• Tidak ada hasil yang ditemukan

Shiro IDF Tokyo 041103

N/A
N/A
Protected

Academic year: 2017

Membagikan "Shiro IDF Tokyo 041103"

Copied!
32
0
0

Teks penuh

(1)

Nanotechnology Fueling

Moore's Law

Koji Shiro

Director & General Manager

(2)

Outline

y

Key Messages

y

What is Nanotechnology?

y

Nanotech State of the Art

y

The Future

y

The Ultimate Vision

y

Summary

(3)

Key Messages

y Nanotechnology is here today in “state of the art” high speed Si CMOS process

technologies

y Si nanotechnology process

scaling/convergence will continue for the next 10-15 years

y Alternative new technologies have emerged and will begin to be integrated into Si CMOS by 2015

y Nanoscience research is needed to facilitate these radical new scalable technologies

(4)

What is Nanotechnology?

a. New structures like carbon nanotubes

b. Silicon devices made smaller

c. Arranging atoms and molecules

d. Letting atoms assemble themselves

e. Something far in the future

f. In production today

(5)

NSET* Nanotechnology

Definition (Feb 2000)

Research and technology

development at the atomic,

molecular, or macromolecular levels,

in the length scale of approximately

1 – 100 nanometer range

*

(6)

Silicon Nanotechnology is

Here!

10000 10000 1000 1000 100 100 10 10 10 10 1 1 0.1 0.1 0.01 0.01 Micron

Micron NanoNanometermeter-

-1970 1980 1990 2000 2010 2020

Nominal feature size

Nominal feature size

Nanotechnology Nanotechnology

130

130nmnm 90

90nmnm

70

70nmnm 50

50nmnm

Gate Width

(7)

Silicon Devices Shrink to

Virus Size

50nm 100nm

Influenza virus

Influenza virus

Source: CDC

Transistor for

Transistor for

90nm Process

90nm Process

Source: Intel

(8)

Moore’s Law In Action

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000 1,000,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 4004

8080

8086

8008

Pentium® Processor 486™ DX Processor

386™ Processor 286

Pentium® II Processor

Pentium® III Processor Pentium® 4 Processor

Heading toward 1 billion transistors in 2007

Itanium® Processor

>220

>220M Transistors Integrated Into M Transistors Integrated Into Devices Produced Today

(9)

>6 Orders Of Magnitude

Reduction in Cost/Transistor

0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10

'68 '70 '72 '74 '76 '78 '80 '82 '84 '86 '88 '90 '92 '94 '96 '98 '00 '02

$

$

Source: WSTS/Dataquest/Intel, 8/02

(10)

New Materials, Devices

Extend Si Scaling

Gate Gate Silicide Silicide added added Channel Channel Strained Strained silicon silicon

Changes

Changes

Made

Made

Future

Future

Options

Options

High
(11)

New Materials, Devices

Extend Si Scaling

Source: Intel

Source: Intel

Metal lines

Metal lines

Al Cu Al Cu

Insulating

Insulating

dielectric

dielectric

SiO

SiO22 SiOFSiOF CDO

CDO (low (low--k)k)

Changes

Changes

Made

Made

Future

Future

Options

Options

Ultra Ultra Low

Low--kk Dielectric

Dielectric

Interconnects

(12)

The Future

y

Continue CMOS Nanoscaling

y

Non-classical CMOS

y

Convergence

(13)

Nanotechnology features

y

Structures measured in nanometers

Less than 0.1-micron (100nm)

y

New materials and device structures

Incrementally changing silicon

technology base

y

Materials manipulated on atomic

scale

In one or more dimensions

y

Increasing use of self-assembly

Using chemical properties to form

(14)

Intel Nano Transistors

90nm Node 2003 30nm Prototype (IEDM2000) 20nm Prototype (VLSI2001) 25 nm 15nm 15

15nm Prototypenm Prototype (IEDM2001) (IEDM2001) 65nm Node 2005 32nm Node 2009 Increasing leakage Increasing leakage 22nm Node 2011 10

(15)

Nanotechnology for Gate

Dielectrics

Integration is the key challenge

Integration is the key challenge

Integration is the key challenge

90

90nm processnm process 1X

1X

1X

1X

Experimental high

Experimental high--kk 1.6X 1.6X < 0.01X < 0.01X Capacitance Capacitance Leakage Leakage Silicon substrate Silicon substrate Gate Gate 3.0

3.0nm Highnm High--kk

Source: Intel Source: Intel

Silicon substrate

Silicon substrate

1.2

1.2nm SiOnm SiO22 Gate

(16)

Lithography Gap to Close

with EUVL

1000 1000 100 100 10 10

’8989 ’’9191 ’’9393 ’’9595 ’’9797 ’’9999 ’’0101 ’’0303 ’’0505 ’’0707 ’’0909 ’’1111 Initial Production

Initial Production

Feature size

Feature size

157

157nmnm

13

13

nm (EUVL)

nm (EUVL)

Lithography

Lithography

Wavelength

Wavelength

193

193nmnm 248

248nmnm

Gap Gap

(17)

17

EUV LLC Consortium

Demonstrates EUVL

50

50nm Lines Printednm Lines Printed with EUV Lithography

with EUV Lithography

EUV

EUV LithographyLithography

Prototype Exposure Tool

Prototype Exposure Tool

EUV lithography is now in commercialization phase

EUV lithography is now

EUV lithography is now

in commercialization phase

in commercialization phase

(18)

