• Tidak ada hasil yang ditemukan

2.1 Persamaan Gerak Roket dalam Ruang Tiga Dimensi

N/A
N/A
Protected

Academic year: 2021

Membagikan "2.1 Persamaan Gerak Roket dalam Ruang Tiga Dimensi"

Copied!
7
0
0

Teks penuh

(1)

BAB 2

DASAR TEORI

2.1 Persamaan Gerak Roket dalam Ruang Tiga Dimensi

Persamaan gerak roket di bidang ruang tiga dimensi pada Tata Acuan Koordinat Benda diturunkan dari Persamaan Dinamik Roket [Ref. 2] sebagai berikut:

Gerak Translasi Sumbu XB : M

(

vr wq

)

FX MgX AX dt du M = − + + + (2-1a) Sumbu YB : M

(

wp ur

)

FY MgY AY dt dv M = − + + + (2-1b) Sumbu ZB : M

(

uq vp

)

FZ MgZ AZ dt dw M = − + + + (2-1c) Gerak Rotasi

(

I I

)

mx (y q z r) L' rq dt dI p dt dp I XX YY ZZ e e e XX =− + − + + + • (2-2a)

(

I I

)

mqx2 x F z F M' pr dt dI q dt dq I YY ZZ XX e e Z e X YY =− + − − − + + • (2-2b)

(

I I

)

mrx2 x F y F N' pq dt dI r dt dr I ZZ XX YY e e Y e X ZZ =− + − − + − + • (2-2c) dengan: M : Massa roket _

V : Vektor kecepatan roket, dengan V_ =

[

u v w

]

u, v, w : Komponen vektor kecepatan roket pada sumbu XB, YB dan ZB

_

F : Vektor gaya dorong roket, dengan F_ =

[

FX FY FZ

]

FX, FY, FZ : Komponen vektor gaya dorong roket pada sumbu XB, YB dan ZB

(2)

_

g : Vektor percepatan gravitasi, dengan g_ =

[

gX gY gZ

]

gx, gy, gz : Komponen vektor percepatan gravitasi pada sumbu XB, YB

dan ZB

L, D, Y : Gaya angkat, gaya hambat dan gaya samping roket Ax, Ay, Az : Gaya aerodinamika roket pada sumbu XB, YB dan ZB

A_ =

[

AX AY AZ

]

= f

(

L,D,Y

)

L’, M’, N’ : Momen aerodinamika roket pada sumbu XB, YB dan ZB Ixx, Iyy, Izz : Inersia roket pada sumbu XB, YB dan ZB

xe, ye, ze : Jarak pusat aliran massa pada sumbu XB, YB dan ZB

m : Laju perubahan massa

Enam buah persamaan diferensial di atas hanya dapat dipecahkan secara numerik. Dalam prakteknya, gerak roket akan mendekati gerak pada bidang dua dimensi, sehingga persamaan gerak di atas menjadi dua gerak translasi (pada sumbu X dan Z) dan satu gerak rotasi (pada sumbu Y).

2.2 Persamaan Gerak Roket Dua Dimensi

Untuk menyatakan posisi dan kecepatan roket setiap waktunya digunakan Tata Acuan Koordinat Inersial, sehingga persamaan gerak (2-1) dan (2-2) harus ditransformasikan dari Tata Acuan Koordinat Benda ke Tata Acuan Koordinat Inersial.

(3)

Gambar 2-1. Tata Acuan Koordinat benda, horisontal lokal dan inersial untuk persamaan roket 2-D

Untuk memperoleh persamaan gerak dua dimensi, harga v, p dan r adalah 0 (nol). Bila harga tersebut dimasukkan ke dalam persamaan gerak (2-1) dan (2-2) akan diperoleh tiga buah persamaan gerak sebagai berikut:

X X X Mg A F wq dt du M ⎟= + + ⎠ ⎞ ⎜ ⎝ ⎛ + (2-3a) Z Z Z Mg A F uq dt dw M ⎟= + + ⎠ ⎞ ⎜ ⎝ ⎛ (2-3b) ' 2 x F z F M qx m dt dI q dt dq I YY e e Z e X YY =− − − + + • (2-3c) Persamaan (2-3a) dan (2-3b) dapat dituliskan dalam bentuk vektor sebagai berikut: A g M F dt V d M = + + ⎟⎟ ⎟ ⎠ ⎞ ⎜⎜ ⎜ ⎝ ⎛ _ (2-4) dengan komponen-komponen sebagai berikut:

zb Z xb Xe F e F F = + (2-5) zb zb xb xbe V e V V = + (2-6) zb Z xb Xe A e A A = + (2-7) zb Z xb Xe g e g g = + (2-8)

(4)

dengan Vxb dan Vzb adalah komponen vektor kecepatan roket pada Tata Acuan

Koordinat Benda (sumbu X dan Z).

