• Tidak ada hasil yang ditemukan

PREDIKSI KERUSAKAN MOTOR INDUKSI MENGGUNAKAN METODE JARINGAN SARAF TIRUAN BACKPROPAGATION TESIS. Oleh HERDIANTO /TE

N/A
N/A
Protected

Academic year: 2022

Membagikan "PREDIKSI KERUSAKAN MOTOR INDUKSI MENGGUNAKAN METODE JARINGAN SARAF TIRUAN BACKPROPAGATION TESIS. Oleh HERDIANTO /TE"

Copied!
184
0
0

Teks penuh

(1)

PREDIKSI KERUSAKAN MOTOR INDUKSI MENGGUNAKAN METODE JARINGAN SARAF TIRUAN

BACKPROPAGATION

TESIS

Oleh HERDIANTO 097034029/TE

FAKULTAS TEKNIK

UNIVERSITAS SUMATERA UTARA MEDAN

2013

(2)

PREDIKSI KERUSAKAN MOTOR INDUKSI MENGGUNAKAN METODE JARINGAN SARAF TIRUAN

BACKPROPAGATION

TESIS

Untuk Memperoleh Gelar Magister Teknik dalam Program Studi Magister Teknik Elektro pada Fakultas Teknik Universitas Sumatera Utara

Oleh HERDIANTO 097034029/TE

FAKULTAS TEKNIK

UNIVERSITAS SUMATERA UTARA MEDAN

2013

(3)

Judul Tesis : PREDIKSI KERUSAKAN MOTOR INDUKSI MENGGUNAKAN METODE JARINGAN SARAF TIRUAN BACKPROPAGATION

Nama Mahasiswa : Herdianto Nomor Induk : 097034029

Program Studi : Magister Teknik Elektro

Menyetujui Komisi Pembimbing:

(Prof. Dr.Ir. Usman Baafai) (Dr. Benny B.Nst, Dipl.Ing.M.Eng)

Ketua Anggota

Sekretaris Program Studi Dekan,

(Drs. Hasdari Helmi, MT) (Prof.Dr.Ir. Bustami Syam, MSME)

Telah Lulus : 16 Juli 2013

(4)

Telah Diuji pada Tanggal : 16 Juli 2013

PANITIA PENGUJI TESIS

Ketua : Prof. Dr. Ir. Usman Baafai

Anggota : 1. Dr. Benny B. Nasution, Dipl.Ing, M.Eng 2. Prof. Dr. Tulus, M.Si

3. Dr. Poltak Sihombing, M. Kom

(5)

ABSTRAK

Motor induksi (MI) adalah alat listrik yang mengubah energi listrik menjadi energi mekanik berupa tenaga putar. Motor induksi banyak dipakai sebagai penggerak untuk mengerjakan banyak proses di industri. Meskipun MI cukup handal tetapi dapat saja mengalami kerusakan total pada saat beroperasi. Kerusakan total pada motor induksi pada saat mendukung proses produksi dapat menyebabkan rendahnya mutu barang jadi yang dihasilkan sampai berhentinya proses produksi itu sendiri. Untuk menghindari kerusakan total pada motor induksi, pada penelitian ini digunakan metode jaringan saraf tiruan dengan algoritma backpropagation untuk memprediksi kerusakan yang akan terjadi pada motor induksi khususnya pada stator untuk 1 hari ke depan. Agar dapat digunakan untuk memprediksi kerusakan motor induksi khususnya pada stator dengan tingkat akurasi di atas 85% jaringan saraf tiruan harus memiliki struktur jaringan yang optimal. Maka pada penelitian yang telah dilakukan penelitian dititik beratkan pada pencarian struktur jaringan saraf tiruan yang optimal berdasarkan pola data pelatihan seperti mencari jumlah time delay, hidden layer, node hidden layer, nilai konstanta learning rate dan momentum. Dari hasil pengujian yang telah dilakukan bahwasanya jaringan saraf tiruan mampu memprediksi kerusakan motor induksi khususnya pada stator untuk satu hari ke depan dengan tingkat akurasi mencapai 90%.

Kata-kata kunci : Motor induksi, jaringan saraf tiruan, struktur jaringan

optimal, memprediksi.

(6)

ABSTRACT

Induction motor (IM) is electric equipment which changes electric energy to mechanical energy as a revolving power. It is frequently used as a drive for doing many processes in industry. Even though it is reliable, it can be totally broken when it is operating. The total damage of induction motor, while it is supporting the process of production, can cause the low quality of the product until the process of the production stops. To avoid the induction motor being totally damaged, the method of artificial nerve grid with back-propagation algorithm was used in this research to predict the damage which will occur in induction motor, especially in the stator for the following day. In order to be used to predict the damage in the induction motor, especially in the stator with the accuracy above 85%, the artificial nerve grid must have optimal grid structure. Therefore, this research was emphasized on the searching for the optimal structure of artificial nerve grid, based on the pattern of training data, such as searching for the amount of time delay, hidden layer, node hidden layer, constant value of learning rate, and momentum. From the result of test, it was found that the artificial nerve grid was able to predict the damage in the induction motor, especially in the stator for the following day with 90% of the level of accuracy.

Keywords: Induction Motor, Artificial Nerve Grid, Optimal Grid Structure, Predict

(7)

KATA PENGANTAR

Puji dan syukur kehadirat Allah SWT, atas berkat rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan tesis yang berjudul: “

Prediksi Kerusakan Motor Induksi Menggunakan Metode Jaringan Saraf Tiruan Backpropagation ”.

Pada kesempatan ini, penulis mengucapkan terima kasih kepada Bapak Prof.

Dr. Ir. Usman Baafai selaku ketua pembimbing, Bapak Dr. Benny B. Nasution, Dipl.

Ing, M.Eng dan Bapak Ir.Pernantin Tarigan, MSc selaku anggota komisi pembimbing yang dengan penuh sabar, arif dan bijaksana memberikan bimbingan, dorongan, petunjuk serta arahan kepada penulis. Ucapan terima kasih juga penulis sampaikan kepada Bapak Prof. Dr.Tulus, M.Si dan Bapak Dr. Poltak Sihombing, M.Kom selaku pembanding utama tesis ini yang banyak memberikan saran dan masukan demi kesempurnaan penulisan tesis ini. Dan yang terakhir ucapan terima kasih penulis sampaikan kepada keluarga, teman penulis seluruh staf pengajar dan karyawan Program Studi Magister Teknik Elektro yang telah banyak memberikan semangat dan perhatian serta toleransi sehingga tesis ini dapat terselesaikan.

Penulis menyadari masih ada kekurangan dalam tulisan tesis ini, oleh sebab

itu penulis sangat mengharapkan saran dan kritikan yang bersifat membangun demi

kesempurnaan tesis ini sehingga harapan penulis agar tulisan ini dapat memenuhi

(8)

persyaratan yang diperlukan untuk suatu tesis dalam Program Studi Magister Teknik Elektro Fakultas Teknik Universitas Sumatera Utara dapat tercapai.

Akhir kata penulis mengucapkan banyak terima kasih dan semoga tesis ini dapat berguna bagi kita semua. Amin.

Medan, Agustus 2013 Hormat saya,

Herdianto

(9)

DAFTAR RIWAYAT HIDUP

Saya yang bertanda tangan di bawah ini,

Nama : Herdianto

Tempat/Tanggal Lahir : Helvetia, 08 April 1977

Jenis Kelamin : Laki-laki

Agama : Islam

Bangsa : Indonesia

Alamat : Jl. Setia Budi No.12 Pasar 2 Helvetia

Menerangkan dengan sesungguhnya, bahwa:

PENDIDIKAN

1. Tamatan S1 Sistem Komputer UNPAB Tahun 2008 2. Tamatan D3 Teknik Komputer UNPAB Tahun 2004 3. Tamatan STM Negeri 2 Medan Tahun 1995 4. Tamatan SMP Negeri 14 Medan Tahun 1992 5. Tamatan SD Swasta Karya Bakti Tahun 1989

PEKERJAAN

1. Staf pengajar di UNPAB sejak tahun 2009 hingga sekarang

(10)

Demikian riwayat hidup ini saya buat dengan sebenarnya untuk dapat dipergunakan sebagaimana mestinya.

Medan, 20 Agustus 2013 Tertanda,

Herdianto

(11)

DAFTAR ISI

Halaman

ABSTRAK ... i

 

ABSTRACT ... ii

 

KATA PENGANTAR ... iii

 

DAFTAR ISI ... vii

 

DAFTAR TABEL ... xi

 

DAFTAR GAMBAR ... xii

 

BAB 1 PENDAHULUAN ... 1

 

1.1.

