• Tidak ada hasil yang ditemukan

RUMUS LUAS SEGITIGA DALAM GEOMETRI TAKSI

N/A
N/A
Protected

Academic year: 2021

Membagikan "RUMUS LUAS SEGITIGA DALAM GEOMETRI TAKSI"

Copied!
8
0
0

Teks penuh

(1)

886

RUMUS LUAS SEGITIGA DALAM GEOMETRI TAKSI

Novianto dan Oki Neswan

SMA Negeri 1 Banawa Kabupaten Donggala Propinsi Sulawesi Tengah, Program Studi Magister Pengajaran Matematika FMIPA- ITB

E-mail: Anthomanda@ymail.com, oneswan@math.itb.ac.id ABSTRAK: Pada geometri taksi jarak antara dua titik ( ) dan ( ) didefinisikan sebagai ( ) | | | | dan disebut sebagai jarak taksi. Pada tulisan ini dikembangkan pengertian jarak taksi antara titik dan garis, serta hubungannya dengan jarak Euclid antara titik dan garis. Selanjutnya hubungan di atas digunakan untuk menentukan luas segitiga dengan menggunakan jarak taksi. Kata kunci: Jarak Euclid, jarak taksi, dan luas segitiga.

Taxicab geometry pertama kali diperkenalkan oleh seorang matematika-wan Jerman yang bernama Herman Minkowski. Ia ingin membuktikan dalam kasus ini bahwa dalam menentukan jarak terpendek dari satu tempat ke tempat yang lain tidak selalu menggunakan sisi miring. Cara terbaik untuk memikirkan idenya adalah memikirkan sebuah taksi pergi dari satu tempat ke tempat yang lain, sehingga dinamakan Geometri Taksi

(Poore, 2006). Pada dasarnya geometri taksi hampir sama dengan geometri koordinat Euclid, dimana titik, dan garis yang sama, serta ukuran sudut yang sama, hanya saja fungsi jarak yang berbeda. Jarak dalam geometri taksi didefinisikan sebagai penjumlahan nilai mutlak jarak vertikal dan nilai mutlak jarak horisontal antara dua titik (Krause, 1986). Hal inilah paling mendasar, yang membedakan jarak pada geometri taksi dengan jarak dalam bidang Euclid. Dalam geometri taksi jarak di notasikan sebagai sedangkan jarak dalam bidang Euclid di notasikan sebagai

Misal diketahui dua buah titik

( ) dan ( ) maka jarak antara titik dan titik adalah

( ) √( ) ( ) dan

( ) | | | | Dalam tulisan ini, diberikan bukti lengkap jarak antara dua titik (hubungan antara jarak Euclid dan jarak taksi), jarak titik ke garis dan bukti berbeda untuk menentukan luas segitiga dalam geometri taksi.

JARAK ANTARA DUA TITIK

(hubungan antara dan )

Hubungan antara dan beserta sketsa buktinya dapat di lihat dalam (Çolakoğlu dan Kaya, 2008). Kami akan memberikan bukti lengkap hubungan tersebut dalam Teorema 1.

Teorema 1. Jika ( ) dan ( )

dua titik yang berbeda, maka

1. ( ) ( ) jika 2. ( ) √ | | ( ) jika dengan adalah gradien.

Bukti : Pertama, asumsikan Misalkan Selanjutnya

(2)

√ ( ) √ ( ) | | ( ) | | | | | | | | | | Karena akibatnya ( ) ( ) Selanjutnya untuk bagian kedua asumsikan

dan misalkan | | Maka ( ) √( ) ( ) √( ) ( ) √( ) √( ) √( ) ( ) √( ) √( ) √ ( ) √( ) √ | |

Hubungan terakhir diperoleh karena √( ) | | Selanjutnya bentuk terakhir dapat dikalikan dengan bentuk satu lainnya, yaitu

| | | | | | | | untuk memperoleh ( ) √ | | | | | | | | | | √ | | | | | | | | | | √ | | | | | | √ | | | | | | √ | | ( ) Karena pada umumnya √ | | | |, maka kita peroleh bahwa ( )

( ).

JARAK TITIK KE GARIS DALAM GEOMETRI TAKSI

Untuk kasus jarak titik ke garis dalam geometri taksi, berbeda dengan jarak dalam Euclid. Jarak taksi, sangat dipengaruhi oleh kemiringan garis atau gradient garis. Adapun Lemma jarak titik ke garis dapat di lihat dalam

(Kaya dkk, 2000) dan bukti lengkapnya dapat di lihat dalam tesis (Novianto, 2013).

Dengan mengacu pada Teorema 1, akan diberikan rumus jarak taksi antara titik dan garis .

Definisi. Secara umum, jika adalah

sebuah titik, dan sebuah himpunan,

maka jarak taksi antara dan adalah

jarak dari ke titik di yang terdekat ke jika ada. Notasi untuk jarak taksi antara

titik , dan himpunan adalah ( ).

Dengan demikian

( )

( )

Jika adalah sebuah garis Euclid

dan ( ) sebuah titik, maka

( )

(| |

|( ) |) Selanjutnya akan dibuktikan bahwa jarak taksi antara titik dan garis adalah minimum dari jarak vertikal dan jarak horisontal, seperti yang di tuliskan dalam teorema berikut.

