• Tidak ada hasil yang ditemukan

FSK DEMODULATION

N/A
N/A
Protected

Academic year: 2021

Membagikan "FSK DEMODULATION"

Copied!
22
0
0

Teks penuh

(1)

BAB I BAB I PENDAHULUAN PENDAHULUAN 1.1 1.1 TujuanTujuan 1.

1. Untuk memahami teori operasi demodulator FSK.Untuk memahami teori operasi demodulator FSK. 2.

2. Untuk melaksanakan rangkaian detektor FSK dengan menggunakan PLL.Untuk melaksanakan rangkaian detektor FSK dengan menggunakan PLL. 3.

3. Untuk memahami teori operasi Untuk memahami teori operasi pembanding dengan menggunakan penguat operasionalpembanding dengan menggunakan penguat operasional sebagai level tegangan konverter.

sebagai level tegangan konverter.

1.2

1.2 TTeori eori dasardasar

Dalam bab 13 kita menggunakan modulasi FSK untuk komunikasi jarak jauh, yang tingkat Dalam bab 13 kita menggunakan modulasi FSK untuk komunikasi jarak jauh, yang tingkat tegangan sinyal digital telah dikonversi ke frekuensi. Oleh karena itu, pada penerima, kita harus tegangan sinyal digital telah dikonversi ke frekuensi. Oleh karena itu, pada penerima, kita harus memulihkan sinyal FSK ke sinyal digital, yang berarti frekuensi harus diubah kembali pada memulihkan sinyal FSK ke sinyal digital, yang berarti frekuensi harus diubah kembali pada tegangan.

tegangan. Kami menggunakan Kami menggunakan fase loop fase loop terkunci (PLL) terkunci (PLL) sebagai demodulator sebagai demodulator FSK. FSK. PLL PLL adalahadalah semacam sistem pelacakan otomatis, yang mampu mendeteksi frekuensi sinyal input dan fase. semacam sistem pelacakan otomatis, yang mampu mendeteksi frekuensi sinyal input dan fase. PLL secara luas digunakan dalam aplikasi nirkabel, seperti AM demodulator, FM demodulator, PLL secara luas digunakan dalam aplikasi nirkabel, seperti AM demodulator, FM demodulator, frekuensi pemilih

frekuensi pemilih dan sebagdan sebagainya. ainya. Dalam komunDalam komunikasi digital, ikasi digital, berbagai jenis PLberbagai jenis PLLs digLs digitalital dikembangkan.

dikembangkan. Digital PLL Digital PLL sangat berguna sangat berguna dalam sinkronisasi carrierdalam sinkronisasi carrier, sinkronisasi , sinkronisasi bit danbit dan demodulasi digital.

demodulasi digital. 1.

1. Detektor FSK AsynchronousDetektor FSK Asynchronous Diagram blok

Diagram blok detektor FSK asynchdetektor FSK asynchronous ditunjukkan ronous ditunjukkan pada Gambar 1pada Gambar 14-1. 4-1. Dalam gambarDalam gambar 14-1, kita dapat melihat bahwa pada bagian penerima, ada dua low-pass filter, yang frekuensi 14-1, kita dapat melihat bahwa pada bagian penerima, ada dua low-pass filter, yang frekuensi  pusat mereka

 pusat mereka ω c ω c + + Ω D Ω D dan ω dan ω cc -- Ω D, masingΩ D, masing-masing. -masing. Dengan Dengan menggunakan menggunakan karakteristikkarakteristik filte

filter, r, kita dapat kita dapat memperoleh memperoleh ω c ω c + Ω + Ω D (sinyD (sinyal digital mal digital mewakili sebagai ewakili sebagai 1) dan 1) dan ω cω c -- Ω Ω DD (sinyal

(sinyal digital digital mewakili sebagmewakili sebagai 0). ai 0). Kemudian menggabungkan Kemudian menggabungkan sinyal sinyal digital setelahdigital setelah demodulation, akh

demodulation, akhirnya, sinyal irnya, sinyal digital asli dapat diperodigital asli dapat diperoleh di terminal leh di terminal output. output. Karena deviasiKarena deviasi frekuensi tetap dari sinyal pembawa (ω c) cukup kecil, oleh karena itu, penggunaan filter tajam frekuensi tetap dari sinyal pembawa (ω c) cukup kecil, oleh karena itu, penggunaan filter tajam merugikan.