 

Latar Belakang Masalah ... 1

 

1.2.

 

Perumusan Masalah ... 6

 

1.3.

 

Batasan Masalah ... 6

 

1.4.

 

Tujuan Penelitian ... 6

 

1.5.

 

Manfaat Penelitian ... 6

 

1.6.

 

Sistematika Penulisan ... 7

 

BAB 2 TINJAUAN PUSTAKA ... 8

 

2.1.

 

Pengertian Prediksi ... 8

 

2.1.1.Teknik Prediksi ... 8

 

2.1.1.1.

 

Prediksi Kualitatif ... 8

 

(12)

2.1.1.2.

 

Prediksi Kuantitatif ... 9

 

2.2.

 

Prediksi Kerusakan Motor Induksi ... 9

 

2.3.

 

Motor Induksi ... 10

 

2.3.1.

 

Konstruksi Umum Motor Induksi Satu Fasa ... 12

 

2.3.2.

 

Prinsip Kerja Motor Induksi Satu Fasa ... 14

 

2.3.3.

 

Jenis Kerusakan Motor Induksi ... 16

 

2.3.4.

 

Penyebab Kerusakan Stator Motor Induksi ... 18

 

2.3.5.

 

Parameter Untuk Memprediksi Kerusakan Stator Motor Induksi ... 22

 

2.3.5.1.

 

Arus ... 22

 

2.3.5.2.

 

Temperatur ... 25

 

2.4.

 

Jaringan Saraf Tiruan ... 27

 

2.4.1.

 

Otak Manusia ... 27

 

2.4.2.

 

Komponen Jaringan Saraf Tiruan ... 28

 

2.4.3.

 

Arsitektur Jaringan Saraf Tiruan ... 30

 

2.4.4.

 

Arsitektur Jaringan Saraf Tiruan Backpropagation ... 32

 

2.4.5.

 

Bobot ... 34

 

2.4.6.

 

Bias ... 35

 

2.4.7.

 

Epoch ... 35

 

2.4.8.

 

Learning Rate ... 35

 

2.4.9.

 

Toleransi Error ... 36

 

2.5. Fungsi Aktivasi ... 36

 

(13)

2.6.

 

Algoritma Pembelajaran ... 37

 

2.7.

 

Algoritma Pembelajaran Backpropagation Standar ... 38

 

2.7.1.

 

Algoritma pelatihan ... 39

 

2.7.2.

 

Algoritma aplikasi ... 41

 

2.8.

 

Variasi Pembelajaran Backpropagation ... 42

 

2.8.1.

 

Momentum ... 43

 

2.8.2.

 

Perubahan Bobot Berkelompok ... 43

 

BAB

 

3 METODE PENELITIAN ... 44

 

3.1.

 

Rancangan Penelitian ... 44

 

3.2.

 

Variabel yang Diamati ... 61

 

BAB

 

4 HASIL DAN PEMBAHASAN ... 62

 

4.1.

 

Pengujian Mencari Time Delay ... 62

 

4.1.1.

 

Pengujian Time Delay 2 Hari ... 64

 

4.1.2.

 

Pengujian Time Delay 3 Hari ... 65

 

4.1.3.

 

Pengujian Time Delay 4 Hari ... 66

 

4.1.4.

 

Pengujian Time Delay 5 Hari ... 67

 

4.2.

 

Pengujian Mencari Jumlah Hidden Layer ... 68

 

4.3.

 

Pengujian Mencari Nilai Learning Rate ... 72

 

4.4.

 

Pengujian Mencari Nilai Momentum ... 73

 

4.5.

 

Pengujian Hasil Pelatihan ... 75

 

4.5.1.

 

Error Hasil Pelatihan ... 75

 

4.5.2.

 

Diuji Dengan Pola Pelatihan ... 76

 

(14)

4.5.3.

 

Diuji Dengan Pola Yang Tidak Pernah Dikenali ... 79

 

BAB 5 KESIMPULAN DAN SARAN ... 81

 

5.1.

 

Kesimpulan ... 81

 

5.2.

 

Saran ... 81

 

DAFTAR PUSTAKA ... 83

 

(15)

DAFTAR TABEL

Nomor Judul

Halaman

1. 1 Daftar Penelitian Terkait ... 3

 

2. 1 Klasifikasi Jenis Isolasi Stator ... 26

2. 2 Istilah Nama Antara JST Dengan Jaringan Saraf Biologis ... 28

 

3. 1 Menunjukkan Besar Arus Terhadap Kondisi Motor Induksi ... 46

3. 2 Menunjukkan Nilai Temperatur Terhadap Kondisi Motor Induksi ... 49

 

3. 3 Kombinasi Nilai Arus Dan Temperatur Terhadap Kondisi Motor Induksi . 49

 

4.1 MSE Hasil Pelatihan Time Delay 2 Hari Dengan 1 Hidden Layer ... 65

4.2 MSE Hasil Pelatihan Time Delay 3 Hari Dengan 1 Hidden Layer ... 66

 

4.3 MSE Hasil Pelatihan Time Delay 4 Hari Dengan 1 Hidden Layer ... 67

 

4.4 MSE Hasil Pelatihan Time Delay 5 Hari Dengan 1 Hidden Layer ... 68

 

4.5 MSE Hasil Pelatihan Mencari Jumlah Node Pada Hidden Layer Ke-2 ... 70

 

4.6 MSE Hasil Pelatihan Mencari Jumlah Node Pada Hidden Layer Ke-3 ... 71

 

4.7 MSE Hasil Pelatihan Mencari Jumlah Node Pada Hidden Layer Ke-4 ... 72

 

4.8 MSE Hasil Pelatihan Dari Learning Rate 0,1 – 0,9 ... 73

 

4.9 MSE Hasil Pelatihan Dari Momentum 0,1 – 0,9 ... 74

 

4. 10 Perbandingan Antara Target Dengan Hasil Prediksi Pada Pola Pelatihan ... 77

 

4. 11 Perbandingan Antara Target Dengan Hasil Prediksi Pada Pola Uji ... 80

(16)

DAFTAR GAMBAR

Nomor Judul

Halaman

2. 1 Tipe Motor Induksi ... 11

 

2. 2 Bagian-Bagian Rotor ... 12

 

2. 3 Isolasi Kertas Yang Ditempatkan Pada Alur Laminasi ... 13

 

2. 4 Konstruksi Motor Induksi Satu Fasa ... 13

 

2. 5 Torsi Arah Maju Dan Torsi Arah Mundur ... 15

 

2. 6 Persentase Kerusakan Motor Induksi ... 16

 

2. 7 Permukaan Kumparan Stator Dalam Keadaan Baik (a) Dan Rusak (b) ... 18

 

2. 8 Permukaan Kumparan Stator Yang Rusak Akibat Panas Berlebih ... 19

 

2. 9 Permukaan Kumparan Stator Yang Rusak Akibat Tegangan Lebih ... 20

 

2. 10 Permukaan Kumparan Stator Yang Rusak Akibat Mekanik ... 21

 

2. 11 Permukaan Kumparan Stator Yang Rusak Akibat Keadaan Lingkungan Yang Lembab ... 21

 

2. 12 Rangkaian Listrik Motor Split Permanen Kapasitor ... 23

 

2. 13 Jaringan Saraf Secara Biologis ... 27

 

2. 14 Struktur Node Jaringan Saraf Tiruan ... 29

 

2. 15 JST Dengan 3 Lapisan ... 29

 

2. 16 Bentuk Jaringan Saraf Tiruan Dengan Lapisan Tunggal ... 30

 

2. 17 Bentuk JST Dengan Banyak Lapisan... 31

 

2. 18 Bentuk JST Dengan Lapisan Kompetitif ... 32

 

(17)

2. 19 JST Backpropagation Dengan Satu Lapisan Tersembunyi ... 33

 

2. 20 Fungsi Sigmoid Biner ... 37

 

3. 1 Bentuk Pola Data Arus Motor Induksi Dari Kondisi Baik Hingga Rusak... 45

3. 2 Bentuk Pola Data Arus Motor Induksi Dalam Kondisi Baik ... 46

 

3. 3 Bentuk Pola Data Arus Motor Induksi Dalam Kondisi Sedang... 47

 

3. 4 Bentuk Pola Data Arus Motor Induksi Dalam Kondisi Buruk ... 47

 

3. 5 Pola Data Temperatur Motor Induksi Dari Kondisi Baik Hingga Rusak ... 48

 

3. 6 Pola Data Temperatur Yang Telah Dilakukan Proses Normalisasi ... 51

 

