• Tidak ada hasil yang ditemukan

QiR 2009 Herlina CO2 Emission and Cost of Electricity

N/A
N/A
Protected

Academic year: 2017

Membagikan "QiR 2009 Herlina CO2 Emission and Cost of Electricity"

Copied!
5
0
0

Teks penuh

(1)

Prowding af the 11h lntematbnal bnference on QiR {Quality in Research) Fwny rir?ndneerfig, tli*nrmrry or tnmnesr4 irepor, tnaonesq S-0' A{rgrrsf X[r& ISSN rl4-r284

cazs*Iffi-sloN

"A,ND

COST OF

ELECTRICITY

OF

A.

I{yBRID

FOWER

PLAI{T IN

SEBESI

ISLAND

SQLTTH

AF

IAMPLING

Herlinar,

Uno

Bintang

Sudibyo2,

Eko

Adhi

Setiawan3

tFacuky o{Engine*ing Universi4, of Indonesia, Depok I 64 24

n-, ..lA\r j a1'7.111}.r,, .er C., -Ew ' .t(9.1) a11 ^ata

ili. tq*s/: er tvla/.

E-mail : herlinawahab@pahoo.com

' Facal ty of Engine eri ng Unitersily of lnd.onesia, Depok 16424 Tel : (021) 727AA11

a$

51. Fax: (A21) 727AA77

E-mail : uno@.mg.ui.ac.id

3

F acul t1' of En g;ns srin g Universily oflndonesia, Depok 16424 ms Tel : (021) 727$il1 ext 51.

Fax:

(021) 7270077

E-mriil : ekoas(@.ee.ui. ac.id

ABSTRACT

llyhri.d

tnwq tisn$

h*,

ed e4

die$el

se.w.'qlar

qnd

renewable

energ)

sources,

like

photovoltaic

and aind

1Y'.vfi1,

qle

*L

o#*r*y tp{ql

te

*I.ly

thc i13urer.crrnnly

pt'oblemfor

remote and isolated areasJbrfrom the

grids

HOMER, a micropower o1otimization modeling soJtware is

used

to

analyze

dan

for

both

wind

speed

and

solar

radiatian in Sebesi Island. The software optimize the system conJiguratian

of

the

hybrid

system

by

calculating

energl

balance

on an hourly

basis

for

each

of

the

yearly

E760 hours, simulating system eonfigut'ations

at

ance

and

rank them according

to

its

net present cast

fiJ.

In

this pe.per, configuration design

optimization

afthe

hybritt

system is analyzed to

Ju$ll

tlw

electricity

demand

in

Sebesi Island taken

inn

accounl the issue

af

COz emission reduction due

--.ztr--ta-- - t ,{- -.,r1 1-.,5 J-*.a** Ji_..."1

.en hL*iA;,i;@L nj jn.;iit jiieii ;i,;i'AT,E ,5rs;''dj g-di6--.,ii.r,: operation.

Oprtruiaatiaa ic dnne with tb.ee canditioan, a

$t*.cauditina

wilh

2

diesel

generating

unit 40 kW and 50 kW

each, second

condition

a

hybrid

system

with

259/0 maximum renewable

fraction

and

a third

conditian

a

hvbrid

wstem

with

more

than

25?6 minimum renewable

fraction.

The

result

obained

for

the

PY

-

wind

-

diesel hybrid are with

30o% renewable

fractiott :

25?6 reduced COz emissions

or

48 ton /

year or

Z|o/ofrom the

first

condition

with

2 diesel generating a:nil and lhe cost of electricity is the highest at $ 0,786

per

kWh, the net present

cosl

of

$

1.503.710, the

initiai

cepi*i

eralr

af

6

7i6fii:,6

and areew pol*'er

rc*chtng

85.212

kW

or

31.4%.

ICe1,

*ords:

thwulofiwt,

.I{yb*t"Fowe/ Pkt*t,

"Rmwable

fraction,

Cost of Ele$ri6i1y, CO2 ernission

{.