Transformasi dari Tata Acuan Koordinat Benda ke Tata Acuan Koordinat Inersial dilakukan dengan persamaan transformasi sebagai berikut:

I I b b C 1 1 = (2-9) dengan: ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ = zb yb xb b e e e 1 (2-10a) ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ = zI yI xI I e e e 1 (2-10b) (2-10c) ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ − = θ θ θ θ cos 0 sin 0 1 0 sin 0 cos I b C sehingga (2-11) ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ − = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ zI yI xI zb yb xb e e e e e e θ θ θ θ cos 0 sin 0 1 0 sin 0 cos

Persamaan 5) dan 7) ditransformasi dengan menggunakan persamaan (2-11), kemudian disubstitusikan ke persamaan (2-4), sehingga diperoleh dua buah persamaan gerak translasi pada Tata Acuan Koordinat Inersial.

θ θ

θ

θ sin cos sin

cos Z X Z X X F F A A dt dV M ⎟= − + − ⎠ ⎞ ⎜ ⎝ ⎛ (2-12a) θ θ θ

θ cos sin cos

sin Z O X Z X Z F F Mg A A dt dV M ⎟= − + + + ⎠ ⎞ ⎜ ⎝ ⎛ (2-12b) Dengan menggunakan persamaan integral, maka kecepatan dan posisi roket setiap waktunya dapat dituliskan sebagai berikut:

(5)

+ = t X X X dt dt dV V V O 0 = +

t Z Z Z dt dt dV V V O 0

+ = O t dt dt dX X X 0

+ = O t dt dt dZ Z Z 0 (2-13) X V dt dX = VZ dt dZ = δ cos F FX = (2-14a) δ sin F FZ = (2-14b) α α cos sin D L AX = − (2-14c) α α sin cos D L AZ = + (2-14d) γ θ α = − (2-14e) X Z V V = γ tan (2-14f)

Persamaan gerak rotasi roket pada bidang dua dimensi diperoleh dengan memasukkan harga p = r = ze = 0 ke dalam persamaan (2-3c), maka

' sin 2 x F M qx m dt dI q dt dq I YY e e T YY =− − − + • δ (2-15) dengan dt d q=− θ (2-16a) dt dM m• =− (2-16b) (2-16c) aero M M' =−

Persamaan (2-12) dan (2-15) adalah persamaan lengkap untuk gerak dalam bidang dua dimensi pada Tata Acuan Koordinat Inersial.

2.3 Gaya dan Momen Aerodinamika

Roket terbang menempuh medan atmosfer bumi sehingga efek aerodinamika yang terjadi tidak dapat diabaikan. Parameter yang paling berpangaruh adalah kerapatan udara (ρ). Semakin tinggi terbang roket harga kerapatan udara akan

(6)

semakin berkurang, oleh karena itu efek aerodinamika yang terjadi juga akan berkurang.

Gaya dan momen aerodinamika ini tidak dapat dihitung secara pasti tetapi hanya bisa diprediksi. Prediksi ini dapat membuat penyimpangan terhadap perhitungan gaya dan momen aerodinamika sehingga simulasi gerak roket dapat mengalami deviasi pada trajektorinya. Deviasi lintas terbang yang terjadi disebut dengan trajectory dispersion.

Secara matematis, gaya dan momen aerodinamika dapat didefinisikan sebagai berikut:

• Gaya hambat aerodinamika (drag), D=qSCD (2-20) • Gaya angkat aerodinamikan (lift), L = qSCL (2-21)

• Momen aerodinamika, Maero = qcSCM (2-22)

• Tekanan dinamik,

( )

2 2 1 V h q= ρ (2-23)

Pengaruh gaya dan momen aerodinamika ini diasumsikan hanya berlaku pada ketinggian terbang kuran dari sama dengan 80000 m. Di atas ketinggian tersebut pengaruhnya karena harga massa jenis udara yang kecil sehingga dapat diabaikan.

