ON THE TWO DIMENSIONAL SPLINE INTERPOLATION OF
HERMITE-TYPE
by Mihaela Puscas
Abstract. In [5] the authors gave the definition of the interpolating cubic spline of Hermite-type in two variables: this is a polynomial of degree three in both variables and interpolates the function values and the values of the following derivates
D
0,1,
D
1,0,
D
1,1 at the knots of a given rectangular subdivision. We give two similar constructions but we use only the function values and the values of the derivatesD
0,1,
D
1,0 of the unknown function at the knots. WE can prove similar estimates, but in order to compute the values of our spline function we need fewer algebric operations .In what follows we fix the region
Ω
=
[
a
,
b
]
×
[
c
,
d
]
and a subdivision.
of
d
y
...
y
y
c
,
b
x
...
x
x
a
=
0<
1<
<
N=
=
0<
1<
<
M=
Ω
Let]
y
,
y
[
]
x
,
x
[
i i1 j j1j ,
i
=
+×
+Ω
andh
i=
x
i+1−
x
i,
l
j=
y
j+1−
y
j.
If u is a function defined on Ω, then ui(,rj,s) =Dr,su(xi,yj), where the differential operatorD
r,s has the obvious meaning.2. We are to determine the spline function S of Hermite-type of two variables with the following properties:
(i) On the rectangle
Ω
i,j we haveβ α
β αβ α
β
α ( ) ( )
) , ( ) , (
3
4 0 ,
) , (
,
,j i j i j
i x y A x x y y
S y x
S = =
∑
− −≤ +=
(ii) At the knots we have
1 ;
1 , 0 , , )
,
( (,,)
, = = + ≤
s r s
r u y x S
Drs i i irjs ,
i
=
0
,
1
,...,
N
;
j
=
0
,
1
,...,
M
The following theorem can be verified by an easy calculation.
Theorem 2.1. If Ai(,2j,2) =0,then there exists a unique spline function satisfying conditions (i), (ii). The function S is continuous on Ω.
{
}
{
}
))]}
(
(
))
(
)(
1
)[(
1
(
)]
(
)(
1
[(
{
)
1
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
1
(
)
,
(
, 1 1 , 1 ) 1 , 0 ( , 1 , 1 , ) 1 , 0 ( , ) 1 , 0 ( 1 , 1 , 1 1 , 1 ) 1 , 0 ( 1 , , 1 , ) 0 , 1 ( 1 , 1 4 ) 0 , 1 ( 1 , 3 1 , 1 2 1 , 1 ) 0 , 1 ( , 1 4 ) 0 , 1 ( , 3 , 1 2 , 1 , j i j i j i j j i j i j i j j i j j i j i j i j j i j i j i i j i i j i j i j i i j i i j i j i j iu
u
u
l
t
u
u
u
l
t
v
u
l
u
u
t
u
l
u
u
t
v
v
v
u
h
t
u
h
t
u
t
u
t
v
u
h
t
u
h
t
u
t
u
t
v
y
x
S
+ + + + + + + + + + + + + + + + + + + +−
−
+
−
−
−
−
+
+
−
−
+
−
−
−
−
+
+
Φ
+
Φ
+
Φ
+
Φ
+
+
Φ
+
Φ
+
Φ
+
Φ
−
=
(2.1.) where).
t
1
(
t
)
t
(
,
)
t
1
(
t
)
t
(
),
t
2
3
(
t
)
t
(
),
t
2
1
(
)
t
1
(
)
t
(
2 2 2 3 2 4 21
=
−
+
Φ
=
−
Φ
=
−
Φ
=
−
−
Φ
Using this form, in order to compute S(x,y) at the point (x,y) in Ωi,j we need 56 algebric operations: 34 additions and 22 multiplications.