3. 7 Pola Data Temperatur Motor Induksi Dalam Kondisi Baik ... 51

 

3. 8 Pola Data Temperatur Motor Induksi Dalam Kondisi Sedang ... 52

 

3. 9 Pola Data Temperatur Motor Induksi Dalam Kondisi Buruk ... 52

 

3. 10 Bentuk Jaringan Saraf Tiruan Dengan 96 Input (Time Delay 2 Hari) ... 54

 

3. 11 Bentuk Jaringan Saraf Tiruan Dengan 144 Input (Time Delay 3 Hari) ... 55

 

3. 12 Bentuk Jaringan Saraf Tiruan Dengan 192 Input (Time Delay 4 Hari) ... 55

 

3. 13 Bentuk Jaringan Saraf Tiruan Dengan 240 Input (Time Delay 5 Hari) ... 56

 

3. 14 Bentuk Jaringan Saraf Tiruan Untuk Mencari Jumlah Hidden Layer ... 57

 

3. 15 Bentuk Jaringan Saraf Tiruan Mencari Jumlah Node Hidden Layer ... 58

 

4. 1 Keberdekatan Hasil Prediksi Dengan Target Pada Pola Pelatihan ... 76

4. 2 Keberdekatan Hasil Prediksi Dengan Target Pada Pola Uji ... 79

 

 

(18)

BAB 1 PENDAHULUAN

1.1. Latar Belakang Masalah

Motor induksi (MI) adalah alat listrik yang mengubah energi listrik menjadi energi mekanik yang berupa tenaga putar [1]. Motor induksi banyak dipakai sebagai penggerak untuk mengerjakan banyak proses di industri seperti menggerakkan blower (penghasil angin) berkapasitas besar yang dipakai untuk pembakaran di dalam tungku peleburan, menggerakkan conveyor (pengangkut bahan), menggerakkan pompa air untuk sirkulasi air pendingin dan lain-lain. Meskipun MI cukup handal tetapi pada kenyataannya dapat saja mengalami banyak masalah pada saat beroperasi yang menyebabkan kerusakan total pada motor induksi tersebut [2].

Kerusakan total motor induksi pada saat berlangsungnya proses produksi dapat

mengakibatkan rendahnya mutu barang jadi yang dihasilkan hingga sampai

berhentinya proses produksi itu sendiri. Untuk mengatasi hal ini telah dilakukan

teknik monitoring terhadap MI, baik secara konvensional maupun digital. Teknik

monitoring konvensional untuk motor induksi pada umumnya merupakan kombinasi

dari beberapa peralatan mekanik dan listrik [2],[3] di mana penginderaan terhadap

variabel-variabel motor induksi dilakukan dengan peralatan mekanik yang memiliki

banyak keterbatasan dalam mendeteksi kerusakan pada MI seperti kerusakan pada

isolasi stator [2],[3]. Sedangkan pada teknik monitoring digital untuk melakukan

penginderaan terhadap variabel-variabel MI telah menggunakan sensor untuk

(19)

selanjutnya diubah menjadi bentuk digital oleh analog to digital converter (ADC) lalu dimasukkan ke dalam komputer atau mikrokontroler [2],[4],[5].

Teknik monitoring konvensional dan digital di dalam melakukan pendeteksian kerusakan pada motor induksi menggunakan metode rule based [2],[3] sehingga hanya dapat mendeteksi kerusakan MI pada kondisi yang telah ditentukan.

Selanjutnya teknik monitoring MI dikembangkan dengan menggunakan artificial intelegent (AI), seperti yang telah dilakukan pada penelitian [6],[7],[8],[9],[10], [11],[12],[13], sehingga teknik monitoring MI tidak hanya dapat mendeteksi tetapi dapat juga memprediksi kerusakan MI, di mana salah satu metode yang dapat digunakan adalah jaringan saraf tiruan (JST). Tetapi pada teknik monitoring MI menggunakan JST seperti pada penelitian [8],[9],[10], variabel yang dimonitoring adalah arus dan kecepatan sedangkan metode JST digunakan untuk mendeteksi kerusakan bearing dan stator pada MI belum memprediksi.

Jadi inilah yang menjadi alasan utama mengapa peneliti mencoba menggunakan metode JST untuk memprediksi kerusakan MI khususnya pada stator untuk 1 hari ke depan dan variabel yang digunakan adalah arus dan temperatur.

Beberapa penelitian mengenai deteksi kerusakan motor induksi telah

dilakukan di mana perbedaan sistem yang telah ada dengan yang akan dilakukan

dapat dilihat pada Tabel 1. 1 berikut:

(20)

Tabel 1. 1 Daftar Penelitian Terkait

Penulis Judul Penelitian Pembahasan Tahun

M. Sudha dan P. Anbalagan [5]

A protection scheme for three fasa

induction motor form incipient fault using embedded controller

Penelitian ini membahas

penggunaan

mikrokontroller PIC 16F877 untuk melakukan

monitoring dan melindungi motor induksi dari kerusakan total.

Metode yang digunakan untuk mendeteksi

kerusakan MI adalah rule based.

2009

Ibrahim Sefa, Ilhami Colak, Askin Bektas, Ramazan

Bayindir [2]

Fault detection and protection of induction motors using sensors

Untuk melakukan monitoring dan melindungi motor induksi dari kerusakan total menggunakan ADC

dan PLC (programmable logic

controller) agar variabel- variabel yang diukur seperti tegangan, arus, temperatur,

kecepatan dapat ditampilkan nilainya pada layar monitor.

2008

(21)

Penulis

Sri R. Kolla, Shawn

D.Altman [7]

Judul Penelitian

Artifial neural network based fault identification scheme implementation for a three- fasa induction motor

Pembahasan

Di mana metoda yang dipakai untuk mendeteksi

kerusakan MI adalah rule based.

Pada penelitian ini menjelaskan

implementasi dan pengujian

menggunakan

metode jaringan saraf tiruan untuk mendeteksi

kerusakan motor induksi. Di mana variabel yang dimonitor arus dan tegangan.

Tahun

2007

H.Celik, I.Sefa, S. Dermibas, I.Colak [3]

On line protection sistem for induction motors

Pada penelitian ini membahas cara memonitoring dan melindungi motor induksi dari kerusakan total sehingga banyak membutuhkan ADC eksternal. Di mana

metode yang digunakan untuk mendeteksi

kerusakan pada MI adalah rule based.

2005

Tabel 1.1 Daftar Penelitian Terkait (Sambungan) Hal: 3

(22)

Penulis

Sui Oi Yee, Mo- Yuen Chow Peter M.

Mangun [8]

Judul Penelitian

A neural network approach to real time condition monitoring of induction motor

Pembahasan

Penelitian ini membahas cara mendeteksi

kerusakan motor induksi khususnya pada bearing dan stator menggunakan metode jaringan saraf tiruan. Di mana

variabel yang dimonitor arus dan kecepatan.

Tahun

1991

Herdianto Prediksi kerusakan motor induksi menggunakan metoda jaringan saraf tiruan (backpropagation)

Pada penelitian yang akan dilakukan metode jaringan saraf tiruan saraf tiruan dengan algoritma pembelajaran backpropagation digunakan untuk memprediksi kerusakan MI khususnya pada stator untuk 1 hari ke depan. Di mana variabel yang digunakan adalah

arus dan temperatur.

2013

Tabel 1.1 Daftar Penelitian Terkait (Sambungan) Hal: 4

(23)

1.2. Perumusan Masalah

Berdasarkan latar belakang masalah yang telah diuraikan di atas, maka penulis merumuskan masalah pada penelitian ini adalah sebagai berikut: bagaimana menerapkan teknologi jaringan saraf tiruan dengan algoritma pembelajaran backpropagation untuk memprediksi kerusakan motor induksi khususnya pada stator untuk 1 hari ke depan.

1.3. Batasan Masalah

Adapun batasan masalah pada penelitian ini adalah:

a. Motor induksi yang digunakan jenis 1 fasa 220 volt 125 watt.

b. Kerusakan motor induksi yang diprediksi hanya stator.

c. Variabel yang digunakan untuk memprediksi ialah arus dan temperatur.

d. Metode pembelajaran yang digunakan hanya backpropagation.

1.4. Tujuan Penelitian

Tujuan dari penelitian ini adalah memperoleh struktur jaringan saraf tiruan yang optimal dengan algoritma pembelajaran backpropagation untuk memprediksi kerusakan stator pada motor induksi.