(2)

Gambar 14-1 Blok diagram detektor FSK as

Gambar 14-1 Blok diagram detektor FSK as ynchronous.ynchronous.

2.

2. Synchronous FSK DetectorSynchronous FSK Detector

Biarkan data yang diterima sinyal FSK V (t) kalikan denga

Biarkan data yang diterima sinyal FSK V (t) kalikan dengan osilasi lokal (LO) sinyal COS (ωn osilasi lokal (LO) sinyal COS (ω c

c + Ω + Ω D) t D) t atau COS atau COS (ω c(ω c -- Ω D) t seperti ditunjukkan pada persamaan (14Ω D) t seperti ditunjukkan pada persamaan (14-1) dan (14-3).-1) dan (14-3). Kemudian kita

Kemudian kita dapat memperoleh codapat memperoleh cos [2 (ω s [2 (ω c c + Ω D+ Ω D)] t yang )] t yang frekuensi sinyal digfrekuensi sinyal digitalital direpresentasikan sebagai 1 atau cos [2 (ω c

direpresentasikan sebagai 1 atau cos [2 (ω c -- Ω D)] t yang frekuensi sinyal digitalΩ D)] t yang frekuensi sinyal digital direpresentasikan

direpresentasikan sebagai 0. sebagai 0. Setelah Setelah itu itu dengan dengan menggunakan menggunakan filter untufilter untuk k menghapusmenghapus harmonisa urutan kedua dan tegangan DC, maka kita dapat memperoleh sinyal digital asli harmonisa urutan kedua dan tegangan DC, maka kita dapat memperoleh sinyal digital asli seperti yang ditunjukkan pada gambar 14-2.

seperti yang ditunjukkan pada gambar 14-2.

Pada bagian ini, kami menggunakan teori matematika untuk memecahkan demodulasi FSK Pada bagian ini, kami menggunakan teori matematika untuk memecahkan demodulasi FSK seperti yang

seperti yang ditunjukkan ditunjukkan pada persamaan pada persamaan (14-1). (14-1). Sinkron dSinkron detektor FSK etektor FSK membutuhkan membutuhkan duadua osilator LO, yang frekuensi LO adalah ω c

osilator LO, yang frekuensi LO adalah ω c -- D ω ω D ω ω dan c dan c + Ω D+ Ω D, masing, masing-masing, seperti yang-masing, seperti yang ditunjukkan pada gambar

14-ditunjukkan pada gambar 14-2. Ketika sinyal y2. Ketika sinyal yang diterima adalah ang diterima adalah A A cos (ω c cos (ω c + Ω D) + Ω D) t, makat, maka kita mendapatkan

kita mendapatkan

Dengan menggunakan filter untuk menghilangkan semua sinyal yang tidak diinginkan dalam Dengan menggunakan filter untuk menghilangkan semua sinyal yang tidak diinginkan dalam  persamaan

 persamaan (14-1), (14-1), maka maka diwakili diwakili frekuensi frekuensi sinyal sinyal output output adalah adalah 1 1 dan dan kita kita bisa bisa ditulis ditulis ulangulang  persamaan (14-1) sebagai berikut

(3)

Dengan menggunakan filter untuk menghilangkan semua sinyal yang tidak diinginkan dalam  persamaan (14-3), maka diwakili frekuensi sinyal output adalah 0 dan kita bisa ditulis ulang  persamaan (14-1) sebagai berikut :

Lingkaran Umumnya, fase terkunci (PLL) dapat dibagi menjadi 3 bagian utama, yaitu detektor fasa (PD), loop filter (LF) dan osilator dikendalikan tegangan (VCO). Diagram blok PLL ditunjukkan pada Gambar 14-3.

Dalam gambar 14-3, ketika sinyal input perubahan frekuensi, sinyal output dari detektor fasa akan berubah dan sebagainya serta output tegangan. Kita dapat menggunakan karakteristik ini untuk merancang FSK demodulator. Biarkan FSK sinyal frekuensi sebagai f 1 dan f 2. Kemudian sinyal tersebut dimasukkan ke terminal masukan angka 14-3. Ketika sinyal frekuensi f l, tegangan output akan V 1. Ketika frekuensi sinyal input f 2, tegangan keluaran V 2. Pada saat ini, kami telah dikonversi frekuensi untuk tegangan. Jika kita menambahkan komparator  pada output terminal PLL, tegangan referensi akan terletak antara V 1 dan V 2, maka pada

(4)

terminal output komparator, kita dapat memperoleh sinyal digital, yang merupakan sinyal FSK didemodulasi.