Theorem 2.2. If
u
∈
C
1,1(
Ω
)
, then)
u
D
(
l
2
1
)
u
D
(
h
8
3
)
y
,
x
(
S
)
y
,
x
(
u
−
≤
ω
1,0+
ω
0,1Further, if
u
∈
C
2,2(
Ω
)
, then)
u
D
(
l
3
3
1
)
u
D
(
h
32
1
)
y
,
x
(
S
)
y
,
x
(
u
−
≤
2ω
2,0+
2ω
0,2Proof. First we suppose that
u
∈
C
1,1(
Ω
)
and let (x,y)∈
Ωi,j. Using the theorem for the interpolating cubic splines of Hermite-type in one variable, we have:) 1 j ,j p ( ) u D ( h 8 3 ) y , x ( u u h ) t ( u h ) t ( u ) t ( u ) t
( p 1,0
) 0 , 1 ( p , 1 i i 4 ) 0 , 1 ( p , i i 3 p , 1 i 2 p , i
1 +Φ +Φ +Φ − ≤ ω = +
Φ + +
By fixing the first variable and applying the Lagrange theorem in the second variable, for the third term of (2.1.) we obtain:
))]}
,
x
(
u
D
u
(
t
))
,
x
(
u
D
u
)(
t
1
)[(
v
1
(
)]
u
)
,
x
(
u
D
(
t
)
u
)
,
x
(
u
D
)(
t
1
[(
v
{
vl
)
v
1
(
1 i 1 , 0 ) 1 , 0 ( j , 1 i i 1 , 0 ) 1 , 0 ( j , i ) 1 , 0 ( 1 j , 1 i 1 i 1 , 0 ) 1 , 0 ( 1 j , i i 1 , 0 jη
−
+
η
−
−
−
+
+
−
η
+
−
η
−
−
+ + + + + +where η,η∈(yjyj+1). Hence, using this and the form (2.1.), we have:
) u D ( l 2 1 ) u D ( h 8 3 ) u D ( vl ) v 1 ( )] y , x ( u ) y , x ( u [ v )] y , x ( u ) y , x ( u )[ v 1 ( ) u D ( h 8 3 ) y , x ( S ) y , x ( u 1 , 0 0 , 1 1 , 0 j 1 j j 0 , 1 ω + ω ≤ ω − + + − + − − + ω ≤ − +
In the case
u
∈
C
2,2(
Ω
)
we fix one variable of the function u and apply the Taylor formula of the second order and the estimation) u D ( h 1 ) y , x ( u u h ) t ( u h ) t ( u ) t ( u ) t
( i,p 2 i 1,p 3 i i(1,p,0) 4 i i(1,10,p) p 2 2,0
1 +Φ +Φ +Φ − ≤ ω
By the Taylor formula and the continuity of D0,2, we can express the third term of (2.1.) in the form:
) , ( u D vl ) v 1 ( 2 1 )} ~ , ~ ( u D ) v 1 ( ) , ( u vD { vl ) v 1 ( 2 1
)]} , x ( u tD ) , x ( u D ) t 1 )[( v 1 ( )] ~ ~ , x ( u tD ) ~ , x ( u D ) t 1 [( v { vl ) v 1 ( 2 1
2 , 0 2 j 2
, 0 2
, 0 2 j
1 i 2 , 0 i
2 , 0 1
i 2 , 0 i
2 , 0 2
j
ζ ξ −
− = ζ ξ −
+ ζ ξ −
− =
= η +
η −
− + η +
η −
−
− + +
where
(
ξ
,
ζ
)
∈
Ω
i,j.
By these considerations we have:
( )
x y S( )
x y h( )
D u u i j0 , 2 2
,
32 1 ,
, − ≤ −
ω
++
( )
−
[
( )
−
( )
]
+
[
(
+)
−
( )
]
−
( )
1
−
( )
ξ
,
ζ
≤
2
1
,
,
,
,
1
v
u
x
y
ju
x
y
v
u
x
y
j 1u
x
y
v
vl
2jD
0,2u
( )
D
u
( ) ( )
v
v
v
l
( )
D
u
h
( )
D
u
l
( )
D
u
h
0,22 0
, 2 2 2
, 0 2 0
, 2 2
9
3
32
1
1
1
2
1
32
1
ω
ω
ω
ω
− − −−
+
≤
+
−
+
≤
,which proves our statement .
