• Tidak ada hasil yang ditemukan

resumeKhare. 70KB Jun 04 2011 12:07:06 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "resumeKhare. 70KB Jun 04 2011 12:07:06 AM"

Copied!
1
0
0

Teks penuh

(1)

Journal de Th´

eorie des Nombres

de Bordeaux

16

(2004), 179–185

Modularity of

p

-adic Galois representations via

p

-adic approximations

Dedicated to the memory of my mother Nalini B. Khare

30th August 1936–12th March 2002

par

Chandrashekhar KHARE

R´esum´e. Dans cette courte note, nous donnons une nouvelle ap-proche pour prouver la modularit´e des repr´esentations galoisiennes

p-adiques en utilisant une m´ethode d’approximations p-adiques.

Cela englobe quelques uns des r´esultats bien connus de Wiles et Taylor dans de nombreux cas mais pas tous. Une caract´eristique de cette nouvelle approche est qu’elle travaille directement avec la repr´esentation galoisiennep-adique dont on cherche `a ´etablir la

modularit´e. Les trois ingr´edients essentiels sont une technique de cohomologie galoisienne de Ramakrishna, un r´esultat de mont´ee de niveau de Ribet, Diamond, Taylor et une version modpn du

principe de descente de niveau de Mazur.

Abstract. In this short note we give a new approach to prov-ing modularity ofp-adic Galois representations using a method of p-adic approximations. This recovers some of the well-known

re-sults of Wiles and Taylor in many, but not all, cases. A feature of the new approach is that it works directly with thep-adic Galois

representation whose modularity is sought to be established. The three main ingredients are a Galois cohomology technique of Ra-makrishna, a level raising result due to Ribet, Diamond, Taylor, and a modpn version of Mazur’s principle for level lowering.

ChandrashekharKhare

Department of Mathematics School of Mathematics University of Utah TIFR

155 S 1400 E Homi Bhabha Road Salt lake City, UT 84112 Mumbai 400 005, INDIA

E-mail:[email protected] E-mail:[email protected]

Referensi

Dokumen terkait

p -adic local Langlands functoriality principle relating Galois representations of a p -adic field L and admissible unitary Banach space representations of G ( L ) when G is a

The behavior of the Mordell-Weil-rank of elliptic curves over Q in families of quadratic twists has been extensively studied by Gouvˆea and Mazur [3], Stewart and Top [21] and in

This is done by studying the corresponding twisted Galois actions on the function field of the curve, for which a description in terms of modular units is given... Note that

On connait tr`es peu `a propos du groupe de Galois de la p -extension maximale non-ramifi´ee en dehors d’un ensemble fini S de nombres premiers d’un corps de nombres lorsque les

Soient K un corps de nombres et N une extension ga- loisienne de Q qui n’est pas alg´ebriquement close.. We prove that if K is a number field and N is a Galois extension of Q which

En particulier, nous d´eterminons les groupes de ramification sup´erieurs des ex- tensions compl´et´ees et les conducteurs d’Artin des caract`eres de leur groupe de Galois.

We prove a comparison theorem and maximum principle for a local solution of quasi-linear parabolic stochastic PDEs, similar to the well known results in the deterministic case..

The first occurs in equation (2.4), where we overlooked the possibility that the downgoing ladder time process has a positive drift.. Assume that 0 is