• Tidak ada hasil yang ditemukan

IV. HASIL DAN PEMBAHASAN

N/A
N/A
Protected

Academic year: 2021

Membagikan "IV. HASIL DAN PEMBAHASAN"

Copied!
10
0
0

Teks penuh

(1)

IV. HASIL DAN PEMBAHASAN

4.1. Fluks dan Total Fluks Gas Metana (CH4) pada Lahan Jagung, Kacang Tanah, dan Singkong

Pada Gambar 4, 5 dan 6 menunjukkan fluks CH4 pada lahan jagung,

kacang tanah dan singkong. Terdapat dua buah fluks CH4 pada lahan jagung dan

lahan singkong, sedangkan pada lahan kacang tanah 0hanya terdapat satu buah fluks CH4. Fluks pada lahan kacang tanah hanya satu buahPada lahan kacang tanah hanya terdapat satu buah fluks karena ketiga sungkup diletakan pada baris tanaman, sehingga hasil fluks dari ketiga sungkup tersebut dapat dirata-ratakan.

Sedangkan, Dua dua buah fluks pada lahan jagung dan singkong terdiri dari baris antar tanaman dan rata-rata (dua buah contoh) fluks CH4 pada baris tanaman. Fluks pada lahan kacang tanah merupakan rata-rata fluks dari tiga buah sungkup di baris tanaman. Fluks pada ketiga lahan sangat kecil, hampir semua fluks berada di bawah 1 mg C-CH4/m2/hari, dengan selang fluks CH4 di lahan jagung -0,73

sampai 1,23 mg C-CH4/m2/hari, lahan kacang tanah -0,27 sampai 0,89 mg

C-CH4/m2/hari, dan lahan singkong -1,19 sampai 2,95 mg C-CH4/m2/hari. Berikut

gambar yang menunjukan fluks pada ketiga penggunaan lahan.

Gambar 4. Fluks CH4 pada lahan jagung

-1,5 -1 -0,5 0 0,5 1 1,5 1 8 15 22 29 36 43 50 57 fluks g as CH 4 (m g C-C H4 /m 2/hari)

baris antar tanaman baris tanaman

(2)

Gambar 5. Fluks CH4 pada lahan kacang tanah

Gambar 6. Fluks CH4 pada lahan singkong.

Gas metana merupakan gas yang terbentuk pada tanah-tanah anaerob dengan redoks potensial -220 volt. Suprihati (2007) menguangkapkan, gas CH4

dihasilkan secara biologis oleh aktivitas mikrob yaitu aktivitas bakteri metanogen

Hari -2 -1 0 1 2 3 4 1 8 15 22 29 36 43 50 fluks g a s CH 4 (m g C-C H4 /m 2/hari) Hari

rata-rata kacang tanahrata-rata fluks pada lahan kacang tanah

-2 -1 0 1 2 3 4 1 32 63 94 124 155 185 216 Fluks gas CH 4 (m g C/m 2 /d)

(3)

melalui penguraian atau pembusukan bahan-bahan organik yang terjadi pada lahan sawah dan fermentasi anterik pada ruminan. Zaenal (1997) mengungkapkan, pada budidaya lahan kering CH4 dapat terbentuk pada site-site anaerob.

Berdasarkan hal-hal tersebut dapat diketahui, pembentukan gas CH4 sangat

berkaitan dengan aktifitas bakteri metanogen yang membutuhkan bahan organik dan lingkungan yang anaerob. Sehingga pembentukan gas CH4 pada lahan kering

tanaman jagung, kacang tanah dan singkong yang diteliti ini diakibatkan oleh

site-site anaerob dengan bahan organik yang sedang terdekomposisi. Hal tersebut

menimbulkan suasana yang sesuai untuk aktifitas bakteri metanogen.

Dari Gambar 4,5 dan 6 kita dapat melihat fluks gas CH4 bernilai negatif.