${:IRS{,}CT{ON

The Sebesi island is located south of Lampung Bay

with

5'

+f

!174"1

i'-

-{o s8ry'.4

4{"

r*F&de

e]a4

lnio

?-7,+{!,:Q

"-105'

30 '47-54" longitude

,

close

to

the

Knkatau

islands.

Adminiseatively,

this

island

is

located

in

the

Tejang

Village

Sebesi

Island,

Rqiabasa Subdistrict,

South Lampung Regency. The region consists

of

4 (four) villages

:

Regahan

Lad4

Inpres, Tejang, and Segenom. The island covers a total area

of

2620 ha and is inhabited by more than 25{X} people,

living most$ on

agricultural

products and fisheries.

The island

with a coastlines

of

19.5

km

has enough resources such as mangrovq the yet, and coral reefs 121.

It

is a beauty islands located close

to

the Krakatau islands -.-lJ--

j+ - a-*:1 l--*:-d:-- -"{l.-- rJ-- V.--t-r..-- i-l*t^ rrJrNE h 4 }q6! SrsUU! ..& Gv

^ulsl,*{& tor.N.

Unfortunately, poteirtial tourism island is not zupported

by

sufficieirt facilities

by

the

local

government,

such

as elestriqiq,- Nnwadays 1he

idaod

"gst ele*trieiry.nnly at

aight

for

about eight hours

from

16.00 aftemoon

until

00.00 at night

with

a peak load

of

49

kW

which

is

supplied by nvo diesel geirerators

with

an installed capacitv

of

40

kW

and 50

kW

each.

In

this

sttrdy

the elecrical

demand

of

the island

will

be analyzed using

2 units

of

diesel generating sets

of

40

kW

and 50

kW

as

first

condition, and comparing them

with

the

optimized

hybrid

system

using

HOMER

software. Also aheiygihg C+32

er*issiirrls,

ei'$t o'F

eieei*itlitli, sfi6

excess electricity

of

the system.
(2)

a-Pro*eding of the !1h lntemalignal bnfer_ence on QtR {Quality- in ResearchJ raculty ot En$wermg, anvere//y ot-tndonesfr, fiewk, lmffines?, :t-6 &rg$st

zlig

lssN 114-?284

2.

THE

IIYBRID

SYSTEM

AND

ITS

COMPO}IENTS

The hybrid system consists of two diesel generators 40

kW,

50

kW

each, a photovoltaic array of 60 WF, a ?,5

klV wind

lurbine, a battery eurd rur inverter. Figure

I

shows the hybrid system.

*i

3.1.2

Deferrable Load

A

water purup

of

400 Watts power has

to

be

operated

6 hours per day

to

fill

a fresh water tank designed to have a storage capacity

of

two

days demand. So, there

will

be a 2.4

:rit-nrtiay

avcrags ricibrrabie

ioad or

4.8

kfiIn

r'or two days storage. The

minimum

load

ratio

is

50%. Figure 3. shows the deferrable load of the water pump.

Figure 3. The yearly

Deferable

Load of the Water Purup[4]

3.2

Wind turbines

The

wind

turbine used

in

this

system

is

a 7.5

kW

DC,

20 meter hub height, and a project

lifetime

of

15 years.

Initial

capital cost

of

the 7.5

kW

wind turbine

is $

27.170, replacement cost

$

19.950, operation and maintenance cost

is$ l.000ayear

The HOMER

software need

ttre

wind

speed

data

to optimize the hybrid power plant. The

following

figure is the idvn'+iirgr l*i:xi;i

ryceii

daia

ia

Seiicui

iui*r,li, iitrastrietl

*i

i0

meters

height.

Figure 4. Wind Speeds on the Sebesi Island [5]

3.3

PhotovoltaicModules

|r- r il! htr ---L-a_ ----, ;- +.!_.L-l-..iJ .--*.-- -\-_- r_-- _

, I rr'146! ELU !,t Urtil rrlu! tu iruwLr l,rarit riN a

maximum

power

of

60 Watt

Peak

(WP). The

module ,l*^*;,.d f^-1* l- AOO/ ,.w r # - *14^ -af C (Ia .J^*^* , on v, + 4 tlrql& v. J. *! s?t!r!*t i *.v. degrees

of

azimuth,

a

ground reflectance

of

2AYo, and a -m.ia-+ Uf-+i* nf 1{ rrofo rr"idr+"rr eqnliao ;EY1ert. T,LF Inifiql

capital

cost

for

the

12

kW

PV

module

is $

66,000, re.g$1qqgg9t, S.+?t

+ $

66,qql

r11t$_

rl*

q5gratiqg

.4d-maintenance costs.