1.5. Manfaat Penelitian

Beberapa manfaat yang dapat diperoleh dengan adanya penelitian mengenai

prediksi kerusakan motor induksi menggunakan metode jaringan saraf tiruan dengan

algoritma pembelajaran backpropagation yaitu apabila hasil penelitian ini diterapkan,

(24)

diharapkan dapat menghindari terganggunya proses produksi di industri, memperpanjang usia motor induksi, membantu pihak pemeliharaan disuatu industri dalam menganalisis kerusakan dari motor induksi serta membantu menentukan jadwal pemeliharaan terhadap motor induksi itu sendiri.

1.6. Sistematika Penulisan

Tesis ini terdiri dari lima bab, dengan penjelasan tiap-tiap bab sebagai berikut:

BAB 1 : PENDAHULUAN, pada bab ini berisi tentang latar belakang masalah, perumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian

serta sistematika penulisan.

BAB 2 : TINJAUAN PUSTAKA, bab ini menjelaskan tentang teori pendukung yang digunakan pada prediksi kerusakan MI seperti pengertian prediksi, prediksi kerusakan MI, motor induksi, JST, fungsi aktivasi, algoritma pembelajaran, algoritma pembelajaran backpropagation standar.

BAB 3 : METODE PENELITIAN, bab ini memberikan penjelasan mengenai rancangan penelitian dan variabel yang diamati.

BAB 4 : HASIL DAN PEMBAHASAN, bab ini menjelaskan mengenai pengujian

yang dilakukan selama penelitian seperti pengujian mencari time delay, jumlah hidden layer, nilai learning rate, nilai momentum dan pengujian

hasil pelatihan.

BAB 5 : KESIMPULAN DAN SARAN, bab ini berisi kesimpulan dari hasil

pembahasan masalah dan saran-saran berkenaan dengan tesis ini.

(25)

BAB 2

TINJAUAN PUSTAKA

2.1. Pengertian Prediksi

Prediksi adalah suatu proses memperkirakan secara sistematis tentang sesuatu yang paling mungkin terjadi di masa depan berdasarkan informasi masa lalu dan sekarang yang dimiliki, agar kesalahannya (selisih antara sesuatu yang terjadi dengan hasil perkiraan) dapat diperkecil. Prediksi tidak harus memberikan jawaban secara pasti kejadian yang akan terjadi, melainkan berusaha untuk mencari jawaban sedekat mungkin yang akan terjadi [14].

2.1.1. Teknik Prediksi

Berdasarkan teknik yang digunakan untuk memprediksi maka prediksi dapat dibagi menjadi dua bagian yaitu prediksi kualitatif dan prediksi kuantitatif [14].

2.1.1.1. Prediksi Kualitatif

Prediksi kualitatif didasarkan atas data kualitatif pada masa lalu. Metoda

kualitatif digunakan jika data masa lalu dari variabel yang akan diprediksi tidak ada,

tidak cukup atau kurang dipercaya. Hasil prediksi yang dibuat sangat tergantung pada

individu yang menyusunnya. Hal ini penting karena hasil prediksi tersebut ditentukan

berdasarkan pemikiran yang bersifat judgement atau opini, pengetahuan dan

pengalaman dari penyusunnya. Oleh karena itu metode kualitatif ini disebut juga

judgemental, sudjective, intuitive.

(26)

2.1.1.2. Prediksi Kuantitatif

Prediksi kuantitatif didasarkan atas data kuantitatif pada masa lalu. Hasil prediksi yang dibuat sangat tergantung pada metode yang dipergunakan dalam prediksi tersebut. Dengan metoda yang berbeda akan diperoleh hasil prediksi yang berbeda. Hal yang perlu diperhatikan dari penggunaan metoda tersebut adalah baik tidaknya metoda yang digunakan dan sangat ditentukan dari penyimpangan antara hasil prediksi dengan kenyataan yang terjadi. Metoda yang baik adalah metoda yang memberikan nilai-nilai perbedaan atau penyimpangan yang mungkin. Prediksi kuantitatif hanya dapat digunakan apabila terdapat tiga kondisi sebagai berikut:

a. Adanya informasi tentang keadaan yang lain.

b. Informasi tersebut dapat dikuantifikasikan dalam bentuk data.

c. Dapat diasumsikan bahwa pola yang lalu akan berkelanjutan pada masa yang akan datang.

2.2. Prediksi Kerusakan Motor Induksi

Prediksi kerusakan motor induksi adalah suatu proses memperkirakan secara sistematis keadaan baik, sedang, buruk yang akan terjadi pada motor induksi pada waktu yang akan datang berdasarkan data yang diperoleh pada saat itu dengan pertimbangan data masa lalu. Waktu yang dimaksud di sini dapat direpresentasikan sebagai (jam, hari, minggu, bulan, tahun). Tetapi pada penelitian ini jangka waktu prediksi yang digunakan adalah hari karena untuk meningkatkan akurasi prediksi.

Sedangkan prediksi kerusakan motor induksi dapat dipersempit dengan memilih salah

(27)

satu jenis kerusakan yang sering terjadi pada motor induksi seperti kerusakan pada bearing, stator atau rotor.

2.3. Motor Induksi

Motor induksi adalah alat listrik yang mengubah energi listrik menjadi energi mekanik yang berupa tenaga putar [1]. Dikatakan motor induksi karena rotor berputar bukan karena mendapat energi listrik secara langsung dari jala-jala listrik tetapi karena adanya induksi dari kumparan stator. Berdasarkan jumlah fasa tegangan listrik yang pada umumnya digunakan, motor induksi dibedakan menjadi 2 (dua) yaitu motor induksi satu fasa dan tiga fasa.

Motor induksi satu fasa banyak digunakan pada rumah tangga dan industri

sebagai penggerak karena konstruksinya yang sederhana, bekerja sesuai dengan

suplai tegangan PLN 220 VAC dan bekerja dengan daya yang kecil < 1400 watt

karena faktor-faktor tersebut maka motor induksi satu fasa ini banyak dipakai pada

peralatan rumah tangga seperti kipas angin, kompresor, pompa air, lemari es, mesin

cuci, air condition (AC) dan lain-lain. Sedangkan motor induksi tiga fasa pada

umumnya digunakan di industri yang memerlukan daya yang besar seperti elevator,

chiller, mixer, blower, hammer, conveyor, crane. Karena begitu banyaknya jenis

motor induksi yang ada di pasaran seperti yang terdapat pada Gambar 2.1 dan hal ini

tidak didukung dengan ketersediaan sarana dan prasarana yang dimiliki oleh peneliti

maka pada penelitian ini motor induksi yang digunakan jenis satu fasa split

permanen kapasitor.

(28)

Gambar 2. 1 Tipe Motor Induksi [15]

AC  MOTOR 

UNIVERSAL

DC  MOTOR

Separately excitation

Compound excitation

Permanent magnet Series excitation

Paralel/shunt excitation

Synchronous Asynchronous

Squirrel cage

Single phase

Three phase Linear

Synchronous Asynchronous

Wound rotor

Bulk

rotor Hysterisis

Repulsion

Permanent magnet Induction Permanent magnet Reluctance Start capasitor

Shaded pole Split Permanent

capasitor

Two value capasitor

Sallent Poles Wound field

Wound rotor Squirrel

cage

Reluctance Radian Permanent

magnet

Surface magnet

(29)

2.3.1. Konstruksi Umum Motor Induksi Satu Fasa

Konstruksi motor induksi satu fasa pada umumnya terdiri dari dua bagian yaitu: stator dan rotor seperti pada Gambar 2.4. Rotor adalah bagian motor induksi yang berputar seperti rotor (inti rotor), poros rotor, sirip pendingin seperti pada Gambar 2.2. Poros rotor adalah coran tembaga atau aluminium dalam satu lempeng dengan inti rotor. Pada ujung inti rotor biasanya dilengkapi dengan sirip yang berfungsi sebagai pendingin [16].

Gambar 2. 2 Bagian-Bagian Rotor [16]

Sedangkan stator adalah bagian motor induksi yang tidak bergerak seperti inti stator seperti pada Gambar 2.3. Stator terdiri atas tumpukan laminasi inti yang memiliki alur dan menjadi tempat kumparan kawat tembaga yang telah dilapisi isolasi tipis dililitkan yang berbentuk silinder. Setiap elemen laminasi inti dibentuk dari lembaran besi dan setiap lembaran besi memiliki beberapa alur dan lubang

Laminasi rotor (inti rotor) Sirip pendingin

Cincin Aluminium

Poros rotor

(30)

p d

pengikat un diisolasi den

Gamb Inti (lamin

ntuk menyat ngan kertas u

bar 2. 3 Isol

Gambar stator nasi inti)

tukan inti. A untuk mengh

lasi Kertas Y

2. 4

Konstr

Alur pada hindari hubu

Yang Ditemp

ruksi Motor

laminasi int ungan singka

patkan Pada

Induksi Satu

ti tersebut n at [16].