2.4 Sistem Propulsi Roket

Gaya dorong yang digunakan dalam persamaan gerak di atas merupakan gaya dorong akibat sistem propulsi roket. Gaya dorong (FT) adalah jumlah gaya yang

bekerja pada roket karena proses pengeluaran gas [space mission], sebagaimana didefinisikan sebagai berikut:

(2-24)

[

∞ • − + =mV A P P FT e e e

]

dengan,

FT = Gaya dorong total

= Laju massa propelan

m

Ve = Kecepatan udara keluaran nosel

Ae = Luas area nosel

Pe = Tekanan udara keluaran nosel

(7)

Dari persamaan di atas dapat dilihat bahwa pada ketinggian rendah gaya dorong roket akan semakin meningkat sebanding dengan meningkatnya ketinggian hingga roket keluar dari atmosfer.

Specific Impulse (Isp) adalah ukuran kandungan energi dari propelan, dan

tingkat efisiensi propelan dikonversi menjadi gaya dorong. Isp didefinisikan sebagai:

o T sp g m F I = • (2-25) dengan,

go = Percepatan gravitasi bumi pada permukaan laut

Hubungan antara propulsi roket dengan prestasi roket tergambar di dalam perubahan kecepatan roket (∆V), yang dinyatakan melalui persamaan berikut:

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = Δ f o sp o M M I g V ln (2-26) dengan,

∆V = Perubahan kecepatan roket Mo = Massa awal roket

Mf = Massa akhir roket

Massa akhir roket diperoleh dari hubungan:

(2-27) B o f M mt M = − • dengan,

tBB = masa bakar propelan (burntime)

Sehingga dengan menggunakan persamaan (2-24) hingga (2-27) dapat diperoleh harga masa bakar propelan yang diperlukan untuk mendapatkan perubahan kecepatan (∆V) yang diinginkan.

Spesific Impulse (Isp), masa bakar propelan dan gaya dorong adalah variabel yang terdapat pada spesifikasi mesin roket setiap tingkat. Pada bab selanjutnya diberikan data-data spesifikasi mesin roket Polyot pada tiap tingkat yang digunakan pada persamaan gerak roket untuk membuat simulasi gerak wahana peluncur Polyot.

Gambar

Gambar 2-1. Tata Acuan Koordinat benda, horisontal lokal dan inersial untuk  persamaan roket 2-D

Referensi

Dokumen terkait

The EPITHELIAL LAYER of the mucous membrane of the MOUTH, PHARYNX, ESOPHAGUS, & ANAL CANAL is composed of NONKERATINIZED STRATIFIED SQUAMOUS EPITHELIUM The epithelium

D'après ces résultats, on peut conclure que la fonction du langage est le plus souvent trouvé ou utilisé dans la chanson est une fonction Emotive (63) et le moins découvert

Jika dibandingkan dengan nilai koefisien determinasi model pertama yang hanya sebesar 13,84% maka dapat disimpulkan bahwa penambahan variabel kepuasan kerja dan

Berkaitan dengan pengelolaan kebun dan perawatan tanaman, dimana setiap tahapan pertumbuhan tanaman memerlukan perawatan dan nutrisi yang spesifik sesuai dengan fokus

Berdasarkan beberapa pengertian di atas, maka maksud judul penelitian ini adalah suatu usaha/ proses yang ditujukan untuk meningkatkan hasil belajar siswa kelas V di MI

Hasil sosiometri dan observasi instrumen skala penilaian interaksi sosial yang diperoleh tersebut, didukung dengan palaksanaan wawancara yang dilakukan peneliti kepada guru BK SMA N

Dengan memperhatikan visi dan misi tersebut, tujuan dan sasaran Pusat Penelitian dan Pengembangan Perkebunan tahun 2010-2014 adalah : (1) mendukung pemenuhan

Transportasi ojek sudah lama ada di indonesia. Namun demikian, saat ini ojek mengalami perubahan dengan memanfaatkan teknologi internet.Oleh karena itu,