To

opfimize

the

performance

of

the hybrid

systern, the

software

also

needs

yearly

clearness

index and

daily

radiation (kWh/mrlday) data

at the

island.

The

yearly average clearacss

in(lcx

is

O,477 anrl

lhe

daily

average

l*#

$*e*i

i4SLVlhl,d' 4$rkWpralt

2.5

a2'o

f

r.E

'i.

it.o

a

9^*

0-o

e.4&lfhld

4ffi.ufs6*

[image:2.612.25.592.21.841.2]

IlG6GL

l(ltf

@ltul Ctrilr6it€{

Figure 1. The Hybrid System

The hybrid system is simulaterl

by

fhree conditions, fhe

first

condition using 40

kW

and 50

kW

diesel, second condition

a

hybrid

system

with

25Ys maximum renewable fraction -.--.1 - 4-.:.-l .-.-:l'a:--..- - l-f-.-:: *-:!.,--- .*-* 4Eo/ drr$ 4 srrls wirsr$t,t lt tLy|,*w oJirrJr vi tst iiru.! ut&tt LJ tii

mininrum renewable fraction.

AII

conditions are simulated

r3;+L f'v-I t*/f .v&9 !s;sd ane-Ac k-+r,a* !.r$- sr-.$J 1*/. ? */. . r*e, *.^l

^;v^

price between 0.4

-

1.0 $fl. Project lifetime of the system is ]{ rrp4e --- J '-.':, ifrtprFe.f ratp ie 9ol, the dien+fnh cfr,?tFw .-t .\j- -- , -: r - aaJ ic cvcle

charging

and the generators are allowed

to

operate under the pqalr lla1t

3.f

The Load Demand

The load demand cousists

of 2

tvpes. namely:

3.1.1 Primary Load

The

electricity

is

consumpted

majorly

for

household

lighfing, televisir:n

anil uthcrs.

The

daily

average loard on

the

island

is

about 490 kWh/day

with

49

kW

peak load

from

i9.00

till20.00

o'clock.

5{t

s

'S."

E=o

€.

'

"lg g

ffi0kurtc

l.lo[',

(3)

Proceedingof the 1lh lntemafnnal funference on QtR {Quality in Research) "iacunydr*npeefing,

thnrersriyoi"tnoanesra, ibpo& tnoonesra lr-unugrrsf 20t$ tssN 11+1284

radiation

is

4,761kWh/m2lday.

In

figure

5

the

cleamess index and daily radiation data

of

the island is shown.

:,,,,..:::',,'rl:, r.,t:.B$tit4n Sq.r+€ints}f.${i1$qqr : .,,:. :.

Figure 5. The yearly cleamess indo< and daily radiation

of

Sebesi island [5]

3,4 The Diesel

Generator

Two

units

of

diesel generator is used

in

the

hybrid

systsm

with

an installed capacity

of

40

kW

and 50

kW

each. The hour

fsr

+ar.h di,esel geusraior is estilnared to be 15,000 hours

with

a

minimum

load

ratio

of

30%. The 40

kW

diesel generators has

initial

capital costs

of

$ 22,O00, a

replacement

cost

of

$

18-000.

an dailv

oreration

and

miintenance

cost

of

$

0.5. While

the-

5O

kW

diesel generators

have

an initial

capital costs

$

27,000,

a

replacanent cost

$

22,0O0,

and

an daily

operation and maintenance cost of $ 0.5.

3.5 The

Battery

System

The

hybrid

system

is

designed

to

use

lead

acid batteries

with

nominal voltage of 6

V,

a nominal capacity of 360

Ah,

an

initial

capital cost of $ 620, a replacement

cost

of $ 620

anC a 5U $ yea:fy operation and maintenance cost.

s,t the tnverter

A

-oiriir*ctionai

invener

ireoti:iier-inverteri

is

used

ir

*ris

hybrid

system

with

a

90

%

inverter efficiency, and

a

lifetime

of

I0

years.

