• Tidak ada hasil yang ditemukan

Metode Titik Kontrol Horisontal 3.1. Metode Survei Klasik Gambar. Jaring Triangulasi

N/A
N/A
Protected

Academic year: 2021

Membagikan "Metode Titik Kontrol Horisontal 3.1. Metode Survei Klasik Gambar. Jaring Triangulasi"

Copied!
11
0
0

Teks penuh

(1)

3. Metode Titik Kontrol Horisontal

Dalam pekerjaan survei hidrografi di lapangan, survei topografi juga perlu dilakukan untuk menentukan kerangka kawasan pantai secara geografis. Dimana survey topografi ini dimulai sebelum melakukan survei hidrografi di laut. Tujuan utama adanya survey topografi ini adalah untuk menentukan koordinat titik kontrol di darat yang biasanya dilakukan dengan survei geodetik. Titik-titik yang telah disurvei dan dibentuk menjadi jaring kontrol dianggap sebagai titik kontrol utama yang kemudian digunakan sebagai referensi atau datum. Penentuan posisi titik kontrol horizontal dapat dilakukan dengan beberapa metode diantaranya :

a. metode survei klasik (berdasarkan pengamatan astronomis dan pengamatan sudut dan jarak)

b. metode survei gabungan c. metode survei fotogrammetri

Ketiga metode tersebut akan dibahas lebih lanjut pada subbab ini 3.1. Metode Survei Klasik

3.1.1. Triangulasi

Pada dasarnya pengukuran triangulasi dilakukan dengan pengukuran sudut yang membentuk jaring-jaring segitiga dimana setiap jaring segitiga paling tidak memilki satu sisi common side. Dalam perkembangannya metode dibuat dengan membentuk jaring berupa segitiga-segitiga yang saling berurutan seperti yang terlihat pada gambar berikut

Gambar __. Jaring Triangulasi

Metode pengukuran menggunakan jaring triangulasi biasanya digunakan untuk prnrntuan titik kontrol horizontal dengan area over long distance. Tahapan pengukuran yang dilakukan adalah dengan mengukur semua sudut-sudut pada jaring triangulasi dengan salah satu sisinya digunakan sebagai baseline. Sebagai contoh pada gambar di

(2)

bawah ini, pengukuran yang dilakukan adalah dengan mengukur sudut 1, 1, 1 sebagai sebagai jaring segitiga ABC kemudian pengukuran sudut 2, 2, 2 sebagai jaring segitiga ABD dan seterusnya. Tujuan dari pengukuran ini adalah untuk menentukan koordinat titik kontrol A,B,C,D,E, dan F. Setiap segitiga pada masing-masing jaring triangulasi juga perlu untuk dilakukan koreksi sudut untuk mengetahui kesalahan pengukuran sehingga dapat diketahui pula toleransi dan tingkat presisi dari pengukuran tersebut.

Gambar __. Pengukuran Metode Triangulasi

Selain dilakukan perhitungan kesalahan dan toleransi, pada pengukuran triangulasi ini juga perlu dilakukan perhitungan perataan jaring triangulasi dengan metode least quares untuk memberikan koreksi dan meminimalkan kesalahan pada pengukuran.

3.1.2. Trilaterasi

Metode trilaterasi pada dasarnya hampir sama dengan metode triangulasi dimana penentuan koordinat untuk masing-masing titik kontrol dilakukan berdasarkan perhitungan dari titik kontrol yang saling berhubungan dan membentuk jaring-jaring segitiga dengan diketahui salah satu baseline / common side namun yang diukur bukan sudut melainkan jarak antar masing-masing titik kontrol. Untuk memastikan hasil pengukuran dengan metode triaterasi ini dapat dilakukan dengan memeriksa jaring-jaring segitiga yang berdekatan setelah menghitung sudut dari sisi-sisi yang diukur. Sama dengan pengukuran triangulasi pada pengukuran trilaterasi ini juga perlu dilakukan perhitungan perataan jaring-jaring titik kontrol.

(3)

Gambar __. Contoh Jaring Trilaterasi

3.2. Metode Survei Gabungan

Metode survey gabungan ini merupakan kombinasi dari pengukuran sudut (triangulasi), dan pengukuran jarak (trilaterasi) dimana kedua metode tersebut memiliki tingkat bobot yang berbeda. Masing-masing bobot untuk kedua pengukuran dihitung dari satu per proporsional variance dari pengukuran. Ada beberapa metode yang dapat diterapkan pada survei gabungan yang akan dijelaskan pada sub bab ini.