Gambar 14-2 Blok diagram detektor FSK sinkron.

Dalam penelitian ini, kami menerapkan FSK demodulator dengan menggunakan LM565 PLL seperti yang ditunjukkan pada gambar 14-4. Frekuensi operasi LM565 PLL di bawah 500 kHz dan diagram sirkuit internal ditunjukkan pada Gambar 14-4. Ini termasuk detektor fasa, osilator dikendalikan tegangan dan penguat. Detektor fasa adalah jenis modulator sirkuit ganda seimbang dan VCO terintegrasi Schmitt sirkuit.

(5)

Pin 1 dihubungkan ke suplai tegangan negatif, -5 V. Pin 2 dan 3 terhubung ke sinyal input, tapi biasanya pin 3 akan terhubung ke tanah. Jika pin 4 dan 5 terhubung ke pengali frekuensi, maka berbagai perkalian frekuensi dapat diperoleh. Dalam percobaan ini, kita tidak perlu menggunakan frekuensi multiplier, oleh karena itu, dua pin ini adalah korsleting. Pin 6 adalah output tegangan referensi. Resistor internal yang (R x) dari pin 7 dan kapasitor eksternal (CO terdiri loop filter. Pin 8 terhubung ke resistor timing (VR 1). Pin 9 terhubung ke waktu kapasitor (C 2). Pin 10 tegangan positif memasok +5 V dari LM565. Parameter penting LM565 PLL desain sirkuit adalah sebagai berikut :

1. Free-Running Frekuensi LM565

Ketika LM565 tanpa sinyal input, sinyal output dari VCO disebut frekuensi bebas berjalan. C 2 adalah waktu kapasitor dan resistor variabel VR 1 adalah waktu resistor. The bebas  berjalan frekuensi (f 0) VCO dari LM565 ditentukan oleh C 2 dan VR 1. Ekspresi adalah

2. The Dikunci Rentang LM566

Ketika PLL berada dalam kondisi terkunci, jika frekuensi sinyal input (f i) menyimpang dari f o, maka PLL akan tetap dalam kondisi terkunci. Ketika f i mencapai frekuensi tertentu, yang PLL tidak dapat mengunci, maka perbedaan antara f i dan f o disebut rentang terkunci. Terkunci kisaran LM565 dapat dinyatakan sebagai :

(6)

Modus awal PLL berada dalam kondisi terkunci, maka frekuensi sinyal input (f i) akan mendekati f i. Ketika f i mencapai frekuensi tertentu, PLL akan berada dalam kondisi terkunci. Pada saat ini, perbedaan antara f i dan f o disebut rentang ditangkap. Yang ditangkap kisaran LM565 dapat dinyatakan sebagai :

Dalam gambar 14-4, pin 7 dari LM565 terhubung TOR 3, R 4, R 5, C 3, C 4 dan C 5 sampai terdiri dari low-pass filter. Tujuannya adalah untuk menghilangkan sinyal yang tidak diinginkan, yang akan menyebabkan komparator menghasilkan tindakan yang salah. μA741 adalah pembanding dan tegangan referensi dimasukkan pada pin 6 dari LM565. Tegangan output dari LM565 akan melewati μA741 dan D 1 untuk mendapatkan tegangan output sinyal digital dari level TTL.

1.3 Alat yang digunakan

1) Modul ASK Demodulator : 1 Buah

2) Osiloskop : 1 Buah

3) Power Supply : 1 Buah

4) BNC to BNC : 5 Buah

5) BNC to BNC mini : 6 Buah 6) BNC to penjepit : 2 Buah 7) Generator Fungsi : 2 Buah

(7)

Skema rangkaian

Gambar . Skema rangkaian FSK Demodulator

BAB II PEMBAHASAN 2.1 Prosedur Percobaan

Adapun prosedur percobaan pada praktikum ini adalah 2.1.1 XR 2206 FSK Demodulator

1. Lihat diagram sirkuit pada gambar 144 atau angka DCT14-1 pada GOTT DCT-6000-07 modul. Tanpa perlu menambah sinyal pada terminal input (FSK I / P), maka dengan menggunakan osiloskop, amati pada output VCO (TP1) dari LM565, menyesuaikan variabel resistor VR 1 sehingga frekuensi bebas berjalan dari LM565 beroperasi pada 1170 Hz.