Nilai fluks CH4 yang negatif pada lahan kering yang diteliti ini dapat diakibatkan

oleh aktifitas bakteri metanogen maupun aktifitas bakteri metanotrof. Aktifitas bakteri metanogen pada lahan-lahan kering sangat terbatas, bakteri ini hanya dapat beraktifitas pada site-site anaerob yang sangat sempit dengan bahan organik yang cukup. Pada site-site anaerob yang sempit ini ada kemungkinan CH4 terbentuk

pada masa awal pengambilan sampel gas (waktu 0 menit), kemudian pada masa-masa pengambilan berikutnya (waktu 20 menit dan 40 menit) gas tersebut tidak diproduksi lagi oleh metanogen, dikarenakan site-site yang sesuai untuk pembentukan gas ini sudah tidak tersedia lagi. Sehingga ketika pada masa awal (0 menit) terukur terdapat konsentrasi gas CH4 namun pada masa pengambilan yang

kedua (20 menit) dan pengambilan yang ketiga (40 menit) konsentrasi tidak kontinu bertambah bahkan cenderung turun, menyebabkan nilai fluks CH4

tersebut bernilai negatif.

Selain bakteri metanogen (bakteri pembentuk gas metana) terdapat pula bakteri pengoksidasi CH4 atau bakteri metanotrof. Bakteri metanotrof adalah

mikroorganisme aerobik yang dapat tumbuh dan berkembang dengan CH4 sebagai

satu-satunya sumber energi. Oleh karena itu, oksidasi CH4 dapat terjadi pada

lingkungan mikro yang bersifat aerobik pada zona perakaran dan pada bagian yang bersifat oksik pada lapisan permukaan tanah. Proses oksidasi CH4 tersebut

diinisiasi oleh enzim metan mono-oksigenase yang berperan dalam konversi CH4

menjadi metanol (Oremland dan Capone, 1988). Pembentukan gas CH4 pada

(4)

aktifitas bakteri metanotrof, sehingga gas CH4 yang terbentuk pada site-site

terbatas tersebut dapat dimanfaatkan oleh metanotrof. Hal tersebut menyebabkan konsentrasi gas CH4 terus berkurang dan mengakibatkan nilai fluks negatif. Nilai

fluks negatif pada budidaya lahan kering didapatkan pula oleh para peneliti sebelumnya. Tercatat nilai fluks pada budidaya kedelai -0,05 mg C-CH4/m2/jam

(Ernawanto et. al, 2003), Fluks CH4 dari empat macam tipe penggunaan tanah

(hutan tua, hutan habis tebang, dibakar setelah tebang dan perkebunan karet) di Jambi, Sumatera berkisar antara -21,2 hingga 4,2 10-3 mg C-CH4/m2/jam

(Ishizuka et. al., 2002).

Dari fluks gas CH4 per hari dapat diketahui total fluks CH4 per tahun.

Total fluks diperoleh dengan cara menghitung areal fluks di bawah kurva selama priode penelitian. Terhitung tTotal fluks CH4 tertinggi terdapat di lahan kacang

tanah, yaitu sebesar 1,57 kg C-CH4/ha/tahun, sedangkan total fluks terendah terdapat pada lahan singkong sebesar -0,3 kg C-CH4/ha/tahun (Tabel 1),

sedangkan data mengenai fluks CH4 dan variable lingkungan pada setiap

pengambilan sampel dapat di lihat pada lampiran 5, 6 dan 7.

Tabel 2.Total fluks CH4, konsentrasi NO3-, konsentrasi NH4+ dan WFPS pada

lahan jagung, kacang tanah dan singkong

Komoditas Total fluks CH4

(mgC/ha/hari) STDEV Konsentrasi NO 3 -(mg NO3-/kg) Konsentrasi NH4+ (mg NH4+/kg) WFPS (%) Jagung -0,30 0,64 31,69 15,79 46,39 Kacang Tanah 1,57 1,24 15,91 8,13 36,92 Singkong 1,05 0,50 14,37 5,82 43,37

Keragaman data fluks CH4 dari ketiga lahan tanaman tersebut sangat

besar. Keragaman yang besar ini menandakan kemungkinan tidak ada perbedaan fluks yang signifikan dari ketiga penggunaan lahan tersebut. Bila dibandingkan

total fluks CH4 dari lahan jagung, kacang tanah dan singkong dibandingkan

dengan total fluks pada lahan padi sawah, nilai fluks yang terukur sangat kecil. ,diketahui bBerdasarkan penelitian Setyanto (2004) fluks CH4 pada lahan sawah

minimum 107,1 kg/ha/musim dan maksimum mencapai 798 kg/ha/musim, serta dibandingkan pula dengan hasil penelitian fluks CH4 Ernawanto et. al. (2003)

(5)

pada sistem penanaman walik jerami – kedelai - padi gogo rancah diperkirakan sebesar 199,2 kg/ha/tahun dengan rataan 2,3 mg/m2/jam.