3.2.1. Poligon

Metode polygon dilakukan dengan mengukur sudut dan jarak dari antar titik-titik kontrol yang membentuk jaring berbentuk poligon. Sebaiknya titik-titik kontrol pengukuran dengan metode polygon ini dapat dijangkau dan dapat saling terlihat antar titik-titik yang berdekatan. Pada metode polygon ini dapat berupa poligo terbuka maupun polygon tertutup. Biasanya pengukuran dilakukan searah jarum jam. Koreksi yang dilakukan berdasarkan koreksi sudut dan jarak dengan ketelitian tertentu.

3.2.2. Iso-Determined

Iso-determined atau polygon terbuka tidak terikat sempurna merupakan salah satu bentuk polygon terbuka dimana jumlah pengukuran sama dengan jumlah titik yang tidak diketahui. Jika „n‟ adalah jumlah yang akan dicari koordinatnya maka jumlah pengukuran yang dilakukan (m) sama dengan 2n – 3 atau :

(4)

Gambar __. Poligon Terbuka Tidak Terikat Sempurna Tahapan perhitungan yang dilakukan adalah sebagai berikut :

a. Menghitung azimuth masing-masing arah dari titik-titik kontrol dimana azimuth AB sudah diketahui sehingga menghitung azimuth BC dengan rumus :

𝐵𝐶 = 𝐴𝐵 + 180 ° + 2 − 360°

b. Menghitung final coordinate dengan asumsi XA = 0 dan YA = 0 maka rumus yang digunakan adalah sebagai berikut :

𝑋𝐵 = 𝑋𝐴 + 𝑑𝐴𝐵 . 𝑆𝑖𝑛 𝐴𝐵 ; 𝑋𝐶 = 𝑋𝐵 + 𝑑𝐵𝐶 . 𝑆𝑖𝑛 (𝐵𝐶) 𝑌𝐵 = 𝑌𝐴 + 𝑑𝐴𝐵 . 𝐶𝑜𝑠 𝐴𝐵 ; 𝑌𝐶 = 𝑌𝐵 + 𝑑𝐵𝐶 . 𝐶𝑜𝑠 (𝐵𝐶)

Hal penting yang perlu ditekankan adalah jumlah pengukuran yang dilakukan (sudut 1 2 dan jarak AB,BC, dan CD sama dengan jumlah koordinat yang dicari.

3.2.3. Over-Determined

Over-determined atau polygon terbuka terikat sempurna memiliki ciri koordinat titik kontrol awal dan titik kontrol akhir diketahui dapat dilihat seperti gambar di bawah ini

(5)

Gambar __. Poligon Terbuka Terikat Sempurna Tahap perhitungan yang dilakukan akan dijelaskan sebagai berikut : a. Menghitung azimuth masing-masing titik kontrol dengan rumus :

𝑃𝐴 = 𝑎𝑟𝑐 𝑡𝑎𝑛 𝑋𝐴 − 𝑋𝑃

𝑌𝐴 − 𝑌𝑃; 𝐷𝑄 = 𝑎𝑟𝑐 𝑡𝑎𝑛

𝑋𝑄 − 𝑋𝐷 𝑌𝑄 − 𝑌𝐷 Untuk unadjusted azimuth DQ /(DQ)‟ rumusnya :

𝐷𝑄 = 𝐶𝐷 + 4 ± 180°

b. Melakukan pengecekan terhadap azimuth DQ dapat dilakukan dengan kondisi ideal: 𝐷𝑄 − 𝐷𝑄 = 0

Rumus tersebut untuk melakukan pengecekan, dan kemungkinan besar tidak sama dengan nol karena itu pengecekan ini dilakukan untuk mengetahui kesalahan penutup sudut (Δ) sehingga rumusnya menjadi :

𝐷𝑄 − 𝐷𝑄 = Δ

𝑑𝑖𝑚𝑎𝑛𝑎 Δ lebih kecil dari toleransi sudut. c. Menghitung hasil perataan azimuth dengan rumus :

𝐴𝐵 = 𝐴𝐵 − 𝑢

𝐵𝐶 − 𝐵𝐶 − 2𝑢

𝐶𝐷 = 𝐶𝐷 − 3 𝑢

𝐷𝑄 = 𝐷𝑄 − 4 𝑢

(6)

d. Menghitung kesalahan linear penutup absis dan kesalahan linear penutup ordinat dengan rumus : 𝛥𝑋 = 𝛴𝑥− (𝑋𝐷 − 𝑋𝐴) 𝛥𝑌 = 𝛴𝑦− (𝑌𝐷 − 𝑌𝐴) Sehingga ΔL : 𝛥𝐿 = 𝛥𝑋2+ 𝛥𝑌² e. Menghitung partially adjusted coordinates :