EUV Reflective Mask

Structure

Conventional

optical photomask

13nm EUV light

Low Thermal Expansion Substrate

Absorber

Si

Si (~4.1nm)(~4.1nm)

Reflective

multi-layer coating 40 pairs Mo-Si

Mo (~2.8nm)

Mo (~2.8nm)

Buffer

λ

6” Fused silica substrate

λ

(19)

The Future

y

Continue CMOS Nanoscaling

y

Non-classical CMOS

y

Convergence

(20)

Intel’s TeraHertz Transistor:

Lower I

off

Leakage

Raised

Raised

Source/

Source/

Drain

Drain

< 30

< 30nm Siliconnm Silicon OxideOxide Gate

Gate HighHigh--k k

Gate

Gate

Dielectric

Dielectric

(21)

Experimental Tri-Gate

Transistor

Source

Source

Drain

Drain

Gate

Gate

Source: Intel Source: Intel

Gate

Gate

Silicon

Silicon

Drain

Drain

Source

Source

y

Improved version of TeraHertz

transistor

Better performance

Scalable to smaller sizes (low leakage)

(22)

Nanotubes/Nanowires

( >> 2010?)

y Collaborations with universities in progress

y Good individual device data, many integration and materials issues to be resolved

Source: Morales &

Source: Morales & LieberLieber, Science , Science 279279, , 208 (1998)

208 (1998)

Silicon

Silicon NanowireNanowire Carbon

Carbon NanotubeNanotube

S D

(23)

The Limits of Logic Scaling

y

For an

arbitrary

switching device

made of of a single electron in a dual

quantum well

Operating at room temperature

y

It can be shown a power dissipation

limit of 200 W/cm**2

(24)

The Future

y

Continue CMOS Nanoscaling

y

Non-classical CMOS

y

Convergence

(25)

Marriage of High Speed Logic

with Other Technologies

{

{

Today

Today

y

Flash/DRAM

y

RF

y

MEMS/NEMS

y

Optoelectronics

y

Bioelectronics

y

Alternate memory

MRAM, FeRAM, Ovonics

{

(26)

Intelligent Silicon

E X P A N D IN G E X P A N D IN G EXTENDING MOORE

EXTENDING MOORE’’S LAWS LAW

Wireless Wireless Optical Optical Biological Biological Sensors Sensors Fluidics Fluidics Mechanica Mechanicall

Nano

Nano

Silicon Innovation Enabling Convergence

Silicon Innovation Enabling Convergence Silicon Innovation Enabling Convergence

Expanding

Expanding the Silicon the Silicon CanvasCanvas

Nano

Nano is is HereHere New

New DevicesDevices, ,

Materials

Materials, and , and ProcessesProcesses

SSI

SSI LSILSI VLSIVLSI Discrete

(27)

The Future

y

Continue CMOS nanoscaling

y

Non-classical CMOS

y

Convergence

(28)

Novel Devices:

R+D Time Requirements

y Product development spectrumSoftware

SystemAssemblymArch

Power delivery and coolingCircuit Design

Layout

ProcessingMaterials

y Change that affects one level or two adjacent levels is relatively easy to manage Î 2-5

years R+D effort

y Change that affects many levels is very difficult Î 6 – 20 years R+D effort

(29)

Emerging Research Architectures

ATURITY

~2009?

(30)

Technical criteria

y

CMOS compatibility

y

Energy efficiency

y Scalability y Performance

y Architectural compatibility

y Sensitivity to parametric variation y Room temperature operation

y Stability and reliability

Option Must Be Superior to

Option Must Be Superior to Si Si CMOS Based CMOS Based On Cost, Power, Performance

(31)

The Ultimate Vision

The brain is the

ultimate model for its ability to deal with

complexity

y Little understanding on its architecture & organization

y Compared to tomorrow’s computers

Orders of magnitude more powerful Self assembled

Parallel operation

Self repairing to a significant degreeFault tolerant

(32)

Summary

y Nanotechnology is here today in “state of the art” high speed Si CMOS process

technologies

y Si nanotechnology process

scaling/convergence will continue for the next 10-15 years

y Alternative new technologies have emerged and will begin to be integrated into Si CMOS by 2015

y Nanoscience research is needed to facilitate these radical new scalable technologies

Referensi

Dokumen terkait

[r]

If Indonesia's progress in upholding basic human rights slows down or stops, the ICC statutes offer Indonesia's citizens important international protections against future

 Tutor mengembangkan Peta Konsep berdasarkan hasil kajian materi BMP dan.. Reanalisis Kompetensi

Peserta yang diundang menghadiri tahap pembuktian kualifikasi adalah pimpinan perusahaan yang tertera di dalam Akta atau staff yang diberikan kuasa oleh pimpinan

Penetapan Pemenang Pelelangan, Kelompok Kerja Biro Kerumahtanggaan Sekretariat. Jenderal MPR RI dengan ini mengumumkan pemenang pelelangan sederhana

Kejambon pada Dinas Pekerjaan Umum Kota Tegal akan melaksanakan Pemilihan Langsung dengan pascakualifikasi untuk paket pekerjaan konstruksi secara elektronik

Berdasarkan Surat Keputusan Panitia Pengadaan Barang/Jasa Pemerintah Satuan Kerja Pengembangan Sumber Daya, Peningkatan Infrastruktur Dan Pembinaan Lembaga Sosial dan Budaya

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.. You can upgrade to the