Berbagai data hasil penelitian tersebut menunjukan bahwa lahan kering yang ditanami oleh jagung, kacang tanah dan singkong yang diteliti memiliki total fluks CH4 sangat kecil, bahkan mungkin dapat diabaikan bila dibandingkan

dengan total fluks CH4 yang terbentuk dari lahan-lahan yang tergenang (anaerob). 4.1. Fluks Gas Dinitrogen Oksida (N2O) pada Lahan Jagung, Kacang

Tanah, dan Singkong

Berdasarkan hasil pengukuran, pengamatan dan analisis sampel udara yang dilakukan, terlihat fluks gas dinitrogen oksida (N2O) pada lahan jagung,

kacang tanah dan singkong pada gambar 7, 8 dan 9.

Gambar 7. Fluks N2O pada lahan jagung

Keterangan = Hujan = Aplikasi Pupuk -5 0 5 10 15 20 25 30 35 40 1 8 15 22 29 36 43 50 57 Fluks N 2 O (mg N/m 2/d

baris tanaman baris antar tanaman Hari

(6)

Gambar 8. Fluks N2O pada lahan kacang tanah

Gambar 9. Fluks N2O pada lahan singkong

Pada Gambar 7, 8 dan 9 terukur range fluks untuk lahan jagung jauh lebih tinggi dibandingkan dengan range fluks dari lahan kacang tanah maupun lahan singkong. Pada lahan jagung fluks N2O dapat mencapai 20 mg N-N2O/m2/hari

pada awal penanaman, lahan kacang tanah 0,52 mg N-N2O/m2/hari dan pada lahan

singkong terlihat fluks N O maksimal sebesar 5 mg N-NO/m2/hari.

Keterangan   = Hujan  = Aplikasi Pupuk  Hari Hari -0,5 0 0,5 1 1,5 1 8 15 22 29 36 43 50 Fluks N 2 O (mg N/ m2/h r Rata-rata emisi -1 0 1 2 3 4 5 1 32 63 94 124 155 185 216 Fluks N 2 O (mg N/m 2/h r

(7)

Pada lahan jagung terlihat fluks pada baris tanaman, terutama pada awal-awal penanaman, lebih tinggi dibandingkan pada baris antar tanaman. Fluks N2O

pada baris tanaman di lahan singkong tidak terlihat perbedaan yang signifikan dengan fluks pada baris antar tanaman.

Berdasarkan data tersebut Dapat dapat dilihat pula bahwa fluks N2O

meningkat dengan penambahan pupuk, penambahan pupuk pada gambaryang

ditunjukan dengan garis tegak lurus berwarna merah. Peningkatan fluks lebih signifikan terlihat setelah dilakukkan penambahan pupuk dan terjadi hujan,hal ini terjadi pada fluks N2O dilahan singkong.Peningkatan fluks N2O di lahan singkong

lebih signifikan terlihat setelah dilakukan penambahan pupuk dan terjadi hujan.

Tingginya fluks N2O pada baris tanaman dimasa awal penanaman jagung

dapat diakibatkan oleh pemupukan yang biasa dilakukkan pada baris tanaman saja. Hal ini menyebabkan konsentrasi unsur N lebih tinggi pada baris tanaman

dibandingkan dengan baris antar tanaman. Pemupukan juga menyebabkan peningkatan produksi N2O pada lahan. Suprihati (2007) mendapatkan pula bahwa

fluks N2O pada lahan jagung tertinggi pada masa-masa awal penanaman, hal ini

disebabkan karena pada masa awal penanaman petani biasa mengaplikasikan pupuk organik serta pupuk N sehingga menciptakan lingkungan yang sesuai untuk pembentukan N2O. Hal serupa diunkapkan oleh Pathak (1999), bahwa produksi

N2O meningkat, baik melalui proses nitrifikasi maupun melalui proses

denitrifikasi ketika tanah diberi aplikasi pupuk-N.