3. We are to determine the spline function S of Hermite-type of two variables with the following properties:
(i’) On the rectangle Ωi,j we have:
β ≤
β + αβ= α
α β
α − −
=
=S (x,y)
∑
A (x x ) (y y ) )y , x (
S j
2
3 0 ,
i ) , (
j , i j
, i
(ii’) At the knots we have
(
i
=
0
,...,
N
;
j
=
0
,...,
M
)
) 1 , 0 (
j , p j p j , i 1 , 0
) 0 , 1 (
q , i q i j , i 0 , 1
q , p q p j , i
u
)
y
,
x
(
S
D
u
)
y
,
x
(
S
D
u
)
y
,
x
(
S
=
=
=
where p = i, i+1 ; q = j, j+1.
The following theorem can be verified by an easy calculation .
Theorem 3.1. There exists a unique spline function S with the properties (i’), (ii’) and it is continuous on Ω.
By the substitution
(
)
(
)
j j i
i
l y y v h x x
[
( )(
)]}
(
1
)
{
)(
1
)
(
)
}.
(
3
.
1
.)
{
)]}
(
[
){
1
(
)
,
(
, 1 1 , 1 ) 1 , 0 (
, 1 ,
1 , ) 1 , 0 (
, )
0 , 1 (
1 , 1 , 1 , 1
0 , 1 1 , 1 , ) 0 , 1 (
, , , 1 ) 0 , 1 (
, , ,
t
u
u
u
l
t
u
u
u
l
v
v
u
h
u
u
t
u
h
t
u
v
u
h
u
u
t
u
h
t
u
v
y
x
S
j i j i j i j j
i j i j i j j
i i j i j i
j i i j i j
i i j i j i j i i j i j
i
+ + + + +
+ + + +
+ +
+
−
−
+
−
+
−
−
+
−
−
+
+
+
+
−
−
+
+
−
=
In order to compute the value S(x,y) = Si,j (x,y) at the print (x,y)
∈
Ωi,j we need 16 multiplications and 21 additions.Lemma 3.1. Let f be differentiable on [a,b], and let for x∈[xi,xi+1].
.
)
x
x
](
h
)
x
(
'
f
)
x
(
f
)
x
(
f
[
h
1
)
x
x
)(
x
(
'
f
)
x
(
f
)
x
(
S
2 i 1 i i i i 2i i i
i
i
=
+
−
+
+−
−
−
If
(
'
)
3
3
2
)
(
)
(
],
,
[
1
f
h
x
S
x
f
then
b
a
C
f
∈
−
i<
ω
If
(
"
)
1000
46
)
(
)
(
],
,
[
22
f
h
x
S
x
f
then
b
a
C
f
∈
−
i≤
ω
.Proof. By the substitution
(
)
i( )
i i( )
i ii
f
f
x
f
f
x
h
x
x
t
=
−
,
=
,
'=
' we have)
x
(
f
)
t
t
(
f
h
t
f
)
t
1
(
f
)
x
(
f
)
x
(
S
)
x
(
R
=
i−
=
i−
2+
i+1 2+
i i'−
2−
.For
f
∈
C
1[
a
,
b
]
the Lagrange theorem for the interval [xi,xi+1] gives:)],
(
'
f
)
(
'
f
)[
t
1
)(
t
1
(
t
h
)]
f
t
)
(
'
f
(
)
t
1
)(
(
'
f
)[
t
1
(
t
h
