• Tidak ada hasil yang ditemukan

FISIKA EKSPERIMENTAL I 2014

N/A
N/A
Protected

Academic year: 2021

Membagikan "FISIKA EKSPERIMENTAL I 2014"

Copied!
12
0
0

Teks penuh

(1)

FISIKA EKSPERIMENTAL I

2014

1

Pengukuran Tensile Strength, dan Modulus Elastisitas Benda Padat

Novi Tri Nugraheni (081211333009), Maya Ardiati (081211331137), Diana Ega Rani (081211331138), Firdaus Eka Setiawan (081211331147), Ratna Yulia Sari (081211332002),

Hanif Roikhatul Jannah (081211332006), Khoirotun Nisa (081211332007), Fachrun Nisa (081211332010),Ahmad Zusmi Humam (081211333006)

Jurusan Fisika, Fakultas Sains dan Teknologi

Universitas Airlangga

Surabaya

ABSTRAK

Dalam pemilihan suatu bahan akan diketahui sifat dari bahan itu dengan mengadakan pengujian terhadap bahan yang dipilih. Yang akan dilakukan dalam praktikum ini adalah uji tarik (tensile test) dan uji tekan (compression test). Dalam uji tarik, dilakukan dengan

menggunakan alat yang dinamakan autograph tipe AG-10 TE Shimadzu. Spesiment diberikan suatu gaya yang akan spesiment tersebut bisa patah. Uji tarik ini diperlukan untuk mengetahui kekuatan suatu material. Bahan uji diletakkan di bagian tengah autograph kemudian ditarik sehingga dapat ditentukan perubahan panjang bahan yang ditarik. Dari hasil percobaan pada PVC dapat diketahui hubungan antara stess dan strain, serta nilai modulus elastisitasnya. Dari regresi tersebut modulus elastisitas dari PVC adalah .

Kata Kunci: Uji Tarik, modulus elastisitas

PENDAHULUAN

Sifat-sifat mekanik zat padat seperti kekuatan tarik (tensile strength), kekuatan tekan (compressive strength), modulus elastis (modulus young, modulus geser dan modulus bulk), keuletan, ketangguhan, kekerasan dan kekuatan impak merupakan sifat-sifat fisis zat padat yang perlu mendapatkan perhatian bagi para peneliti yang melakukan penelitian tentang rekayasa bahan, karena sifat-sifat tersebut memberikan peranan penting bagi terciptanya syatu bahan yang sesuai dengan yang dikehendaki. Masing-masing benda

padat seperti logam, keramik, polimer, semikonduktor, dan superkonduktor masing-masing memiliki sifat-sifat mekanik yang berbeda satu sama lain. Hal inilah yang menyebabkan adanya perbedaan aplikasi bagi bermacam-macam benda padat tersebut diatas. Sebagai contoh, logam memiliki tingkat kekuatan yang lebih tinggi dibandingkan polimer. Oleh karenanya logam banyak digunakan untuk peralatan yang membutuhkan kekuatan yang besar (alat-alat industri, komponen peralatan transportasi dan lain-lain), sementara

(2)

2

polimer banyak digunakan untuk peralatan rumah tangga.

Mengingat pentingnya pengetahuan tentang sifat-sifat mekanik dalam rekayasa bahan maka akan dilakukan pengukuran beberapa sifat-sifat mekanik zat padat dengan menggunakan autograph tipe

AG-10 TE Shimadzu. Sifat-sifat mekanik yang

akan diukur adalah stress (tegangan), strain (regangan), kekuatan tarik (tensile strength), kekuatan tekan ( compressive strength) dan modulus elastisitas.

DASAR TEORI

1.1 Stress (Tegangan)

Stress atau tegangan didefinisikan

sebagai perbandingan antara gaya terhadap luas penampang daerah yang dikenai gaya tersebut (Van Vlack, 1991). Dalam satuan international stress memiliki lambang S dan satuan N/m2. Gaya yang bekerja pada benda menyebabkan terjadinya perubahan ukuran benda. Pengaruh vector gaya terhadap sumbu x menghasilkan besaran tensile stress dengan lambang σx . Indeks x menyatakan arah vektor gaya. Pengaruh gaya terhadap sumbu y dan sumbu z menghasilkan momen yang disebut besaran shear stress. Untuk sumbu y, shear stress dilambangkan σxy , sedangkan untuk sumbu z dilambangkan σxz.