Pada lahan singkong terlihat peningkatan fluks yang signifikan setelah lahan singkong dipupuk dan terjadi hujan. Peningkatan ini terjadi karena hujan meningkatkan kadar air tanah. Air tanah ini dapat mempengaruhi proses denitrifikasi baik secara langsung maupun tidak langsung dengan cara: (1) air tanah membuat lingkungan yang sesuai untuk mikroorganisme berkembang dan beraktivitas; (2) membatasi tersedianya O2 pada pori-pori mikro tanah; dan (3)

mudahnya pelepasan substrat C dan N melalui siklus pembasahan dan pengeringan. ;namun Namun bagaimanapun yang terpenting dari peran air tanah

yang terpenting adalah membatasi adanya O2 pada pori tanah, sehingga N2O

mudah terbentuk dalam keadaan sedikit anaerobik (Pathak, 1999). Hujan menyebaebkan tanah lebih lembab sehingga aerasi menjadi buruk, keadaan ini

(8)

mendorong terjadinya proses denitrifikasi yang menghasilkan N2O lebih tinggi.

Wrage et. al. (2001) menyatakan bahwa NH4 dapat teroksidasi dalam keadaan

aerob melalui proses nitrifikasi menjadiNO3, pada proses perubahan iniN2O dapat

terbentuk dalam jumlah yang kecilNH4+ dapat teroksidasi menjadi NO3- melalui

proses nitrifikasi dengan menghasilkan N2O dalam jumlah yang kecil.

sedangkanSedangkan NO3- dapat tereduksi melalui proses denitrifikasi dalam

keadaan sedikit aerob menjadi N2O, pada proses ini N2O banyak terbentuk. 4.2. Total Fluks Gas Dinitrogen Oksida (N2O) pada Lahan Jagung, Kacang

Tanah dan Singkong

Total fluks N2O dari lahan jagung, kacang tanah dan singkong didapat

dengan cara menghitung luas areal dibawah kurva fluks selama priode penelitian. Total fluks N2O pada lahan jagung sebesar 16,9 kg N-N2O/ha/tahun, lahan kacang

tanah sebesar 0,6 kg N-N2O/ha/tahun dan lahan singkong sebesar 1,52 kg

N-N2O/ha/tahun (Tabel 3), sedangkan untuk data mengenai fluks N2O dan variable

lingkungan ketika pengambilan sampel dapat dilihat pada lampiran 8, 9 dan 10. Tabel 3.Total fluksN2O, konsentrasiNO3-, konsentrasiNH4+ danWFPS pada lahan

jagung, kacang tanah dan singkong

Komoditas Total fluks N2O

(kg N/ha/thn) STDEV Konsentrasi NO3 -(mg NO3-/kg) Konsentrasi NH4+ (mg NH4+/kg) WFPS (%) Jagung 16,09 4,70 31,69 15,79 46,39 Kacang Tanah 0,76 0,67 15,91 8,13 36,92 Singkong 1,52 0,50 0,58 5,82 43,37

Dari tabel diatas terlihat konsentrasi unsur N dalam bentuk NO3- lebih

tinggi dibandingkan dengan konsentrasi unsure N dalam bentuk NH4+. Hal ini

menandakan bahwa proses nitrifikasi berjalan dengan baik dan menghasilkan NO3-. Tersedianya NO3- dalam jumlah besar menimbulkan potensi terbentuknya

N2O lebih tinggi, karena melalui proses denitrifikasi dengan keadaan WFPS

mendekati 60% menimbulkan lingkungan yang sangat sesuai untuk terbentuknya N2O dari lahan pertanian.

Wrage et. al. (2001) menyatakan bahwa, senyawa NH4+ dapat teroksidasi

(9)

perubahan ini N2O dapat terbentuk dalam jumlah yang kecil, sedangkan NO3

-dapat tereduksi melalui proses denitrifikasi dalam keadaan sedikit aerob menjadi N2O, pada proses ini N2O banyak terbentuk.