The rectifier

has

efficiency

85%

relative

to

the invsrtsr

capacity

of

100%.

The

8

kW

bidirectional inverter has an

initial

capital cost

of $

5960, replacement cost

of $

5,960 and an

yearly

operating and maintenance cost of $ 596.

{ iAi-t'irt

Aiitjer'

$}

'rlfttt

}t}'8tti$

S"Sih}*

DESIGN

4.1

CaMtion

d th

PV Array

fo,trrcr Orrte'r$ The softrrare uses the

following

equation to calculate the

-J f r. FIr

wwv rJuq)$. rrr lsL r f dlldr.

where:

Ypy

is

the rated capacity

of

the

PV

array, meaning its power output under standard test conditions [kWJ

frv

is the PV derating factor

[%]

Gr

is

the solar radiation incident on the

PV

array

in

,&r

ttrre$

tiace

:te.F[k"u/',/d]

Gr,

rrris

the incident radiation at standard test conditions

[1kW/m']

d,

is the temperahre coefficient of.power

t%PCl

T"

is the

PV

cell temperature

in

the current time step

["c]

Tosrc

is

the

PV

cell

iempyrahre under

standard test conditions [25

"C]

5.

SIMT]LATION

RESULTS

Different

results

of

simulatioa and optimization are using

the

software

in

accordance

to

its

minimum

renewable fracfion.

The result

of

simulation

and

optimization

of

the

first

condition using

two

diesel ganerating units

of

40

kW

and

a6 1t:!".,*.4.-^ ,-., ..,.-.F*.L, -.' '.\ ,r4N\ "a .4.r.4 64Ir4 Jtl &sf ers *& blrtt B pielErl-rtJ tt-ur, er lrrJrt! l,/hrvft,

an excess

of

elecricity of

0.01% and COr emission

of

19i

[image:3.612.71.302.110.242.2]

ton/year.

[image:3.612.336.593.452.590.2]

Figure 5

is

shorvs the load demand supplied by

two

diesel generator of 40

kW

and 50 kW.

Figure 6. Supply of Load Demand

by

40 kW and 50 kW diesel generators

In

the secoud condition the minimum renewable fraction is

0%, the

configuration

of

the

hybrid

system consist

of

I

diesel generating rmit

-

photovoltaic modules

(PV)

-

wind

turbines without battery. The results are as follows: for PV -diesel

having

0,515

$&Wh

of

COE,

excess

electricity

is 1.202

kWh/year

or

0.66%, and

the

CO2 eniission

is

188 ton/year. For

wind -

PV

-

diesel having COE 0,496

$/kwh,

excess

of

electricity

is

2.288 kWh/year

or

1.24o/o, and the Lt r Euusgfl.rJt lt ilJ U,rUrlEdI.

The load

demand

is

supplied

by

the

hybrid

system

cweiUing+f8z%

by.diesel gemera{i*g

uait,

3%W

PV

ed

li%by

wind turbine.

I

t'

ir

tl

t t ll c

u

-0iel€|ff ! triffiJi8{#

Ppv

=r*r,,|#kl[r.otr

* €&a,iti*iri6:{i1&a1r

-4,rrn

(4)

Prowding of the 11h lntemational Conference on QiR {Quahty in ResearchJ 'raainy

or ffi$neeffig ijnnersrty,or rnOsnesrA fiqpo4 inmresra it-ti Ao$sf XJt U tssN114-124

above, the author recommended a hybrid system consisting ofwind-diesel.

CoE {3r(vft) {tl*

3a-\ ,ai t0,sl6

,,4N

,!i 0,s;30,510

\

\1!

\ / ra:r?,a

Frgure 7. Suppty ot ioad ilosranel by ireser, P*v; aud wrnd turbine

with

amaximum

renewable

traction

o{

Zittit

&-irerr {he hy"txiti iiysrcra

is

sitauidiird a*rri

qp'tiniizrri

*rifr

25Yo

of

maximum renewable

fraction, the C02,

SOx decrease caused

by

reduction

of fuel

consumption

of

the diesel generating

unit.