Alur Lamin

u Fasa [17]

nantinya ak

asi [16]

kan

(31)

2.3.2. Prinsip Kerja Motor Induksi Satu Fasa

Adapun prinsip kerja dari motor induksi satu fasa split permanen kapasitor adalah sebagai berikut [1]: Pada motor induksi satu fasa ketika kumparan stator dialiri arus dari jala-jala listrik maka pada kumparan stator tidak menimbulkan fluks magnit putar tetapi menghasilkan fluks magnit bolak-balik disekitar kumparan stator tersebut hal ini yang menyebabkan motor induksi tidak dapat berputar pada waktu start. Fluks magnit bolak-balik ini menghasilkan fluks pulsasi yang besar kecilnya tergantung pada sudut ruang dan fluks pulsasi ini bukan fluks yang berputar terhadap ruang.

Proses terjadinya fluks pulsasi tersebut dapat dijelaskan dengan Persamaan Euler.

………..………..(2. 1) Sehingga Φ

m

cos θ dapat ditulis

……….. (2. 2)

……….(2. 3)

Di mana Φ adalah amplitudo fluks magnit, sehingga jumlah dari kedua komponen fluks magnit tersebut merupakan fluks resultan atau fluks pulsasi yang besarnya adalah:

……….(2. 4)

Komponen dari kedua fluks magnit tersebut bergerak berlawanan arah

dengan kecepatan sudut (ωt) yang sama, tentunya akan menghasilkan torsi yang sama

(32)

d r

T

d m D m d m

dan berlawa resultan dari

Torsi resulta

T

R

p dengan arah mundur hal Dengan me menyebabka dapat dilaku maka terjadi

anan arah (to i fluks magn

Gambar 2. 5

an (T

R

) yang

pada dasarn h maju atau m

ini yang m enggunakan

an motor ber ukan dengan i beda fasa a

orsi arah maj nit yang berg

5 Torsi Ara

g dihasilkan o

nya mempu mundur. Pad menyebabkan sedikit ten rputar arah m

cara memas antara arus k

ju dan torsi a gerak arah m

ah Maju Dan

oleh torsi ma T

R

=

unyai kema da waktu sta n motor indu naga yang d

maju atau mu sang kapasit kumparan uta

arah mundur maju dan mun

n Torsi Arah

aju (T

f

) dan T

f

+ T

b

……

mpuan untu art, besar tor

uksi tetap sa digerakkan undur. Penam tor secara se

ama dan kum

r). Gambar 2 ndur.

h Mundur [17

torsi mundu

………

uk mengge rsi maju sam aja diam (ti dengan alat mbahan alat ri dengan ku mparan bantu

2.5 merupak

7]

ur (T

b

) adalah

…………(2.

rakkan mot ma dengan to

idak berputa t bantu dap

bantu terseb umparan ban u sebesar 90

kan

h:

5)

tor rsi ar).

pat

but

ntu

0

0

.

(33)

A k m y s 2

b k

a

Akibat beda kumparan st menjadi bes yang lebih b split.

2.3.3. Jenis Berd bahwasanya kategori den 12 % lain-la

a. Kerusak Terjadin kompon

a fasa (θ) y tator akan m sar pula. Ole

besar dengan

s Kerusakan dasarkan pe a kerusakan y

ngan persent ain seperti ter

Gambar 2

kan Bearing nya keausan nen tersebut.

yang besar in menjadi bes eh karena it n arus start

Motor Induk enelitian da

yang sering tase kerusak rlihat pada G

2. 6 Persent

n pada beari . Hal ini dap

Stator 38%

Rotor 10%

La la 12

ni, maka flu ar dan deng tu motor kap lebih kecil

ksi

an survei y terjadi pada an 40 % pad Gambar 2.6.

tase Kerusak

ing merupak pat disebabka

ain- ain 2%

Motor

uks magnit p gan sendirin pasitor dapa dibandingka

yang telah motor induk da bearing, 3

kan Motor In

kan tanda tel an karena ad Bearin 40%

Induksi

putar yang d nya gaya pu at memberik an motor fas

dilakukan ksi dapat dib 38% stator,

nduksi [19]

lah terjadi k danya baut p ng

%

dihasilkan ol utar rotor ak kan gaya put sa tunggal ti

[11],[18],[1 bagi menjad

10% rotor d

kerusakan pa pengikat mot

leh kan tar ipe

19]

i 4 dan

ada

tor

(34)

induksi yang kendor sehingga menimbulkan getaran yang berlebih, lamanya pemakaian, kondisi lingkungan kerja (panas, berdebu), beban kerja yang berlebih dan terjadi ketidak seimbangan jarak celah udara antara rotor dengan stator. Untuk mengetahui kerusakan pada bearing dapat digunakan beberapa parameter seperti getaran, suara, arus stator.

b. Kerusakan Stator

Kerusakan yang terjadi stator dapat dikarenakan rusaknya laminasi inti stator, isolasi kawat tembaga dan isolasi stator. Hal ini dapat disebabkan oleh temperatur motor induksi yang terlalu tinggi, tegangan listrik yang berlebih dan tidak stabil, terjadi kerusakan pada sistem mekanik seperti bearing telah yang aus, serta dapat dikarenakan kondisi lingkungan yang lembab, kotor atau berdebu. Adapun beberapa parameter yang dapat digunakan untuk mengetahui kerusakan pada stator seperti fluks magnet, kecepatan, getaran, suara, daya keluaran, tegangan, arus, temperatur, tetapi pada penelitian ini peneliti menggunakan arus dan temperatur.

c. Kerusakan Rotor

Bentuk kerusakan yang terjadi pada rotor seperti pecahnya bagian-bagian dari rotor. Hal ini dapat disebabkan getaran, temperatur motor induksi yang terlalu tinggi, tegangan listrik yang berlebih dan tidak stabil. Untuk mengetahui kerusakan pada rotor dapat digunakan beberapa parameter seperti getaran, suara, kecepatan.

d. Kerusakan Lain-lain

(35)

Bentuk kerusakan lainnya yang dapat terjadi pada motor induksi seperti terjadi ketidakseimbangan jarak celah udara antara rotor dengan stator. Hal ini lebih disebabkan karena kesalahan manufaktur (proses pembuatan di pabrik). Untuk mengetahui jenis kerusakan seperti ini dapat digunakan beberapa parameter seperti getaran, suara, kecepatan, daya keluaran.

2.3.4. Penyebab Kerusakan Stator Motor Induksi

Stator merupakan bagian dari motor induksi yang tidak bergerak, meskipun stator ini tidak bergerak tetapi dapat saja mengalami kerusakan. Sebagai bahan perbandingan untuk membedakan antara kumparan stator yang bagus dengan yang telah rusak, dapat dilihat dari Gambar 2.7 yang merupakan bentuk permukaan dari kumparan stator dalam keadaan bagus dan rusak.

(a) (b)

Gambar 2. 7 Permukaan Kumparan Stator Keadaan Baik (a) Dan Rusak (b) [20]

(36)

Kerusakan yang terjadi pada kumparan stator dapat disebabkan oleh 4 hal, yaitu [13]:

a. Panas

Panas yang menyebabkan kerusakan pada stator dapat ditimbulkan dari lamanya operasional MI sendiri dan panas yang melebihi batas yang diijinkan, di mana setiap kenaikan temperatur 10

0

C dari panas yang ditimbulkan karena operasional MI dapat menyebabkan berkurangnya setengah dari kondisi isolasi stator.

Sedangkan panas yang melebihi batas yang diijinkan dapat disebabkan oleh tegangan yang tidak stabil dan rusaknya kipas pendingin pada MI. Bentuk permukaan dari kumparan stator yang rusak akibat panas yang berlebih seperti yang ditunjukkan pada Gambar 2.8.

Gambar 2. 8 Permukaan Kumparan Stator Yang Rusak Akibat Panas Berlebih [20]

(37)

b. Listrik

Hal-hal yang termasuk dalam kelistrikan yang dapat menyebabkan kerusakan stator seperti corona dan tegangan berlebih. Bentuk permukaan kumparan stator yang rusak akibat tegangan berlebih dapat dilihat pada Gambar 2.9.