2. Pada terminal input (FSK I / P) tokoh DCT14-1, masukan 4 V amplitudo dan frekuensi 870 Hz gelombang sinus. Dengan menggunakan osiloskop dan beralih ke saluran DC, kemudian mengamati pada sinyal gelombang keluaran FSK I / P, TP1, biaya dan titik uji discharge (TP2), lingkaran low-pass sirkuit 1 (TP3), lingkaran low-pass sirkuit 2 ( TP4), low-pass lingkaran sirkuit 3 (TP5), lingkaran low-pass sirkuit 4 (TP6), tegangan referensi dari komparator (TP7), terminal output dari komparator (TP8) dan sinyal output port data (Data O / P ). Akhirnya, mencatat hasil yang diukur pada tabel 14-1.

3. Pada terminal input (FSK I / P) tokoh DCT14-1, masukan 4 V amplitudo dan frekuensi 1370 Hz gelombang sinus. Ulangi langkah 2 dan mencatat hasil pengukuran dalam tabel 14-2.

(8)

4. Lihat untuk mencari 13-3 dengan R, = 7,5 k Ω dan R5 = 15 k Ω atau lihat gambar DCT13-1  pada GOTT DCT-6000-07 modul. Mari J2 dan J4 menjadi rangkaian terbuka, J3 dan J5 menjadi

sirkuit pendek.

5. Tanpa perlu menambah sig nal pada terminal input (FSK I / P) tokoh DCT 14-1, maka dengan menggunakan osiloskop, amati pada output VCO (TP1) dari LM565, menyesuaikan variabel resistor VR 1 sehingga frekuensi bebas berjalan dari LM565 beroperasi pada 1170 Hz.

6. Pada data sinyal terminal input (data I / P) tokoh DCT13-1, masukan 5 V amplitudo, 150 Hz sinyal TTL.

7. Hubungkan sinyal FSK modulated (FSK O / P) tokoh DCT13-1 ke terminal input (FSK I / P) tokoh DCT14-1. Dengan menggunakan osiloskop, amati pada output sinyal gelombang dari TP1, TP2, TP3, TP4, TP5, TP6 dan Data O / P. Akhirnya mencatat hasil diukur pada tabel 14-3. 8. Menurut sinyal input dalam tabel 14-3, ulangi langkah 6 sampai langkah 7 dan mencatat hasil

 pengukuran pada tabel 14-3.

2.1.2 LM565 FSK Demodulator

1. Lihat diagram sirkuit pada gambar 13-6 atau angka DCT13-2 pada GOTT DCT-6000-07 modul.

2. Dari gambar DCT13-2, biarkan terminal input sinyal data (data I / P) menjadi sirkuit pendek dan J1 menjadi rangkaian terbuka, yaitu input 0 V DC tegangan sinyal terminal input data (data I / P). Dengan menggunakan osiloskop, amati pada sinyal gelombang keluaran dari port output VCO (TP1) LM 566. Sedikit menyesuaikan VR 1 sehingga frekuensi output TP1 adalah 1370 Hz. Sekali lagi, mari terminal sinyal input data (data I / P) terbuka sirkuit dan J 1 menjadi hubung singkat, yaitu input 5 V DC tegangan sinyal terminal input data (data I / P). Dengan menggunakan osiloskop, amati pada sinyal gelombang keluaran dari port output VCO (TP1) LM 566. Sedikit menyesuaikan VR 1 sehingga frekuensi output TP I adalah 870 Hz. 3. Tanpa perlu menambah sinyal pada terminal input (FSK I / P) tokoh DCT 14-1, maka dengan

menggunakan osiloskop, amati pada output VCO (TP1) dari LM565, menyesuaikan variabel resistor VR 1 sehingga frekuensi bebas berjalan dari LM565 beroperasi pada 1170 Hz.