In

figure 8, the blue

line

is the CO2 emission

anil

the

pirik

linc

is

ihe

SOx.

If

{he rsnewible

fraetion

is

0% the

CO2 emission

is

192 tondyem.

CO2 emission become 174 tons/year

if

the

renewable fuaction

is

i8?i,

a i$ir;*ii$t*

id

CC2

r;iBir*itxi

A5 ifrilh,S

*D lE

tonslyear decrease

from

385 kg/year

to

349 kg/year

for

a renewable

fraction

of

$Yo

to

l8%, This

means

a 36

kg

'redu'eti.on

of

SOx.

SOr Etri&riotr {tgl}rl i;$r,*d@ei{x4

I

rrrounac

I

'resr-l-*F

:fr",V

I &@i

iE

I I 3

rao{_

16

I

i*r

J l.r$.i*

J

0,00

I

$0,520

$0,s1s

$0,510

$0sos

$0,500

t,;;

lri 149 FYrWndIdl

681012!+*at320

Rcnerabl6 Frsclion (%)

[image:4.612.335.562.113.293.2] [image:4.612.72.293.385.576.2] [image:4.612.332.585.428.548.2]

+rJil2+t{x

Figure 8. COz, SOx

emissions-25%

maximum renelvable

fr*ctiaa

In Figure

9,CO2

emissions decreased

if

renewable fraction inrres-srll as desc-ritred ahrrvq The vahre

of

!OF'- flrrrlrate-s

with

the

changement

of

renewable

fraction.

When

ttre

renewable fraction

is

070, the load

is

supplied

by

2

diesel generating units

with

a COE

of

0,510

$/kwh,

total NPC

of

$

976.834.

While

the

of

renewable

fraction

is

4%,

the hybrid syst€rn consisting of PV

-

diesel wittrout battery, the

COE

increases

to

0,515 $/kWh, NPC

increases

to

$ 9E6.761. 'l'he lorrest UUE rs t),496

ii/kwh

il

the renewabte fraction

is

75% and the hybdd system is consisting of

wind-diesel

with

ro

battery,

its

NPC

is $

950.510.

if

the

COE incrcasc .again to 'OJIO

$'tr${t,

thc

rcncwablc fracti'on

is

18%, the

system coneisls

of

PV.'winddiesel without

battery,

its

NPC

is $

976,801. Based

on the

conditions

5,00 10,00 15,00

Rrnembh Fnctiotr, RF (%)

+C@ +Ccr of Ebcriciry {$lkwh}

Figure 9, COr emissions

-

cost of electriciq/ (COE)

-

25% maximum renewable fraction

In

the

third

condition

with

a

more than 25% renewable

fraction

the

hybrid

system consists

of

1 diesel generating

unit

*

PV

-

wind

turbine

without battery.

The

results

for

this condition are as

follows:

for PV

-

diesel, COE is 0,607 $/kWh, excess

of

electricity 22.464 kWhlyear

or

I

l%.

and CO2

emission

is

174 tonfuear.

For

wind

-

PV

-

diesel,

COE

is

0,785 $/klVh,

excess

of

eleckicity

85.212

k*Aryear

or

i'i,*r;,arri it;t:

ertission is

I44 kg i year.

Figure 10. Supply of Load Demand by Diesel Generator, PV, Wind

hrbine

with

more than 25% renerrable fraction

A

Configuration

of PV

-

wind

-

diesel

with

renewable fraction more than

257o, COE

0,510

$/kWh

having the highest

NPC

of

$

738,010, excess

electricity

reaching 85,212

kWh/year

or

31..4Yo, CO2 emissions decreased as much as 48 tou/year or 25Yo. The load served by the

hybrid

system canbe seen in figure 1O above.