)
t
1
(
t
f
h
t
)
t
1
(
h
)
(
'
f
)
t
1
(
t
h
)
(
'
f
)
x
(
R
1 i
' i 2
1 i
' i i 2 i
2 2
i 1
ξ
−
ξ
+
−
=
+
ξ
+
+
+
ξ
−
−
=
−
+
−
ξ
+
−
ξ
−
=
where ξ1,ξ2,ξ∈(xi,xi+1). Hence we have
) ' ( 3 3
2 ) ' ( 3 3
2 )
' ( ) 1 )( 1 ( ) ( )
(x f x ht t t f h f h f
Si − ≤ i − + ωi ≤ i ωi ≤ ω
For
f
∈
C
2[ ]
a
,
b
we substitute the valuesf
i,
f
i+1,
f
i' from the Taylor formula at the point x=xi +thi and get( ) ( )( )(
x
1
t
[
1
t
v
x
)
th
]
f
"
( )
v
dv
t
(
x
v
) ( )
f
"
v
dv
R
x i1x 2 i
i x
x
1 i i
−
+
−
−
+
−
=
∫
∫
++
In both integrals we let τ=
(
v−xi)
/hi. Then( )
x
h
( ) (
t
f
"
x
h
)
d
( ) (
t
,
f
"
x
h
)
d
,
R
1 i it 2 i
i t
0 1 1 2
i
Ψ
τ
+
τ
τ
+
Ψ
τ
+
τ
τ
=
∫
∫
where Ψ1
( ) ( )( )
t,τ = 1−t[
1+t τ−t]
,Ψ
2( ) ( )
t
,
τ
=
t
21
−
τ
.( ) (
)
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )
( )
( )
( ) ( )
( )
, 1 21 " 2 "
1 2
1 " 1
2 1 " ,
" ,
" "
,
4 2
4 2
1 0
1 0 1
t t t f t f
t t t f t
t t f d t f
d t f
d h x f t
t
i i t
+− +
=
= +− +
−− −
= Ψ
+ Ψ
= +
Ψ
∫
∫
∫
∗∗
η
ξ
η
ξ
τ
τ
η
τ
τ
ξ
τ
τ
τ
τ τ
where
ξ
,
η
∈
[
x
i,
x
i+1]
.
The function Ψ2( )
t,τ does not change sign for τ∈[ ]
t,1 ; hence( ) (
)
( ) ( )
1
2
"
"
,
2 2 1
2
t
t
f
d
h
x
f
t
i it
−
=
+
Ψ
∫
τ
τ
τ
ζ
whereζ
∈
[
x
i,
x
i+1]
.
By theseconsiderations we have:
( )
( ) ( ) ( )
( )
( )
( )
[
"( )
"( )
]
,1 2 1 1
" 1
" 1
" 2
1 2 2
2 4
2
2
ς
ξ
η
η
η
f f
t t t h t t f t t f t t f t h x
R i i −
+ − =    
 
+ −
  
+ +
− −
=
where
η
∈
[
x
i,
x
i+1]
,
and we have used that( )
,
and
f
"
t
1
t
sgn
t
1
t
sgn
4 2
+
=
−
iscontinuous.Finally,
( )
( )
( )
( )
( )
"
1000
46
"
046
,
0
"
"
4
11
5
5
22
f
h
f
h
f
f
h
x
R
≤
i−
η
−
η
≤
iω
i≤
ω
and lemma isproved.
Theorem 3.2. If
u
∈
C
1,1(
Ω
)
, then
l
(
D
u
)
2
1
)
u
D
(
h
3
3
2
)
y
,
x
(
S
)
y
,
x
(
u
−
≤
ω
1,0+
ω
0,2If
u
∈
C
2,2(
Ω
)
, then
l
(
D
u
)
4
1
)
u
D
(
h
046
,
0
)
y
,
x
(
S
)
y
,
x
(
u
−
≤
2ω
2,0+
2ω
0,2Proof. We suppose that
u
∈
C
1,1(
Ω
).