4. Pada sinyal terminal input data (data I / P) tokoh DCT 13-1, masukan 5 V amplitudo, 150 Hz sinyal TTL. Hubungkan sinyal FSK modulated (FSK O / P) tokoh DCT 13-2 ke terminal input (FSK I / P) tokoh DCT14-1. Dengan menggunakan osiloskop dan beralih ke saluran DC, amati pada output sinyal gelombang FSK I / P, TP1, TP2, TP3, TP4, TP5, TP6 dan Data O / P. Akhirnya mencatat hasil diukur pada tabel 14-4.

(9)

5. Menurut sinyal input dalam tabel 14-4, ulangi langkah 4 dan mencatat hasil pengukuran pada tabel 14-4.

(10)

2.2 Hasil Percobaan

Table 14-1 Measured results of FSK demodulator. (Vin = 4V) Carrier Signal

Frequencies Data I/P TP1

870 Hz

TP2 TP3

TP4 TP5

(11)
(12)

Table 14-2 Measured results of FSK demodulator. (Vin = 4V) Carrier Signal

Frequencies Data I/P TP1

1370 Hz TP2 TP3 TP4 TP5 Tp6 Tp7

(13)
(14)

Table 14-3 Measured results of FSK demodulator by using 2206 IC. (J3 , J5 SC;J2 ,J4 OC) Carrier Signal Frequencies Data I/P TP1 Vp = 5V 150 Hz TP2 TP3 TP4 TP5 Tp6 Tp7

(15)
(16)

Table 14-3 Measured results of FSK demodulator by using 2206 IC. (J3 , J5 SC;J2 ,J4 OC) Carrier Signal

Frequencies Data I/P TP1

Vp = 5V 200 Hz TP2 TP3 TP4 TP5 Tp6 Tp7

(17)
(18)

Table 14-4 Measured results of FSK demodulator by using LM 566 Carrier Signal

Frequencies Data I/P TP1

Vp = 5V 150 Hz

TP2 TP3

TP4 TP5

(19)
(20)

Table 14-4 Measured results of FSK demodulator by using LM 566. Carrier Signal

Frequencies Data I/P TP1

Vp = 5V 200 Hz

TP2 TP3

TP4 TP5

(21)

2.3 Analisis Percobaan

1. Pada Tabel 14-1 dengan frekuensi carrier sebesar 870 Hz pada percobaan ini memposisikan titik point ukur pada Data I/P,TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP8, dan Data O/P yang masing –   masing memiliki hasil yang berbeda –   beda. Terlihat pada Data I/P hasil output gelombang berupa gelombang sinus dan cosinus. Tiap masing –  masing dari titik point ukur memiliki perbedaan pada tegangan pick to pick, frekuensi pada display dan periodenya. Walaupun dengan setting sama atau beda untuk time/div nya.

2. Pada Tabel 14-2  pada percobaan ini analisa data sama dengan tabel 14-1 namun dengan frekuensi carrier yang berbeda. Dengan frekuensi carrier sebesar 1370Hz pada percobaan ini memposisikan titik point ukur pada Data I/P,TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP8 dan Data O/P yang masing –  masing memiliki hasil yang berbeda –  beda. Terlihat pada Data I/P hasil output gelombang berupa gelombang sinus dan cosinus. Tiap masing –  masing dari titik point ukur memiliki perbedaan pada tegangan pick to pick, frekuensi pada display dan periodenya. Walaupun dengan setting sama atau beda untuk time/div nya. Saat frekuensi carrier semakin  besar berdampak pada frekuensi pada display dan periodenya yang semakin besar. Pada titik  point ukur data O/P output gelombang yang ditangkap semakin besar sekitar 1,37 kHz

sehingga semakin rapat output gelombangnya.

3. Pada Tabel 14-3 dengan frekuensi carrier sebesar 150 Hz dan Vp sebesar 5 V pada percobaan ini memposisikan titik point ukur pada Data I/P,TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP8 dan Data O/P yang masing –  masing memiliki hasil yang berbeda –  beda. Terlihat pada Data I/P hasil output gelombang berupa gelombang sinus dan cosinus. Tiap masing –  masing dari titik  point ukur memiliki perbedaan pada tegangan pick to pick, frekuensi pada display dan  periodenya. Walaupun dengan setting sama atau beda untuk time/div nya. Untuk tiap titik  point ukur yang kita coba terjadi perbedaan pada output gelombangnya dikarenakan

(22)

karakteristik dari tiap proses pada circuit demodulator. Namun, pada data O/P akan sama keluarannya dengan data I/P.