𝑋2 1 = 𝑋

2 1 − 𝑈𝑥 ; 𝑌2 1 = 𝑌2 1 − 𝑈𝑦 𝑋3 2 = 𝑋

3 2 − 𝑈𝑥 ; 𝑌3 2 = 𝑌3 2 − 𝑈𝑦 𝑋4 3 = 𝑋4 3 − 𝑈𝑥 ; 𝑌4 3 = 𝑌4 3 − 𝑈𝑦 Dimana 𝑈𝑥 𝑑𝑎𝑛 𝑈𝑦 adalah nilai dari “unitary linear errors of closing” f. Menghitung koordinat fix titik-titik kontrol dengan rumus :

𝑋𝐵 = 𝑋𝐴 + 𝑋𝐵 𝐴 ; 𝑌𝐵 = 𝑌𝐴 + 𝑌𝐵(𝐴) dimana

𝑋𝐵 𝐴 = 𝑑𝐴𝐵 . 𝑆𝑖𝑛 𝐴𝐵 ; 𝑌𝐵(𝐴) = 𝑑𝐴𝐵. 𝐶𝑜𝑠 𝐴𝐵

3.2.4. Not Oriented Closed Traverse

Gambar __. Poligon Tertutup

Tahapan Perhitungan yang dilakukan akan dijelaskan sebagai berikut :

a. Menghitung kesalahan penutup sudut (Δ) dengan „n‟ sudut yang diukur dan Σ‟ merupakan jumlah total sudut dalam yang diukur dengan rumus :

(7)

b. Menghitung Azimuth

c. Menghitung unadjusted partial coordinates

d. Menghitung kesalahan absis (ΔX) dan kesalahan ordinat (ΔY) yang kemudian digunakan untuk menghitung ΔL dimana :

ΔL = 𝛥𝑋2+ 𝛥𝑌²

e. Menghitung koordiat fix dari masing-masing titik sama seperti rumus umum menghitung koordinat.

3.3. Metode Survei Fotogrammetri

Metode fotogrametri biasanya digunakan untuk survey dengan objek yang memiliki cakupan area yang luas. Dalam survey fotogrammetri ada tiga hal yang saling berkaitan yaitu :

a. Koordinat tiga dimensi (X,Y,Z) dari objek b. Posisi horizontal (x,y) pada objek foto udara

c. Keseluruhan parameter-parameter orientasi yang digunakan untuk menentukan posisi kamera pada saat dilakukan pemotretan.

Secara umum tahapan yang dilakukan pertama adalah dengan mengetahui koordinat tanah yang sebenarnya (real coordinates) dan koordinat horizontal titik-titik yang diketahui pada foto udara. Selanjutnya dari hasil tersebut dapat dihitung parameter-parameter orientasi. Setelah menghitung parameter-parameter dapat dilakukan tahapan restitusi foto udara yang memungkinkan kita untuk mengetahui semua koordinat horizontal objek pada foto udara.

3.3.1. Aerophotogrammetry

Prinsip dasarnya sama dengan fotogrametri pada umumnya. Metode ini biasanya digunakan untuk menentukan topographical charts dengan cakupan area yang luas dimana apabila dilakukan dengan cara konvensional membutuhkan waktu selama beberapa tahun. Foto udara yang dihasilkan dari survey fotogrammetri ini untuk selanjutnya digunakan untuk menghitung koordinat titik-titik kontrol dengan syarat overlap foto udara minimal 60 %. Syarat tersebut merupakan syarat utama dalam melakukan restitusi foto udara. Berdasarkan perkembangannya terdapat tiga jenis restitusi foto udara yaitu :

(8)

Melakukan rekonstruksi secara dimensional dengan menggunakan alat stereoscope dimana restitusi ini mengandalkan kemampuan pengelihatan secara visual antara dua foto yang bertampalan. Hasil dari restitusi ini adalah memodelkan (stereo model) dari hasil penglihatan stereoscopic.

b. Restitusi analog

Restitusi analog merupakan ground model untuk melakukan rekonstruksi secara

optic-mechanic dari hasil survei fotogrammetri. Proses yang dilakukan pada restitusi

analog adalah dengan mengetahui dan menghitung parameter-parameter orientasi yang dibutuhkan dalam proses restitusi foto udara. Parameter-parameter tersebut adalah parameter orientasi dalam (interior orientation) dan parameter orientasi luar

(exterior orientation) :

 Parameter orientasi dalam merupakan faktor-faktor interior berdasarkan pada faktor-faktor rekonstruksi berkas sinar dari kamera seperti focus kamera terkalibrasi, principal point terkalibrasi, nodal point dimana keseluruhan faktor orientasi dalam tersebut merupakan faktor-faktor yang berasal dari kamera yang digunakan.