Gambar 2. 9 Permukaan Kumparan Stator Yang Rusak Akibat Tegangan Lebih [20]

c. Mekanik

Terjadinya gesekan antara rotor dengan stator merupakan salah satu bentuk

kerusakan stator yang disebabkan karena faktor mekanik. Hal ini dapat terjadi

karena bearing yang telah aus, poros rotor yang tidak lurus dan baut pengikat inti

stator yang kendor. Gambar 2.10 menunjukkan permukaan kumparan stator yang

rusak akibat terjadi gesekan antara rotor dan stator.

(38)

Gambar 2. 10 Permukaan Kumparan Stator Yang Rusak Akibat Mekanik [20]

d. Keadaan Lingkungan

Beberapa penyebab kerusakan pada stator karena keadaan lingkungan seperti MI dioperasikan di tempat yang panas, lembab, berdebu dan lain-lain. Bentuk permukaan kumparan stator yang rusak akibat motor induksi dioperasikan pada lingkungan yang lembab ditunjukkan seperti pada Gambar 2.11.

Gambar 2. 11 Permukaan Kumparan Stator Yang Rusak Akibat Keadaan

Lingkungan Yang Lembab [20]

(39)

2.3.5. Parameter Untuk Memprediksi Kerusakan Stator Motor Induksi

Ada 11 parameter yang dapat digunakan untuk memprediksi kerusakan stator yaitu fluks magnet, tegangan, arus, temperatur, getaran, suara, kecepatan, celah udara, daya keluaran, analisis gas, dan analisis sirkuit motor [13]. Tetapi karena keterbatasan peralatan, waktu dan biaya maka parameter yang digunakan untuk memprediksi kerusakan stator MI pada penelitian ini hanya 2 yaitu arus dan temperatur.

2.3.5.1. Arus

Untuk mengetahui gejala kerusakan yang akan terjadi pada kumparan stator dapat dilakukan dengan mengamati besarnya arus listrik yang mengalir pada kumparan stator dengan cara melakukan pengukuran. Besar kecilnya arus listrik yang mengalir pada kumparan stator sangat dipengaruhi perubahan beban motor induksi, panas, tegangan lebih, mekanik dan kondisi lingkungan. Untuk menghindari kerusakan total pada stator maka sebagai acuan yang digunakan pada penelitian ini dengan mengacu pada batas nominal arus yang mengalir pada kumparan stator MI berdasarkan data spesifikasi yang terdapat pada name plate yang ada motor induksi tersebut. Jika arus yang mengalir ke kumparan stator melebihi batas nonimal yang ditetapkan, kondisi ini menunjukkan bahwasanya telah terjadi yang abnormal pada MI. Arus yang lebih ini berdampak pada meningkatnya temperatur MI, mengurangi nilai tahanan kumparan stator yang dapat menyebabkan putusnya kawat lilitan kumparan stator.

Motor induksi yang digunakan pada penelitian ini jenis split permanen

kapasitor. Dilihat dari segi konstruksinya, MI jenis split permanen kapasitor sama

(40)

dengan motor induksi 3-fasa, bedanya terletak pada kumparan statornya yang hanya ada satu fasa dan dilakukan penambahan satu kapasitor yang terhubung seri dengan kumparan bantu, seperti pada Gambar 2.12 [17].

Gambar 2. 12

Rangkaian listrik motor split permanen kapasitor [17]

Besar daya input dapat dihitung dengan Persamaan 2.6 [1]

P = V

t

* I

L

* Cos φ ……….(2. 6)

P = daya input (watt) V

t

= tegangan jala-jala (volt)

I

L

= arus yang masuk ke kumparan utama dan bantu (amper) Cos φ = factor daya

Tegangan jala-jala

Rotor

Kumparan utama

Kumparan bantu

Kapasitor IU

IB

ZU

ZB

Xc

XB

Xu

V

t

I

L

(41)

φ = …………..………..(2. 7) arc tg = nilai inverse tangen

X

U

= reaktansi induktif pada kumparan utama (ohm)

X

C

= reaktansi kapasitip pada kapasitor (ohm) X

B

= reaktansi induktif pada kumparan bantu (ohm) R

U

= tahanan murni pada kumparan utama (ohm) R

B

= tahanan murni pada kumparan bantu (ohm)

Besarnya arus listrik yang mengalir ke kumparan utama dapat dihitung dengan menggunakan Persamaan 2.8 [1]:

= ….………..(2. 8) I

U

= arus yang mengalir pada kumparan utama (amper)

Z

U

= impedansi pada kumparan utama (ohm)

………..(2. 9) jX

U

= reaktansi induktif pada kumparan utama (ohm)

di mana dapat diperoleh dengan menggunakan Persamaan 2.10

………(2. 10)

f = frekuensi tegangan jala-jala (Hertz) l = induktansi kumparan utama (Henry)

Di mana besarnya arus listrik yang mengalir ke kumparan bantu dapat dihitung

dengan menggunakan Persamaan 2.11 [1]:

(42)

= ……….(2. 11) I

B

= arus yang mengalir pada kumparan bantu (amper)

Z

B

= impedansi pada kumparan bantu (ohm)

……….(2. 12) jX

B

= reaktansi induktif pada kumparan bantu (ohm)

jX

C

= reaktansi kapasitif pada kapasitor (ohm)

di mana dapat diperoleh dengan menggunakan Persamaan 2.13 [1]

………(2. 13) sedangkan dapat diperoleh dengan menggunakan Persamaan 2.14 [1]

……….……….(2. 14) C = kapasitansi kapasitor yang digunakan (Farad)

Sehingga

………..(2. 15)

2.3.5.2. Temperatur

Salah satu faktor yang dapat mempengaruhi kondisi dari isolasi stator adalah

temperatur. Selain dapat mengurangi umur ketahanan dari isolasi stator tersebut,

temperatur yang tinggi dapat juga menyebabkan terbakarnya isolasi stator jika

melebihi batas ketahanan panas dari jenis isolasi yang digunakan sehingga

menyebabkan terjadinya kerusakan total dari motor induksi. Tabel 2.1 menunjukkan

klasifikasi jenis isolasi stator yang digunakan motor induksi.

(43)

Tabel 2. 1 Klasifikasi jenis isolasi stator [21]

Jenis isolasi stator Batas temperatur

A B F H R

105

o

C 130

o

C 155

o

C 180

o

C 220

o

C

Untuk itu perlu dilakukan pengukuran temperatur pada kumparan stator MI baik dengan cara menggunakan sensor temperatur seperti termokopel, LM 35, PTC atau pengukuran temperatur dilakukan secara manual dengan cara mengukur nilai tahanan kumparan stator MI. Besarnya kenaikan temperatur pada motor induksi ketika beroperasi sebanding dengan lamanya operasi MI tersebut dan dapat diketahui dengan mengukur tahanan kumparan utama dan bantu sebelum dan sesudah dioperasikan beberapa jam MI dengan menggunakan Persamaan 2.16 [22]:

……….(2. 16)

R

C

= tahanan kumparan utama dan bantu sebelum dioperasikan (Ohm) R

h

= tahanan kumparan utama dan bantu sesudah dioperasikan (Ohm) α

= Koefisien tahanan kawat tembaga (0,00428 Ohm /

0

C)

t

1

= temperatur awal motor induksi (

0

C)

t

2

= temperatur akhir motor induksi (

0

C)

(44)

2.4. Jaringan Saraf Tiruan

Jaringan saraf tiruan (neural network) merupakan salah satu representasi buatan dari otak manusia yang selalu mencoba untuk mensimulasikan proses pembelajaran pada otak manusia tersebut. Istilah tiruan di sini digunakan karena jaringan saraf ini meniru cara kerja jaringan saraf biologis dan diimplementasikan dengan menggunakan program komputer yang mampu menyelesaikan sejumlah proses perhitungan selama proses pembelajaran [23].

2.4.1. Otak Manusia

Otak manusia berisi berjuta-juta sel saraf yang bertugas mengolah informasi.

Tiap-tiap sel saraf bertugas seperti suatu prosesor sederhana dan saling berinteraksi sehingga mendukung kemampuan kerja otak manusia. Gambar 2.13 menunjukkan contoh jaringan saraf secara biologis.

Gambar 2. 13

Jaringan Saraf Secara Biologis [24]

(45)

Setiap neuron menerima sinyal input dari neuron yang lain melalui dendrit dan mengirimkan sinyal yang dihasilkan inti sel melalui axon. Axon dari neuron biologis bercabang-cabang dan berhubungan dengan dendrit dari neuron lainnya dengan cara mengirimkan sinyal input melalui sinapsis. Di mana sinapsis merupakan unit fungsional yang terletak di antara 2 buah neuron umpamanya neuron 1 dan 2.