380,0

;;n;i

1qn

o - 185

4 o E 180

't o

(,

175

30

!,

I

(5)

Proceeding of the l1h lntemational hnference on QiR {Quality in Research) racutty ot

tngneew,

wffer$ry or {mdotes,a,

Dwx,

tn&ne$a,'J-6

Awst'iw:,

tssN 114-12U

Rencmbh Frtctlon (%)

[image:5.612.69.293.63.261.2] [image:5.612.69.289.391.567.2]

Fcor=so*l

Figure I

L

CO2, SOx emission

-

more than 25Yo renewable fraetisn

In

figure 11

above,

the

hybrid

sysrem

is

simulated and gr1ggiCg"{

ujrlr

+- :r,rx.e

tfug.?{94

-1fqgrvqhlt &ag€g6, .!.h.. COz and SOx ernission levels decrease

with

decrease of the

fuel

consumption

effect

diesel generating

unit.

The

COz emission becomes 144 tons/year

if

renewable

fracion

3V/o reduced as

much

as

48

tons$ear.

The

SOx ernissions, is reduced

from

385

k{year

to

289 kg/year when renewable fraction increase

from

0%

to

30Yo.

The

SOx emission is reduced as much as 96

kgfear.

I

trro*"nd" coE {srdrfil

'180 $0,800

.i4:Etl $0,m0 $0,650 ir{r;di*r $0,550 s0.500

140

2A719crOm

Reneualile Fracdon (%)

-^^^

+t+rJ-L+4.rar#ruvgsr er

-.s.#, s*rr,!,

Figure I 2. COz ernission

-

with

a renewable fraction of 30%

In

figure

12 the value

of

COE increased

if

the renewable

faction

fucreases

fro*

23%

ro

30ryo.

ff

*e

rffiewdble

fraction

is

25o/o, the

COE

is

0,607

$/kWh

and the

hybrid

system c{msists

of PV

-

diesel

with

no battery

with

48

kW

capaclty

of

fV.

Total

I.IfC

for

tris

system is

$

1.163.327

with initial

caprtal cnst of PV is $ 264.000.

If

the rcncwable

fraction

is

30%,

the COE

is

0.785

$/kWh, the

hybrid

oJrFur 4&a6qB ui i I - ri[* B& Ers try

l.,i.,l*rr-Total NPC

for

this system is

$

1.503.710, the

initial

capital

cost

of

120

kW

PV

is $

660.000. Based

on

results

of

simulatjcur

and rytinizarion

urirh

a

frare rhffi

25% renewable

fraction,

it

is

recommended

to

selsct

a

hybrid system consisting

of PVdiesel with

the

lowest

value

of

COE.

6

CONCLUSIONS

The value

of

COE, COz and SOx emissions and excess

of

electricity fluctuated

on

different

renewable

fraction,

it

depending

on total

power

gen€rated

and

the total

load served

by

the

system.

Which

is

the same

following daily

load

curve

of

Sebesi Island?

The

largest

excess power ocsurred at 3Wo ot're,nswable ifactron.

A

water pump as a deferrable load can be used to absorb this excess electricity. The optimum hybrid system

at

lioh of

renewable fraction, comsist

of

winri-

€iesei wit?i

CSE

rr,ni'9ti Sii(.ft?r,

iff

is $ 950.510 and the CO2 emissions

is

177 ton/year.

ACKNOWLEDGMENTS

The author

would like

to thank the Renewable Energy and

Microgrid

ressarch group

of

the Departunent

of

Electrical Engineering University of Indonesia.

REFERENCES

[1]

Gilmaa

P.,

Lambcrt,

T.,

"Horaer

tho

nrioropowcr optimization

model

software

staned guide",

National

P*+ehle ].-rgo. I chnrp.tm,

^f, r'dfzl (intae Gnrlmqprf

-q{(@.

i*.. 'r(!__! _4

(2005)

Wiryawan,

B.,

Yulianto

I.,

Susanto,

A.

H.,

"

Profil

Sunrberdaya Pulau Sebesi, Kecamatan Rajabas4 Lampmg Selatan*,

Penerbitm Khusus Proyek Pesisir,

Coastal Resources Center, University of Rhode Island, Narraganset,

el .,3. t r..., J ,.8.| ,r'!srl

8ir$rtle-r!t4lln4 u!/t t te,,

Apriansyah, "Laporan Data Beban tlarian Fulau Sebesi", PT.