Hubungan antara besaran-besaran tersebut dapat dirumuskan sebagai berikut:

xzK

xyj

xi

A

F

S

(1) A Fx x     (2)

dengan i,j,k adalah vektor satuan untuk masing-masing sumbu.

1.2 Strain (Regangan)

Strain atau regangan didefinisikan

sebagai perbandingan perubahan panjang benda terhadap panjang mula-mula akibat suatu gaya dengan arah sejajar perubahan panjang tersebut (Van Vlack,1991). Dalam satuan internasional, strain memiliki lambang  dengan satuan mm/mm atau %.

    L L L L L    (3)

dengan L adalah perubahan panjang benda dan Lo adalah panjang benda mula-mula. Benda padat yang dikenai gaya akan mengalami perubahan ukuran. Jika gayanya berupa gaya tarik maka benda akan memanjang, sebaliknya jika gayanya adalah gaya tekan, maka benda akan memendek. Hal ini terjadi jika ukuran panjangnya jauh lebih besar dari lebarnya. Sementara jika ukuran panjang dan lebar suatu benda hampir sama maka akibat adanya gaya akan mengakibatkan terjadinya regangan geser. (Callister,1991).

1.3 Modulus Elastisitas

Elastisitas didefenisikan sebagai kemampuan bahan untuk menerima tegangan tanpa mengakibatkan tejadinya perubahan bentuk yang permanen setelah tegangan dihilangkan. Peristiwa ini disebut juga deformasi elastis. Deformasi elastis terjadi bila logam atau bahan padat dibebani gaya. Bila tegangan tersebut disebabkan oleh gaya tarik maka benda akan bertambah panjang, setelah gaya ditiadakan benda akan kembali ke bentuk semula. Sebaliknya jika tegangan tersebut disebabkan oleh gaya tekan maka akan mengakibatkan benda akan menjadi lebih pendek dari keadaan semula

(3)

FISIKA EKSPERIMENTAL I

2014

3

(Van Vlack, 1991). Bila hanya ada deformasi elastik, maka regangan sebanding dengan tegangan. Perbandingan antara tegangan (σ) dan regangan elastik ( ) disebut modulus elastisitas (modulus young) yang dapat dituliskan sebagai berikut :

 

E (4)

Persamaan (4) dikenal juga dengan Hukum Hooke. Hukum Hooke berlaku dibawah batas elastik, dimana untuk sebagian besar bahan selama beban atau tegangan tidak

melampaui batas elastik, regangan akan sebanding dengan tegangan. Regangan elastik akan sebanding dengan tegangan bila pada bahan / logam hanya terjadi deformasi elastik.

Regangan elastik merupakan hasil perpanjangan sel satuan dalam arah tegangan tarik, atau hasil kontraksi dari sel satuan dalam arah tekan. Makin besar gaya tarik menarik antara atom logam, makin tinggi pula modulus elastisitasnya. Modulus elastisitas bersifat anisotropik, yaitu berubah sesuai arah kristal dikenal sebagai anisotropik kristalografi.

Pada pembebanan geser, bekerja dua gaya yang sejajar (gambar 1). Tegangan geser σs adalah gaya Fs dibagi dengan luas bidang geser As.

As Fs s

 (5)

Gaya geser menyebabkan adanya pergeseran sudut  . Regangan geser  didefinisikan sebagai tangen  . Perbandingan tegangan geser σs dengan regangan geser  disebut

modulus geser G.

 s

G (6)

Modulus geser G disebut juga modulus kekakuan, berbeda dengan modulus elastisitas (modulus young) E. Untuk regangan kecil berlaku hubungan:

) 1 ( 2   G E (7)

 adalah bilangan poisson yaitu perbandingan negatif antara regangan melintang y dengan regangan tarik z .

Bilangan Poisson  berada antara 0,25 sampai 0,5, maka nilai G mendekati 35 % dari E.