 Parameter orientasi luar merupakan faktor-faktor exterior yang berkaitan dengan spatial position yang terdiri dari 12 parameter yaitu 6 parameter orientasi relatif dan 6 parameter orientasi absolut dimana keduabelas parameter tersebut terdiri dari tiga koordinat relative serta tiga parameter orientasi dari foto udara stereomodel sedangkan 6 parameter orientasi absolute adalah mendefinisikan posisi dari hasil orientasi relative ke dalam sistem koordinat yang bereferensi enam parameter tersebut adalah koordinat X, Y, Z dan 3 parameter rotasi ω,θ,κ omega, phi, kappa yang merupakan faktor rotasi terhadap sumbu x, sumbu y, dan sumbu z.

(9)

c. Restitusi analyctical

Pada prinsipnya sama dengan restitusi fotogrametrik dan restitusi analog perbedaanya terletak pada proses perhitungannya karena metode restitusi secara analitik ini komputasi atau proses perhitungannya dilakukan secara automatic calculation.

3.3.2. Fotogrametri digital

Metode fotogrametri tradisional pada dasarnya menggunakan gabungan prinsip stereoscopic baik itu dengan metode analog maupun analyctical. Dimana proses restitusi dilakukan dengan mengandalkan kemampuan pengelihatan secara stereoskopik dan bantuan perhitungan secara analyctical. Pada metode fotogrametri digital semua proses dikerjakan secara digital baik input data, proses perhitungan sampai dengan tahapan output dilakukan dengan secara digital.

3.3.3. Aerial Triangulation

Metode triangulasi udara dilakukan untuk menentukan koordinat titik-titik kontrol dengan membuat independent model. Dimana independent model tersebutmerupakan orientasi relative dari masing-masing model (2 foto udara yang bertampalan) saling berhubungan (tie points) dengan hasil berupa single blocks.

4. Metode Titik Kontrol Vertikal 4.1. Metode Geometric Leveling

Prinsipnya merupakan pengukuran terhadap perbedaan tinggi orthometric (geoid elevations) diantara kedua titik yang diukur atau diukur berdasarkan perbedaan ketinggian. Tujuan utama dari metode ini adalah menghitung perbedaan ketinggian antara titik-titik kontrol. Pengukuran jarak secara langsung juga dilakukan dalam metode ini

(10)

Sumber kesalahan pada metode ini berasal dari kelahan kolimasi dan kesalahan pembacaan benang pada rambu ukur. Prinsip perhitungannya sama dengan perhitungan kerangka kontrol vertical dimana bentuk kerangkanya berupa polygon. Metode geometric leveling merupakan metode yang umum digunakan dalam metode levelling. 4.2. Metode Trigonometri Levelling

Metode ini pada dasarnya menggunakan pengukuran sudut zenith dengan menggunakan theodolit. Biasanya digunakan untuk penentuan posisi ketinggian dalam metode

triangulasi. Rumus yang digunakan untuk menghitung perbedaan tinggi (ΔAB) antar dua titik adalah sebagai berikut :

𝜟𝑨𝑩 = d. cot A + h – l Dimana :

d = jarak horizontal antara titik A dan B

A = sudut zenith yang diukur dari titik A ke titik B h = tinggi alat dari permukaan tanah

l = tinggi dari target B dari permukaan yang diukur dari theodolit

Gambar __. Metode Trigonometri Levelling

Ada beberapa metode koreksi pada trigonometri leveling ini diantaranya koreksi sphericity, koreksi refraksi, koreksi elevasi.

4.3. Metode Altimetri dengan GPS (Metode Kontrol Vertikal GNSS)

Penentuan posisi relative dengan menggunakan GPS menghasilkan koordinat geosentris berupa koordinat XYZ berdasarkan referensi ellipsoid WGS 84. Dalam kaidah

kartografi tinggi orthometric (H) merupakan elevasi yang diukur dari referensi geoid sedangkan dengan GPS elevasi yang diperoleh bereferensi ellipsoid. Oleh karena itu

(11)

perlu untuk mengetahui perbedaan ketinggian antar keduanya atau undulasi dari geoid (N). Dari perbedaan referensi tersebut perlu dilakaukan transformasi „locating of the geoid‟ dimana :

𝜹𝑵 = 𝑵𝑾𝑮𝑺𝟖𝟒− 𝑵 𝒍𝒐𝒄𝒂𝒍𝒈𝒆𝒐𝒊𝒅 Dengan ketentuan 𝑁𝑊𝐺𝑆84 = h – H

Referensi

Dokumen terkait

Sama seperti pada proses perhitungan dengan metode WSM, dalam proses perhitungan dengan WPM, sistem akan menampilkan data nilai kriteria dari seluruh alternatif yang ada..

Analisa perhitungan metode distribusi hujan pada stasiun hujan Sukarame (PH-003) metode Log Normal memiliki nilai 0,96 yang dimana memiliki nilai koefisien korelasi yang