Dan nilai yang terdapat pada sinapsis dapat berkurang dan bertambah tergantung dari seberapa besar tingkat propagasi yang diterimanya [25]. Tabel 2.2 istilah nama antara jaringan saraf biologis dengan jaringan saraf tiruan (JST).

Tabel 2. 2 Istilah Nama Antara JST Dengan Jaringan Saraf Biologis [25]

Jaringan saraf tiruan Jaringan saraf biologis Node atau unit

Input Output

Bobot

Neuron Dendrit Axon Sinapsis

2.4.2. Komponen Jaringan Saraf Tiruan

Ada beberapa tipe jaringan saraf tiruan, namun demikian hampir semuanya

memiliki komponen-komponen yang sama. Jaringan saraf tiruan disusun dengan

asumsi yang sama seperti jaringan saraf biologis yakni terdiri dari beberapa node dan

adanya hubungan antara node. Sinyal informasi yang terdapat di antara 2 buah node

diteruskan melalui sebuah hubungan dan setiap hubungan antara 2 buah node

mempunyai nilai bobot lalu dengan menggunakan fungsi aktivasi nilai keluaran node

ditentukan [24]. Gambar 2.14 merupakan struktur node jaringan saraf tiruan.

(46)

d s p o m

 

 

Pada dengan laye sebelum dan pada JST ak output mel menunjukka

      Bobot 

G

a JST node-n er node. Nod n sesudahny kan diramba

alui lapisan an JST denga

Ga

Gambar 2. 14

node akan d de-node pad ya kecuali lap

atkan lapisan n tersembun an 3 lapisan.

ambar 2. 15

4

Struktur N

dikumpulkan da satu lapis apisan input

n ke lapisan nyi seperti .

JST Denga

Node Jaringa

n dalam lap san akan dih dan output.

n, mulai dar tampak p

n 3 Lapisan

an Saraf Tiru

pisan (layer) hubungkan d Informasi y ri lapisan inp

ada Gamba

[24]

uan [24]

) yang diseb dengan lapis yang diberik put ke lapis ar 2.15 ya

but

san

kan

san

ang

(47)

2.4.3. Arsitektur Jaringan Saraf Tiruan

Hubungan antar node dalam jaringan saraf tiruan mengikuti pola tertentu tergantung dari arsitektur jaringan saraf tiruan yang digunakan. Pada dasarnya ada 3 macam arsitektur jaringan saraf tiruan yaitu [24]:

e. Jaringan saraf tiruan dengan lapisan tunggal

Jaringan saraf tiruan dengan satu lapisan tunggal hanya memiliki satu lapisan dengan bobot-bobot terhubung. Jaringan ini hanya menerima input kemudian mengolahnya menjadi output tanpa harus melalui lapisan tersembunyi seperti pada Gambar 2.16. Dengan kata lain ciri jaringan ini hanya mempunyai satu lapisan input dan output, tidak mempunyai lapisan tersembunyi.

Gambar 2. 16 Bentuk Jaringan Saraf Tiruan Dengan Lapisan Tunggal [24]

(48)

b. Jaringan saraf tiruan dengan banyak lapisan

Jaringan saraf tiruan dengan banyak lapisan memiliki satu atau lebih lapisan yang terletak diantara lapisan input dan lapisan output (memiliki satu atau lebih lapisan tersembunyi). Umumnya terdapat lapisan bobot diantara 2 lapisan bersebelahan seperti pada Gambar 2.17.

Gambar 2. 17 Bentuk JST Dengan Banyak Lapisan [24]

(49)

c. Jaringan saraf tiruan dengan lapisan kompetitif

Arsitektur pada jaringan saraf tiruan ini memiliki bentuk yang berbeda, di mana antar node dapat saling berhubungan. Gambar 2.18 merupakan bentuk jaringan saraf tiruan dengan lapisan kompetitif.

Gambar 2. 18 Bentuk JST Dengan Lapisan Kompetitif [24]

2.4.4. Arsitektur Jaringan Saraf Tiruan Backpropagation

Di dalam jaringan saraf tiruan dengan backpropagation setiap node yang

berada di lapisan input terhubung dengan setiap node pada lapisan tersembunyi dan

setiap node pada lapisan tersembunyi juga terhubung dengan setiap node pada lapisan

(50)

output [25]. Untuk lebih jelasnya arsitektur JST backpropagation dapat dilihat pada Gambar 2.19.

Gambar 2. 19

JST Backpropagation Dengan Satu Lapisan Tersembunyi [25]

Jaringan saraf tiruan dengan algoritma pembelajaran backpropagation terdiri

dari banyak lapisan (multilayer neural network) yaitu:

(51)

1. Lapisan input hanya 1. Pada lapisan input terdapat node X

i

, i = 1, 2, ..., n. ( n = jumlah node dalam lapisan input).

2. Lapisan tersembunyi (hidden layer) minimal 1. Seperti halnya lapisan input pada lapisan tersembunyi juga berisi node mulai dari Z

j,

j = 1, 2

,

..., p (p = jumlah node pada lapisan tersembunyi untuk 1 lapisan). Tetapi pada lapisan tersembunyi ini dapat saja terdiri dari beberapa lapisan tersembunyi.

3. Lapisan output hanya 1 buah. Lapisan ini terdiri dari node output mulai dari Y

k

, k

= 1, 2, ..., m (m = jumlah node pada lapisan output). V

0j

adalah bias untuk node Z

j

pada lapisan tersembunyi dan W

0k

adalah bobot untuk node Y

k

pada lapisan output. Bias V

0j

dan W

0k

sama seperti bobot di mana output bias ini selalu bernilai 1. V

ij

adalah bobot yang menghubungkan antara node X

i

pada lapisan input dengan node Z

j

pada lapisan tersembunyi, sedangkan W

jk

adalah bobot yang menghubungkan antara node Z

j

pada lapisan tersembunyi dengan node Y

k

lapisan output.

2.4.5. Bobot

Bobot dipakai untuk menentukan nilai sebuah node dan terletak di antara 2

(dua) lapisan, baik antara lapisan input dengan lapisan tersembunyi atau antara

lapisan tersembunyi dengan lapisan output dan mempunyai nilai tertentu. Pada saat

awal pelatihan nilai bobot diatur agar berada pada nilai acak yang kecil misalnya di

antara -0,5 sampai 0,5 lalu nilai bobot ini diperbaharui setiap proses epoch pada

waktu pelatihan.

(52)

2.4.6. Bias

Bias juga dipakai untuk menentukan nilai sebuah node tetapi hanya pada node pada lapisan tersembunyi dan output. Bias ini selalu bernilai 1 tetapi nilai bobotnya berbeda dan pada awal pelatihan diberi dengan nilai acak yang kecil antara -0,5 sampai 0,5 lalu nilai bobot ini juga diperbaharui setiap proses epoch pada waktu pelatihan.

2.4.7. Epoch

Epoch adalah pengulangan yang terjadi pada proses pelatihan di dalam jaringan saraf tiruan dalam memperbaiki error. Pengulangan ini akan terus berlangsung hingga toleransi error (MSE) pelatihan atau nilai epoch yang ditetapkan telah tercapai.

2.4.8. Learning Rate

Learning rate (α) merupakan sebuah parameter pembelajaran di dalam jaringan

saraf tiruan backpropagation yang digunakan untuk mempercepat proses pelatihan

dan bernilai antara 0 sampai 1. Jika jaringan saraf tiruan menggunakan learning rate

mendekati 0 maka proses pelatihan membutuhkan waktu yang lebih lama dalam

mencapai performance jaringan saraf tiruan yang diinginkan tetapi terkadang baik

jika dipakai pada proses aplikasi. Sebaliknya jaringan saraf tiruan menggunakan

learning rate mendekati 1 maka proses pelatihan membutuhkan waktu yang lebih

cepat dalam mencapai performance jaringan saraf tiruan yang diinginkan tetapi

terkadang tidak baik jika dipakai pada proses aplikasi.

(53)

2.4.9. Toleransi Error

Toleransi error merupakan sebuah nilai pembatas yang ditetapkan oleh user agar selisih target dengan keluaran jaringan saraf tiruan (MSE) dalam proses pelatihan tidak sampai 0. Hal ini bertujuan untuk menghindari overtraining yang menyebabkan jaringan saraf tiruan mengambil sifat memorilisasi akibatnya ketika hasil pelatihan diuji dengan pola data yang tidak pernah dikenali maka jaringan saraf tiruan akan memberikan hasil yang jauh berbeda dari target yang diharapkan.