Kekuatan tarik (tensile strenght) atau kekuatan tekan (compressive strenght)

(4)

4

menyatakan ukuran tegangan yang diperlukan untuk mematahkan atau merusak bahan.

Diagram antara stress (tegangan) dan

strain (regangan) dapat digunakan untuk

menentukan sifat mekanik dari suatu bahan. Diagram tersebut menggambarkan perubahan stress terhadap strain bila benda dikenai suatu gaya.

1.4 Deformasi Plastis

Hukum Hooke menyatakan bahwa

strain berbanding lurus dengan stress dan

hukum ini dipenuhi oleh benda pada daerah

elastis. Jika bahan ditarik oleh suatu gaya

pada daerah elastis, maka benda tersebut akan mengalami perubahan ukuran, kemudian setelah gaya dihilangkan maka benda akan kembali pada keadaan semula.

Pada tegangan yang lebih tinggi (melewati batas elastis), terjadi pergeseran tetap atom - atom dalam suatu bahan disamping regangan elastik. Regangan tetap ini tidak mampu kembali pada keadaan semula ketika tegangan ditiadakan. Regangan ini disebut regangan palastis

(plastic strain). Pada daerah plastis, ukuran

banda tidak dapat kembali seperti semula apabila gaya telah dihilangkan. Grafik stress terhadap strain pada daerah elastis adalah linier sedangkan pada daerah plastis menunjukkan harga maksimum ulitimate

strength. Harga slope grafik linier dinyatakan sebagai modulus Young. Luas daerah total dari kurva menyatakan harga

modulus of toughness, sedangkan luas

daerah elastis menyatakan harga modulus of

resilence. Modulus of toughness

(ketangguhan) didefinisikan sebagai energy total yang diserap oleh benda tiap satu satuan volume hingga terjadi deformasi

struktur (patah atau robek). Modulus of

resilence didefinisikan sebagai energy yang

diserap oleh benda setiap satu satuan pada daerah elastis. Kedua besaran ini berpengaruh pada kerja benda yang pada umumnya pada daerah elastis.

Keuletan (dusility) menyatakan besarnya regangan plastis sampai patah, dapat dinyatakan sebagai presentasi perpanjangan (precent elongation).

(10)

Kekuatan luluh (Yield strength), Sy

merupakan ketahanan suatu bahan terhadap deformasi plastis dinyatakan dengan besarnya gaya pada suatu luluh dibagi luas penampang.

1.5 Kekuatan Tekan (Compresive

Strength)

Kekuatan tekan (compressive strength) menyatakan ukuran besar gaya yang diperlukan untuk merusak bahan.

As Fs s

 (11)

dengan Fs merupakan besar gaya yang

diberikan, sedangkan As merupakan luas

permukaan bahan yang diuji.

ALAT DAN BAHAN

 Alat yang digunakan adalah sebagai berikut:

(5)

FISIKA EKSPERIMENTAL I

2014

5

2. Penggaris

3. Mikrometer skrup

 Bahan yang dibutuhkan adalah: 1. PVC

METODE EKSPERIMEN

Pengukuran Stress, Strain dan Kekuatan Tarik (Tensile Strength)

1. Memotong bahan sesuai dengan keperluan.

2. Memasang asesoris alat untuk uji tarik kemudian memilih beban (load cell) yang sesuai dengan kekuatan bahan uji A,B, dan C.

3. Meletakkan bahan uji pada tempatnya. 4. Menyalakan power supply, tombol 1 dan

2 dinyalakan dan di set up.

5. Mengatur jarak maksimum yang diperlukan.

6. Mengatur kecepatan pembebanan (pilih kecepatan rendah)

7. Memilih range beban (gaya) yang diukur 8. Menarik load cell perlahan-lahan,

kemudian stop, dan mencatat besar gaya dan strainnya

9. Mengulangi langkah 8, dengan perubahan yang sangat kecil sampai tercapai keadaan plastik atau sampah patah. 10. Menulis hail pengamatan pada table.