4. Pada Tabel 14-3 dengan frekuensi carrier sebesar 200 Hz dan Vp sebesar 5 V pada percobaan ini memposisikan titik point ukur pada Data I/P,TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP8 dan Data O/P yang masing –  masing memiliki hasil yang berbeda –  beda. Terlihat pada Data I/P hasil output gelombang berupa gelombang sinus dan cosinus. Tiap masing –  masing dari titik  point ukur memiliki perbedaan pada tegangan pick to pick, frekuensi pada display dan  periodenya. Walaupun dengan setting sama atau beda untuk time/div nya. Untuk tiap titik  point ukur yang kita coba terjadi perbedaan pada output gelombangnya dikarenakan karakteristik dari tiap proses pada circuit demodulator. Namun, pada data O/P akan sama keluarannya dengan data I/P. Semakin besar dari frekuensinya yang tadi dari 150 Hz menjadi 200 Hz mempengaruhi kerapatan dari output gelombang yang kita ukur dari titik point ukur kita.

5. Pada Tabel 14-4 dengan frekuensi carrier sebesar 150 Hz atau 200 Hz dan Vp sebesar 5 V

 pada percobaan ini memposisikan titik point ukur pada Data

I/P,TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP8 dan Data O/P yang masing –  masing memiliki hasil

yang berbeda –  beda. Terlihat pada Data I/P hasil output gelombang berupa gelombang sinus dan cosinus. Pada analisa ini sama dengan tabel 14-3 namun bedanya pada penggunaan LM 565. Dikarenakan LM 565 memiliki karakter tersendiri.

BAB III KESIMPULAN

FSK demodulator memiliki fungsi untuk mengembalikan sinyal yang awal masuk data I/P dan diproses, kemudian pada data O/P dikembalikan seperti inputan awal data I/P. Untuk detektor  pada FSK demodulator ada synchronous dan asynchronous, yang masing masing memiliki karakteristik, dengan adanya pengaruh tiap filter pada proses demodulasinya. Pada saat pengukuran dari percobaan yang kita lakukan, semakin besar frekuensi carrier pada tabel 14-1 dan 14-2 menyebabkan perubahan pada periode dan frekuensi pada display semakin besar pula. LM 565 juga  berpengaruh pada FSK demodulator ini karena memiliki karakteristik khusus.

Gambar

Gambar 14-1 Blok diagram detektor FSK as
Gambar 14-2 Blok diagram detektor FSK sinkron.
Gambar . Skema rangkaian FSK Demodulator
Table 14-1  Measured results of FSK demodulator. (V in  = 4V) Carrier Signal
+6

Referensi

Dokumen terkait

Penelitian ini bertujuan untuk mengetahui pengaruh penggunaan ALWA berbahan Styrofoam dengan bahan tambah serat baja pada beton ringan terhadap kuat tekan, kuat

- Seleksi penerimaan anggota Korbrimob yang selama ini mensyaratkan hal yang sama dengan penerimaan polisi umum, harus ditingkatkan standarnya dengan penelusuran latar

● Guru memberikan Lembar Kerja Siswa yang ada di video yang berkaitan dengan sejarah perkembangan Agama Hindu di Asia dan petunjuk penggunaan media Miro

Jadi dapat disimpulkan bahwa kelentukan pergelangan tangan dapat mempengaruhi servis pendek dalam bermain bulutangkis. Servis pendek yang dilakukan menggunakan

Untuk menentukan sudut insersi, pedoman umum yang diikuti berkaitan dengan jumlah jaringan yang dapat dikumpulkan atau.. dipegang pada

Pada Proses ini juga diperoleh nilai Validasi data antara data training terhadap data validasi berupa nilai:MAP, MAPE dan MSD yang baik sehingga dapatlah dipercaya engine

Rumusan masalah yang ada dalam Perancangan Interior Atmosphere Executive Lounge and Nightclub di Surabaya adalah bagaimana cara untuk menciptakan sebuah

Berdasarkan hasil penilitian tindakan kelas yang telah dilaksanakan pada pratindakan, siklus I dan siklus II, dapat disimpulkan bahwa penerapan model pembelajaran