2.5. Fungsi Aktivasi

Fungsi aktivasi digunakan untuk menentukan keluaran pada node. Ada beberapa fungsi aktivasi yang sering digunakan dalam jaringan saraf tiruan seperti fungsi undak biner, bipolar, linear (identitas), saturating linear, symmetric saturating linear, sigmoid biner dan sigmoid bipolar.

Karena keluaran jaringan saraf tiruan yang diinginkan pada penelitian ini antara 0 sampai 1 maka fungsi aktivasi yang digunakan adalah sigmoid biner dan fungsi aktivasi ini mempunyai hubungan yang sederhana antara nilai fungsi pada suatu titik dengan turunannya sehingga mengurangi beban komputasi selama pelatihan [23]. Bentuk grafik dari fungsi sigmoid biner dapat dilihat seperti pada Gambar 2.20 sedangkan fungsi dari sigmoid biner dirumuskan sebagai [23]:

……….(2. 17)

dengan turunan:

………(2. 18)

(54)

Gambar 2. 20 Fungsi Sigmoid Biner [24]

2.6. Algoritma Pembelajaran

Salah satu bagian terpenting dari konsep jaringan saraf tiruan adalah terjadinya proses pembelajaran. Tujuan utama dari proses pembelajaran adalah melakukan pengaturan terhadap bobot-bobot yang ada pada jaringan saraf tiruan, sehingga diperoleh bobot akhir yang tepat sesuai dengan pola data yang dilatih [25]. Pada dasarnya ada 2 metode pembelajaran, yaitu metode pembelajaran terawasi (supervised) dan metode pembelajaran yang tak terawasi (unsupervised).

a. Pembelajaran terawasi

Pada jaringan saraf tiruan yang menerapkan metode pembelajaran terawasi maka

output yang diharapkan telah ditetapkan. Contoh: jaringan saraf tiruan yang

digunakan untuk prediksi, pengenalan huruf, pola gerbang logika.

(55)

b. Pembelajaran tak terawasi

Sedangkan jaringan saraf tiruan yang menerapkan metode pembelajaran tak terawasi tidak memerlukan target output. Pada metode ini, tidak ditentukan hasil yang seperti apakah yang diharapkan selama proses pembelajaran. Metode pembelajaran seperti ini sangat cocok untuk pengelompokan pola.

Tetapi ada hal lain yang perlu dipertimbangkan dalam pembelajaran jaringan saraf tiruan yakni tercapainya keseimbangan antara kemampuan memorilisasi dengan generalisasi. Yang dimaksud memorilisasi adalah kemampuan jaringan saraf tiruan memberikan respon yang sempurna terhadap semua pola yang pernah dilatihkan.

Sedangkan generalisasi adalah kemampuan jaringan saraf tiruan memberikan respon yang bisa diterima terhadap pola-pola input yang serupa (namun tidak identik) dengan pola-pola yang sebelumnya telah dipelajari. Hal ini sangat bermanfaat ketika jaringan saraf tiruan diberikan pola input yang belum pernah dilatihkan maka jaringan saraf tiruan tetap akan memberikan respon (keluaran) yang paling mendekati [25].

2.7. Algoritma Pembelajaran Backpropagation Standar

Backpropagation merupakan algoritma pembelajaran yang terawasi dan metode

yang sangat baik dalam menangani pengenalan pola-pola kompleks yang

menggunakan gradient descent untuk memperkecil total error kuadrat (MSE) hasil

komputasi pada proses pelatihan [23], [25]. Jadi inilah yang menjadi alasan utama

peneliti mencoba menggunakan JST dengan algoritma pembelajaran backpropagation

untuk dijadikan metoda untuk memprediksi kerusakan motor induksi khususnya pada

(56)

stator untuk satu hari ke depan. Algoritma pembelajaran dengan backpropagation standar dapat dibagi menjadi 2 bagian:

2.7.1. Algoritma pelatihan

Adapun langkah-langkah algoritma pelatihan adalah sebagai berikut [25]:

Langkah a. Inisialisasi bobot bias ke lapisan hidden (V

0j

), output (W

0k

), dan bobot input (V

ij

), output (W

jk

) seperti pada Gambar 2.19 dengan nilai acak yang cukup kecil antara -0,5 sampai 0,5. Lalu ditentukan nilai learning rate (α) antara 0 sampai 1, toleransi error dan jumlah maksimal epoch jika menggunakan toleransi error dan banyaknya epoch sebagai kondisi berhenti.

Langkah b. Selanjutnya dilakukan proses pengulangan dari langkah c – j hingga nilai MSE (mean square error) yang diperoleh dari hasil pelatihan lebih kecil dari nilai toleransi error yang ditentukan atau epoch telah tercapai.

Langkah c. Untuk setiap pasangan pola akan dilakukan proses pelatihan, dengan melakukan langkah ke- d sampai langkah ke-i.

Tahap maju

Langkah d. Setiap node X

i,

i = 1, 2, ..., n pada lapisan input meneruskan sinyal input tersebut ke semua node Z

j

, j = 1, 2, ..., p pada lapisan tersembunyi yang ada di atasnya.

Langkah e. Setiap node Z

j

, j = 1, 2, ..., p pada lapisan tersembunyi menjumlahkan

sinyal input X

i

, i = 1, 2, ..., n dengan bobotnya V

ij

dan ditambahkan

(57)

dengan bobot bias V

0j

lalu dengan menggunakan fungsi aktivasinya dihitung sinyal outputnya:

………..(2. 19) selanjutnya sinyal output tersebut dikirim ke semua node ke lapisan di atasnya (lapisan output).

Langkah f. Setiap node Y

k

, k = 1, 2, ..., m pada lapisan output menjumlahkan sinyal input Z

j

, j = 1, 2, ..., p dari lapisan tersembunyi dengan bobotnya W

jk

dan ditambahkan dengan bobot bias W

0k

lalu dengan menggunakan fungsi aktivasinya dihitung sinyal outputnya:

∑ ……….(2. 20)

Tahap mundur

Langkah g. Setiap node Y

k

, k = 1, 2, ..., m pada lapisan output menerima pola target t

k

lalu informasi kesalahan pada lapisan output δ

k

dihitung. δ

k

dikirim ke lapisan di bawahnya Z

j

, j = 1, 2, ..., p dan digunakan untuk menghitung besar koreksi bobot ∆W

jk

dan bias ∆W

0k

antara lapisan tersembunyi dengan lapisan output:

∑ …………..(2. 21)

∆ ………..(2. 22)

∆ ………..(2. 23) Di mana adalah nilai konstanta learning rate yang ditetapkan.

Langkah h. Setiap node Z

j

, j = 1, 2, ..., p di lapisan tersembunyi dilakukan

perhitungan informasi kesalahan lapisan tersembunyi δ

j

. δ

j

kemudian

Gambar

Gambar 3. 1.  Bentuk Pola  Data Arus Motor Induksi Dari Kondisi Baik Hingga  Rusak
Gambar 3. 4    Bentuk Pola  Data Arus Motor Induksi Dalam Kondisi Buruk
Gambar 3. 14  Bentuk Jaringan Saraf Tiruan Untuk Mencari Jumlah Hidden Layer
Gambar 3. 15  Bentuk Jaringan Saraf Tiruan  Mencari Jumlah Node Hidden Layer
+7

Referensi

Dokumen terkait

Harmonisa merupakan gangguan yang terjadi pada sistem distribusi tenaga listrik akibat terjadinya distorsi gelombang arus dan tegangan. Gejala pembentukan gelombang

Pada saat dilakukan starting motor, motor akan menarik arus start yang besar. Dengan besarnya arus yang mengalir pada jaringan sistem, maka akan terjadi kedip

Jaringan saraf tiruan dapat dipakai untuk memprediksi apa yang akan terjadi di.. masa yang akan datang berdasarkan pola kejadian yang ada di masa

Untuk dapat mengetahui tingkat kerusakan batang rotor, maka digunakan standar EASA ( Electrical Apparatus Service Association ) Selain itu, pada penelitian ini juga

Tujuan dari penelitian ini adalah untuk mengetahui model prediksi curah hujan yang telah dibangun dengan menggunakan Backpropagation dan untuk mengetahui hasil

Pengujian ini dilakukan guna untuk mengetahui apakah sistem yang telah dibangun dapat mengidentifikasi penyakit gigi dengan baik melalui jaringan syaraf tiruan baik melalui metode

Pengguna dapat mengetahui proses pengolahan citra digital yang dilakukan perangkat lunak ini yaitu hasil dari proses grayscale dengan menekan button grayscale,