarti
jelek, bisa juga menunjukkan
perbaikan dan harus
dianalisis untuk membantu
pengambilan keputusan.
Variasi yang unik (special
cause) tidak selalu berarti
jelek, bisa juga menunjukkan
perbaikan dan harus
dianalisis untuk membantu
pengambilan keputusan.
Variasi yang unik (special
cause) tidak selalu berarti
jelek, bisa juga menunjukkan
perbaikan dan harus
Time to surfactant
administration of pr
t
Jenis-jenis control c
X bar and S X bar and R XmR
X-Bar, Rb, Rw CUSUM EWMA
Standardized
P C-chart
ol chart
XmR Deviation
from Nominal X-Bar, Rb, d
EWMA Np P-chart
U-chart Standardized
Bagaimana menilai
proses perbaikan m
Run Chart
H
as
il
p
e
n
g
u
ku
ran
Plot the dots
H
as
il
p
e
n
g
u
ku
ran
Waktu
X (Median) Run adalah satu atau lebih data points pada salah satu sisi median yang sama, tidaktermasuk data point yang terletak pada median.
Waktu
If I had to reduce
my message for
management to just
a few words, I d say
it all had to do with
reducing variation
.
(W.Edwards Deming)
If I had to reduce
my message for
management to just
a few words, I d say
it all had to do with
reducing variation
.
(W.Edwards Deming)
If I had to reduce
my message for
management to just
a few words, I d say
it all had to do with
reducing variation
.
(W.Edwards Deming)
If I had to reduce
my message for
management to just
a few words, I d say
it all had to do with
reducing variation
.
Tugas
1. Identifikasi Gap dalam pelayanan kesehatan dan tantangannya
2. Apa yang ingin anda ubah?
3. Jawab 3 pertanyaan Nolan model
4. Pilih intervensi yang ingin dilakukan (semakin spesifik semakin baik)
5. Buat rencana (Plan)
6. Pilih metode dan alat untuk implementasi perubahan
7. Pilih metode pengumpulan data untuk observasi
8. Pilih metode untuk penyajian data
Maksimal 3 halaman, font Times New Roman 12, spasi 1.5
1. Identifikasi Gap dalam pelayanan kesehatan dan tantangannya
2. Apa yang ingin anda ubah?
3. Jawab 3 pertanyaan Nolan model
4. Pilih intervensi yang ingin dilakukan (semakin spesifik semakin baik)
5. Buat rencana (Plan)
6. Pilih metode dan alat untuk implementasi perubahan
7. Pilih metode pengumpulan data untuk observasi
8. Pilih metode untuk penyajian data
Maksimal 3 halaman, font Times New Roman 12, spasi 1.5
1. Identifikasi Gap dalam pelayanan kesehatan dan tantangannya
2. Apa yang ingin anda ubah?
3. Jawab 3 pertanyaan Nolan model
4. Pilih intervensi yang ingin dilakukan (semakin spesifik semakin baik)
5. Buat rencana (Plan)
6. Pilih metode dan alat untuk implementasi perubahan
7. Pilih metode pengumpulan data untuk observasi
8. Pilih metode untuk penyajian data
Maksimal 3 halaman, font Times New Roman 12, spasi 1.5
1. Identifikasi Gap dalam pelayanan kesehatan dan tantangannya
2. Apa yang ingin anda ubah?
3. Jawab 3 pertanyaan Nolan model
4. Pilih intervensi yang ingin dilakukan (semakin spesifik semakin baik)
5. Buat rencana (Plan)
6. Pilih metode dan alat untuk implementasi perubahan
7. Pilih metode pengumpulan data untuk observasi
8. Pilih metode untuk penyajian data