DATA HASIL PENGAMATAN

No F (Newton) (meter) 1 0 0 2 12 0.00011 3 27 0.00028 4 42 0.00046 5 62 0.00063 6 87 0.00080 7 115 0.00097 8 155 0.00118 9 202 0.00139 10 240 0.00158 11 297 0.00184 12 340 0.00209 13 362 0.00240 14 362 0.00255 15 362 0.00279 16 362 0.00363 17 362 0.00368

PEMBAHASAN

Untuk mengetahui sifat-sifat mekanik suatu bahan, maka perlu dilakukan beberapa pengujian diantaranya kekuatan tarik (tensile strength) dan kekuatan tekan (compression strength) dengan menggunakan autograph tipe AG-10 TE Shimadzu.

Kekuatan Tarik (Tensile Strength)

Kekuatan tarik (tensile strength)

menyatakan ukuran besar gaya yang diperlukan untuk mematahkan bahan. Dalam praktikum ini bahan yang digunakan adalah PVC.

Grafik 1 Grafik untuk menentukan modulus elastisitas dari Hubungan Stress dengan Strain

(6)

6

Berdasarkan Grafik 1 PVC yang telah diberi tegangan mampu mempertahankan bentuknya saat tegangan dihilangkan.

Perbandingan antara stress dan strain disebut modulus Young atau moduslus elastisitas. Besar modulus Young dapat diketahui dari gradien yang didapatkan pada

Grafik 1 Besar modulus Young yang

diperoleh yaitu . Hal ini dapat diketahui bahwa semakin besar gaya tarik menarik antara atom bahan, maka akan semakin tinggi modulus elastisitasnya.

Diagram antara stress (tegangan) dan

strain (regangan) hasil praktikum ditunjukkan gambar di bawah ini:

Grafik 2. Grafik Hubungan Stress dengan Strain

Sedangkan dari Garfik diatas yang awalnya dalam kondisi naik kemudian grafik akan menjadi lurus. Saat grafik dalam keadaan lurus ini menunjukkan daerah plasits atau yield point yaitu stress akan dalam kondisi tetap meskipun strainnya bertambah. Daerah plastis ini terjadi saat PVC diberi gaya sebesar 362 Newton.

Deformasi plastis merupakan besarnya regangan plastis sampai patah. Deformasi struktur atau titik ketika PVC patah pada eksperimen ini terjadi saat diberi gaya

sebesar 362 Newton dengan perubahan panjang sebesar 0,00248 m.

Sedangkan deformasi plastis ditunjukkan pada table di bawah ini:

Tabel 1. Hasil Analisis Deformasi Plastis

No 1 0,00248 0,0564 2 0,00255 0,0579 3 0,00279 0,0634 4 0,00363 0,0825 5 0,00568 0,1291

KESIMPULAN

Berdasarkan eksperimen yang telah dilakukan, maka dapat disimpulkan bahwa : 1. Modulus elastisitas PVC hasil

praktikum sebesar .

DAFTAR PUSTAKA

1. Lawrence H. Van Vlack, 1995, Ilmu

dan Teknologi Bahan, edisi kelima

(penerjemah Sriati Djaprie), Erlangga, Jakarta.

2. Sears, Francis W. ,Mark W.Zemansky, 1962, Fisika untuk Universitas 1

(Mekanika, Panas, Bunyi), Alih bahasa :

Ir.Soedarjana, Drs. Amir Achmad, Tirta Mandiri, Jakarta.

3. Tim KBK Fisika Material, 2014.

Petunjuk Praktikum Fisika Eksperimental I, Laboratorium Fisika

Material FST UA , Surabaya 0 10000000 20000000 30000000 0 0.05 0.1 0.15 St re ss (𝜎 )

Strain (𝜺)

Diagram Stress (𝜎) terhadap Strain (

𝜺

)

(7)

LAMPIRAN I

DATA HASIL PENGAMATAN

Panjang = ( cm Tebal (t) = Lebar (l) = No F (kN) 1 0,000 0,00 2 0,012 0,11 3 0,027 0,28 4 0,042 0,46 5 0,062 0,63 6 0,087 0,80 7 0,115 0,97 8 0,155 1,18 9 0,202 1,39 10 0,240 1,58 11 0,297 1,84 12 0,340 2,09 13 0,362 2,48 14 0,362 2,55 15 0,362 2,79 16 0,362 3,63 17 0,362 5,68