PIN

(Pelcso] Wile;14fr I.i11r'lu{?B f3h4pg

Ti+.!S

K?rnlE,

Ranting Kalianda (Tebruari 2009).

Gitnan,

P., Lambert

T.,

"optimization model software", National Renewable Enerry -Laborarory

of

lJnited States Government (2005)

tvu,il,i*iiilh4*hAie.alir&.

t!*.ie*

$ssri

rrlr,'et'r*$l i*fuiiii:,

2009.

Irltr./1moreL la*r qcpo cmr t"cla*lt, r'+dew s/f Aqr\, radiation for sebesi istaad", 2009.

htto :rtnqnr. solarex.solar.com/oylovlist/ovsiemens

/pvsiemens-htmo,

"Price

and

Product

for

Photovoltaic Module". (2009)

[8]

http:/lbergqvwindpower.com/?.5 kWhtm,'?rice and Product for'WinilTuibin 7.5

1(WDf.

p0O9)

[9]

httn:rkww.po:$Brssity.com/32_Dzutz'diesel"flgine" TD226B-4D-Stamford-alternator.himl (2009).

ttol

ht$

I

l]

httpl/www.affordable solar.comArojan.battery.ll6p

390ah.htm. (2009)

{121 },{aym.

C.

.

Tmg.

M,,

Sapornkana. Sf,.,

"An

.tC

Coupled

F/

ili*d4Diesel Misrp.glid SyelErll [mp!ene"$ed

!n

A

Remote Island in The Republic of Maldives", Proceedings

of

the AUPEC Conl'erence. Perth (December 2007).

{13] Milani. N.P., '?erformance Optimizatioa of A Hybrirt lVind Turbine

-

Diesel Microgrid Power System", Master

of

Science Thesis, North Carolina State Universig (2006). {141 S,etiawaor,

A.A.,

Nayar,

C.fi.,

"Dcsign

€f

fiy4rid

Psrv'cr

System

for

a Remote Island

in

Maldives", Department

of

Elecrioal and Computer Engineering Curtin University

of

Technology, Australia (2004).

I2l

t3l

t41

I:5i r6l t7l

c'l7o

6

E roo

,

u E

ut150

25 25 27 28 29 30 3l

Gambar

Figure 3. The yearly Deferable Load of the Water Purup[4]
Figure 5. The yearly cleamess indo< and daily radiation ofSebesi island [5]
Figure 8. COz, SOx emissions-25% maximum renelvable
Figure I 2. COz ernission - with a renewablefraction of 30%

Referensi

Dokumen terkait

Berdasarkan hasil wawancara dan FGD pada beberapa responden bahwa di antara mereka mengharapkan sebaiknya PMO itu adalah keluarga sendiri baik anak dan pasangannya dengan alasan

Sehubungan dokumen penawaran saudara yang masuk tentang Belanja Hibah Barang/Jasa Kepada Pihak Ketiga (Alat Media Pembelajaran Interaktif (IWB) SMP kami panitia

Pencatatan Kelahiran Di Kabupaten Dairi Dalam Rangka Pelaksanaan Administrasi Kependudukan Menurut Undang- Undang Nomor 23 Tahun 2006 Ditinjau Dari Hukum.

Luas wilayah Jawa Tengah pada tahun 2007 tercatat sebesar 3,25 juta hektar atau sekitar 25,04 persen dari luas Pulau Jawa (1,70 persen dari luas Indonesia).. Dibandingkan dengan

Dengan adanya website berita online berbasis PHP ini dalam mengakses berita secara online dapat menjadi lebih mudah dan juga jauh lebih luas sehingga

[r]

Adapun tujuan penulisan petunjuk pelaksanaan ini dimaksudkan untuk menjadi acuan penulisan dan penilaian makalah kepemimpinan bagi peserta, asesor, penyelenggara dan

Persentase kehadiran yang tinggi banyak dijumpai pada ayakan berukuran 1 φ atau fraksi pasir kasar, sejalan juga dengan hasil analisis rataan ukuran butiran menunjukkan