Teorema 2. Jika sebuah

garis, dengan dan ( )

adalah sebuah titik, maka

(3)

{|( )

| |( ) |} Dengan ( ) merupakan proyeksi vertikal titik ke garis dan ( ) merupakan proyeksi horisontal titik ke garis

Untuk membuktikan teorema tersebut di butuhkan beberapa lemma sebagai berikut. Asumsikan kasus nontrivial Maka

( ) |( )

| ( ) ( ) | ( )|

|( ) | ( )

Dengan mensubtitusi ( ) pada ( ), diperoleh

( ) | | ( )

Lemma berikut merupakan akibat langsung dari hubungan di atas.

Lemma 1. Misalkan adalah sebuah garis dan ( ) adalah sebuah titik, maka

( ) ( ) jika | | ( ) ( ) jika | | ( ) ( ) jika | |

Berdasarkan Lemma 1, akan di selidiki jarak titik ( ) ke garis dengan menyelidiki beberapa kasus. Kasus 1. Jika | |

Kasus 2. Jika | | Kasus 3. Jika | |

Dari masing-masing kasus tersebut akan di selidiki titik ( ) berada di atas garis, dan di bawah garis . Penyelidikan hanya di batasi pada | | dan untuk kasus yang lain telah di buktikan secara lengkap dan dapat di lihat dalam tesis (Novianto, 2013).

Misalkan adalah sebuah garis dan ( ) adalah sebuah titik berada diatas garis.

Pilih sebarang titik ( ) pada garis Subkasus 1. Maka ( ) | | |( ) |. Karena maka . Akibatnya, ( ) | | |( ) | ( ) ( ( )) ( ( )) ( ) (( ) ( )) ( ) ( ) ( )

(4)

Subkasus 2. Karena | | maka ( ) ( ) ( ) | | | ( )| | | | | | | ( ) ( ) Jadi ( ) ( )

Subkasus 3. Dengan cara serupa, jika maka . Akibatnya, ( ) | | |( ) | ( ) (( ) ) ( ( )) (( ) ) (( ) ) (( ) ) ( ( )) (( ) ) ( ) ( )

Maka, secara umum,

( ) ( ) Selanjutnya hubungan ini akan di buktikan untuk kasus jika titik ( ) berada dibawah garis Subkasus 1. maka Akibatnya, ( ) ( ) ( ) Subkasus 2. Asumsi memberikan ( ) maka Akibatnya, ( ) ( ) (( ) ) ( ) ( ( )) ( ) Subkasus 3. maka Akibatnya, ( ) ( ) ( ) ( ) Maka , dapat disimpulkan bahwa untuk tiap titik pada garis dengan gradient berlaku

( ) ( ) Akibatnya,

( ) ( )

Dengan cara serupa, dapat di buktikan bahwa untuk berlaku

( ) ( )

Dengan demikian, jika | | maka ( ) sama dengan jarak horizontal ke garis

(5)

Lemma 2. Jika dengan | | , dan ( ) sebuah titik, maka

( ) ( ) |( ) | Untuk kasus | | dengan cara serupa dapat dibuktikan bahwa jarak untuk untuk tiap titik pada garis dengan gradient berlaku ( ) ( ) Maka, ( ) ( ) Lemma Jika | | ( ) ( ) ( ) | | Untuk kasus | | sebagai akibat dari kedua lemma di atas, diperoleh

Lemma 4. Jika | | ( )

( ) ( ) ( )

RUMUS LUAS SEGITIGA DALAM GEOMETRI TAKSI

Luas segitiga dalam geometri taksi pengaruhi oleh jarak, dan gradient sisi alas. Dalam (Kaya, 2006) dijelaskan tentang proposisi dan bukti luas segitiga dalam geometri taksi. Kami dengan menggu-nakan hubungan pada Teorema 2 membe-rikan bukti dengan cara berbeda dalam menentukan luas segitiga dalam geometri taksi. Misal dengan titik ( ) ( ) dan ( ) Setiap segitiga memiliki sisi yang tidak vertikal. Jadi, dapat diasumsikan bahwa

. Maka persamaan garis ⃡ dengan gradient adalah

( )

( )

Karena persamaan garis ⃡ adalah

( ) maka koordinat titik ( (( ))) dan ( ) Jadi, jarak

( ⃡ ) adalah

{| ( ) | | ( ) |

| | }

Selanjutnya akan ditentukan hubungan jarak di Euclid dan jarak taksi dengan menggunakan perbandingan trigonometri pada segitiga siku-siku.