(8)

8

LAMPIRAN II

ANALISIS PERHITUNGAN TENSILE STRENGTH

A. Dimensi Plat Panjang (L0) =( Tebal (t) = Lebar (l) = < < < < | | | | | | | | | | | | | | | | | | | | | | || | <

(9)

FISIKA EKSPERIMENTAL I

2014

9

B. Stress C. Strain No 1 0,00000 0,0000 2 0,00011 0,0025 3 0,00028 0,0064 4 0,00046 0,0105 5 0,00063 0,0143 6 0,00080 0,0182 7 0,00097 0,0220 8 0,00118 0,0268 9 0,00139 0,0316 10 0,00158 0,0359 11 0,00184 0,0418 12 0,00209 0,0475 No F (N) ( ) 1 0 0,000 2 12 888888,889 3 27 2000000,000 4 42 3111111,111 5 62 4592592,593 6 87 6444444,444 7 115 8518518,519 8 155 11481481,480 9 202 14962962,960 10 240 17777777,780 11 297 22000000,000 12 340 25185185,190 13 362 26814814,810

(10)

10

D. Deformasi Plastis No 1 0,00248 0,0564 2 0,00255 0,0579 3 0,00279 0,0634 4 0,00363 0,0825 5 0,00568 0,1291

Diagram Stress ( terhadap Strain

0 5000000 10000000 15000000 20000000 25000000 30000000 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 Str e ss ( 𝜎 )

Strain (𝜺)

(11)

FISIKA EKSPERIMENTAL I

2014

11

Gradien atau modulus elastisitas Young adalah

y = 6E+08x - 3E+06 R² = 0.9821 -5000000 0 5000000 10000000 15000000 20000000 25000000 30000000 0 0.01 0.02 0.03 0.04 0.05 Str e ss Strain

Menentukan Modulus Elastisitas dari

Grafik Stress dan Strain

Series1 Linear (Series1)

(12)

Gambar

Diagram  antara  stress  (tegangan)  dan  strain  (regangan)  dapat  digunakan  untuk  menentukan sifat mekanik dari suatu bahan
Grafik 1 Grafik untuk menentukan modulus elastisitas dari  Hubungan Stress dengan Strain
Diagram  antara  stress  (tegangan)  dan  strain  (regangan)  hasil  praktikum  ditunjukkan gambar di bawah ini:
Diagram Stress (    terhadap Strain

Referensi

Dokumen terkait

Jika UMKM industri mebel di kota Medan diberi pelatihan pembukuan dan akuntansi yang layak dan benar, maka akan memungkinkan mereka untuk memperoleh kredit UMKM

Kajian ini mencakup tentang teknik budidaya bunga gerbera dan bauran pemasaran yang meliputi empat aspek yaitu produk, harga, tempat dan promosi dalam pemasaran bunga gerbera

memiliki tekanan darah lebih rendah dari pada pria pada usia. yang sama, hal ini akibat dari variasi

Laporan keuangan Perusahaan periode 31 Desember 2013 diaudit oleh KAP Hendrawinata eddy &amp; sidharta yang juga telah ditunjuk untuk menyelenggarakan audit laporan keuangan Pt

Tauhid adalah masalah yang paling mendasar dan utama dalam ajaran islam. Karena diterima atau tidaknya amal perbuatan manusia muslim di sisi Allah sangat tergantung kepada

Percabangan bersyarat adalah suatu kondisi apabila syarat dari kondisi itu terpenuhi maka akan menjalankan suatu perintah dan apabila tidak terpenuhi maka akan

memproduksi dibawah kapasitas yang ada, maka total biaya tetap bukan merupakan biaya relevan, karena perusahaan memproduksi dengan kapasitas 60.000 jam mesin maupun

Beberapa uraian tentang kinerja dalam Rivai (2005) adalah sebagai berikut: 1) Kinerja merujuk pada tingkat keberhasilan dalam melaksanakan tugas serta kemampuan