If we use the form (3.1.) ofS
i,j(
x
,
y
)
and apply the lemma 3.1. for u(x,yj) and u(x,yj+1) then we obtain for (x,y)∈
Ωi,j..
t
)
u
l
u
u
(
)
t
1
)(
u
l
u
u
(
v
)
v
1
(
)]
y
,
x
(
u
)
y
,
x
(
u
[
v
)]
y
,
x
(
u
)
y
,
x
(
u
)[
v
1
(
)
u
D
(
h
3
3
2
)
v
v
1
(
)
y
,
x
(
u
)
y
,
x
(
S
) 1 , 0 (
1 i j j , 1 i 1 j , 1 i )
1 , 0 (
j , i j j , i 1 j , i
1 j j
0 , 1 j
, i
+ + + + +
+
−
−
+
−
−
−
−
+
+
−
+
−
−
+
ω
+
−
≤
−
].
,
[
,
,
,
),
(
2
1
)
(
3
3
2
)
(
)
1
(
2
)
(
3
3
2
)
,
(
(
)
1
)(
)
,
(
(
)
1
(
)
,
(
)
1
(
)
,
(
)
1
(
)
(
3
3
2
)
,
(
)
,
(
1
1 , 0 0
, 1 1
, 0
0 , 1 )
1 , 0 (
, 1 1
1 , 0 )
1 , 0 (
, 1
, 0
1 , 0 1
, 0 0
, 1 ,
+
+ +
∈
+
≤
−
+
+
≤
−
+
−
−
−
+
+
−
+
−
−
+
≤
−
j j
j i i
j i i
j
j j
j i
y
y
u
D
l
u
D
h
u
D
l
v
v
u
D
h
t
u
x
u
D
t
u
x
u
D
vl
v
x
u
D
v
v
l
x
u
vD
v
l
u
D
h
y
x
u
y
x
S
ζ
ζ
η
η
ω
ω
ω
ω
ζ
ζ
η
η
ω
If
u
∈
C
2,2(
Ω
)
then the above considerations give:),
(
4
1
)
(
046
,
0
)
,
(
)
,
(
)
1
(
)
(
046
,
0
)
~
~
(
2
1
)
~
,
(
)
1
(
2
1
)
,
(
)
1
(
2
1
)
,
(
)
,
(
2
1
)
,
(
)
1
(
)
(
046
,
0
)
,
(
)
,
(
2 , 0 2 2 , 0 2 2
, 0 2
, 0 2
0 , 2 2 2
, 0 2 2
, 0 2 1 2 , 0 2
1 1 , 0 2
, 0 2 1
, 0 0
, 2 2 ,
u
D
l
u
D
h
x
u
D
x
u
D
vl
v
u
D
h
x
u
tD
l
x
u
D
t
l
x
u
D
v
l
u
x
u
D
l
x
u
vD
l
y
x
u
D
l
v
v
u
D
h
y
x
u
y
x
S
i j
i j
i j
j j
j j
j j
j j
j i
ω
ω
η
η
ω
η
η
η
η
ω
+
≤
−
−
+
+
=
−
−
−
−
−
−
+
−
−
−
+
≤
−
+
+
where
η
j,
η
j+1,
~
η
,
~
η
~
,
η
,
η
∈
[
y
j,
y
j+1],
and our theorem is proved.References
1. B. Bialecki, G. Fairweather, K.A. Remington, Fourier methods for piecewise Hermite bicubic orthogonal spline collocation, East-West J. Numer. Math. 2, 1994. 2. Y. L. Lai, A. Hadjidimos, E.N. Houstis, J.R. Rice, General interior Hermite collocation methods for second order elliptic partial differential equations, Appl. Numer. Math. 16, 1994,(183 – 200).
3. Y. L. Lai, A. Hadjidimos, E.N. Houstis, J.R. Rice, On the iterative solution of Hermite collocation equations, SIAM J. Matrix Anal. Appl. 16, 1995, (254 – 277). 4. B. Bialecki, G. Fairweather, K.R. Bennett, Fast direct solvers for picewine Hermite bicubic orthogonal spline collocation equations, SIAM J. Numer. Anal. 29, 1992, (156 – 173).
5. B.T. Kvasov, Yu. S. Zavialov, V.L. Miroginicinko, Methods of spline functions, Nauka, Moscow, 1980.