Pandang misal Maka diperoleh

( )

( )

( ) ( ) ( ) Dengan cara serupa, pandang Maka diperoleh

( )

( )

( ) ( ) ( ) Dari ( ) dan ( ) diperoleh hubungan

( ⃡ ) { } ( ⃡ ) Selanjutnya dengan mensubtitusi jarak

( ⃡ ) pada ( ) dan ( ) diperoleh ( ) | ( ) | | | dan ( ) | ( ) | Akibatnya, ( ⃡ ) { | ( | | ) |

(6)

( ) } ( )

Asumsikan ̅̅̅̅ merupakan alas dari dengan demikian

( ) √

| | ( ) ( ) Selanjutnya dengan mensubtitusi ( ) dan ( ) pada rumus , maka

diperoleh rumus luas dalam geometri taksi adalah

(√ | | ( )) ( { | ( ) | | | | ( ) |})

PENGGUNAAN RUMUS HERON

DALAM GEOMETRI TAKSI

Untuk penggunaan rumus Heron dalam geometri taksi dapat di lihat dalam (Kaya dan Çolakoğlu, 2003). Selanjutnya dalam tulisan ini, dibuktikan penggunaan rumus Heron dengan cara yang berbeda dengan menggunakan Teorema 1. Misal di ketahui dengan titik ( ) ( ) dan ( ) Misal-kan gradient garis ̅̅̅̅ ̅̅̅̅ dan ̅̅̅̅ dengan dan misalkan sisi segitiga ̅̅̅̅

̅̅̅̅ , dan ̅̅̅̅

dan setengah keliling segitiga dalam bidang Euclid adalah

Asumsikan ̅̅̅̅ sejajar dengan sumbu-

Maka ( ) ( ) Akibatnya, √ | | √ | | dan setengah keliling segitiga adalah

√ | |

√ | |

Dengan demikian luas

( ) ( (√

| | ) )

( (√

(7)

Dengan cara serupa jika sisi segitiga tidak sejajar dengan sumbu koordinat, maka √ | | √ | | √ | |

dengan setengah keliling segitiga adalah √ | | √ | | √ | | Akibatnya luas adalah,

( (√ | | ) ) ( (√ | | ) ) ( (√ | | ) ) KESIMPULAN

Konsep jarak dalam geometri taksi sangatlah berbeda dengan konsep jarak dalam geometri Euclid.

Jika sebuah garis dengan dan ( ) adalah sebuah titik, maka jarak taksi antara titik dan garis adalah

( ) { ( ) ( )} {|( )

| |( ) |}

Berdasarkan jarak taksi antara titik dan garis, diperoleh hubungan dalam menentu-kan rumus luas dalam geometri taksi.

Diberikan dengan

( ) ( ) dan ( ) Maka luas adalah

(√

| | ( )) ( { | ( ) |

| |

| ( ) |})

Selanjutnya untuk penggunaan rumus Heron dalam geometri taksi, jika di ketahui dengan sisi ̅̅̅̅ ̅̅̅̅ dan

̅̅̅̅ , dan setengah keliling dari segitiga dalam bidang Euclid adalah

dan gradient garis adalah

dengan dan dengan √ | | √ | | √ | | maka luas adalah

( (√ | | ) ) ( (√ | | ) ) ( (√ | | ) ) DAFTAR RUJUKAN

Çolakoğlu, H.B. dan Kaya, R. 2008. Taxicab Versions of the Pythago-rean Theorem ΠME Journal, Volume 12,No.9, pp535-539. Krause, F. E. 1986. Taxicab Geometry.

Dover Publications, New York.

Kaya, R.V., AkÇa, Z., G ̈naltili, İ., dan ̈zcan, M. 2000. General Equation for Taxicab Conics and Their Classification, Mitt.Math.Ges

(8)

Kaya, R. 2006. Area Formula for Taxicab Triangles, ΠME Journal,Volume 12 No. 4, pp 219-220.

Novianto. 2013. Luas Segitiga Dalam Geometri Taksi. (Tesis akan di terbitkan). Bandung: Program studi magister pengajaran matematika FMIPA-ITB.

Ӧzcan, M. dan Kaya, R. 2003. Area of Triangle in Terms of the Taxicab Distance, Missouri J of Math.Sci.,Vol.15,178-185.

Poore, K.L. 2006. Taxicab Geometry, Tesis Master, University of Nebraska-Lincoln.

Referensi

Dokumen terkait

Analisis finansial dilakukan untuk menentukan jumlah biaya variabel (VC), biaya tetap (FC), dan total biaya (TC) pembangunan hutan rakyat serta layak atau

Pada paluwala terdapat beberapa bentuk dan hiasan aksesoris yang membentuk paluwala yaitu bentuk segi tiga sama kaki, bentuk lengkung, bentuk lingkaran, bentuk

mencocokkan kartunya sebelum batas waktu diberi poin. 6) Setelah satu babak kartu dikocok lagi agar tiap siswa mendapat kartu yang berbeda dari sebelumnya. Berdasarkan

Korelasi yang diperoleh antara peningkatan hasil belajar siswa dengan aktivitas belajar siswa rendah yang positif sempurna, dengan demikian peneliti menyarankan

Illustration of this case study ultimately leads to a conclusion that a strong desire to be different as a factor of competition culture among youth Jakarta became a major

(Isi pada bimbingan belajar yang anda cukup kenal saja, tidak harus di isi pada semua bimbingan

[r]

Berdasarkan hasil penelitian dan pembahasan dapat disimpulkan bahwa penerapan metode card sort dapat meningkatkan hasil belajar PAI Materi Hidup Tenang Dengan