Berdasarkan total fluks yang terukur, fluks pada lahan jagung jauh lebih tinggi dibandingkan dengan lahan kacang tanah maupun lahan singkong. Perbedaan fluks yang mencolok pada lahan jagung dapat diakibatkan oleh berbagai faktor.Salah satu faktor penyebab tingginya fluks N2O pada lahan jagung

adalah konsentrasi unsur N di tanah. Terukur pPada lahan jagung rata-rata konsentrasi unsur N dalam bentuk NH4+ maupun NO3- lebih tinggi dua kali lipat

dibandingkan dengan lahan kacang tanah maupun lahan singkong (Tabel 3). Konsentrasi unsur N dalam bentuk NH4+ maupun dalam bentuk NO3- di

lahan pertanian dapat ditingkatkan dengan aplikasi pupuk N. Aplikasi pupuk N pada lahan jagung sepertinya berlebih. Berlebihnya unsur N pada lahan jagung,

selain dapat dilihat dari tingginya unsure N dalam bentuk NH4+ maupun NO3- di lahan jagung, kelebihan dapat dilihat pula dari banyaknya tanaman jagung yang

mengalami roboh di lahan yang diteliti. Robohnya tanaman diakibatkan oleh sekulensi yang disebabkan karena tanaman mengalami kelebihan unsur N.

Hal berbeda terlihat pada lahan kacang tanah dan singkong. Konsentrasi unsur N dalam senyawa NH4+ maupun senyawa NO3- di lahan kacang tanah lebih

tinggi dibandingkan lahan singkong (Tabel 3), namun total fluks N2O pada lahan

singkong lebih tinggi dibandingkan dengan lahan kacang tanah (Tabel 3). Hal ini dapat terjadi karena faktor pembentukan N2O tidak hanya berdasarkan konsentrasi

unsur N saja, namun pembentukan N2O dipengaruhi pula oleh faktor-faktor

lingkungan. Salah satu faktor lingkungan yang mempengaruhi peningkatan pembentukan N2O dari lahan pertanian adalah water filled pore space (WFPS).

Pada tabel 3 terlihat rata-rata WFPS pada lahan singkong hampir 7 (tujuh) poin lebih tinggi dibandingkan dengan lahan kacang tanah.

Water filled pore space sangat berkaitan dengan kelembaban tanah. menurut Menurut Pathak (1999), kelembaban tanah mempengaruhi pembentukan N2O karena menyebabkan kondisi yang sesuai untuk mikroorganisme beraktivitas

dan berkembang, membatasi O2 berada pada pori-pori mikro, dan memungkinkan

(10)

Pembentukan N2O dipengaruhi oleh iklim mikro tanah, N2O banyak terbentuk

pada pori-pori tanah yang terisi air, sedangkan pada pori yang tidak terisi air gas N2O sangat kecil terbentuk. Lind dan Doran (1984) menyatakan pula bahwa fluks

N2O maksimum ketika WFPS mencapai 60%, karena bila WFPS melebihi 60%

yang terbentuk bukan gas dinitrogen oksida (N2O) melainkan gas nitrogen (N2).

Berdasarkan hal-hal tersebut maka WFPS dapat menggambarkan berapa banyak tempat yang dapat memproduksi N2O di tanah dalam keadaan sedikit anaerob

melalui proses denitrifikasi.

Berdasarkan data tersebut dapat terlihat N2O banyak terbentuk ketika

petani melakukan aplikasi pupuk-N yang berlebihan. Dampak dari aplikasi pupuk yang berlebihan selain membentuk N2O, juga dapat merusak tanaman dan

Gambar

Gambar 4. Fluks CH 4  pada lahan jagung -1,5-1-0,500,511,5181522293643 50 57
Gambar 5. Fluks CH 4  pada lahan kacang tanah
Gambar 7. Fluks  N 2 O pada lahan jagung                  Keterangan  = Hujan  = Aplikasi Pupuk -505101520253035401815222936435057Fluks   N2O(mg N/m2/d
Gambar 8. Fluks N 2 O pada lahan kacang tanah
+2

Referensi

Dokumen terkait

Menurut Februhartanty (2008), ada 6 pengelompokan tipe peran ayah dalam praktek menyusui secara eksklusif dan peran-peran ini dianggap sebagai dukungan kepada ibu untuk

Jamalludin dan Zaidatun (2002) menyatakan bahawa pautan atau links membolehkan suatu navigasi tidak linear berbentuk hypermedia dapat dihasilkan. Ini dapat

Pada tabel diatas menunjukkan tingkat kepatuhan seluruh pengusaha kena pajak yang terdaftar di KPP Pratama Medan Timur dalam hal pelaporan SPT Masa PPN sebelum

Dari telaah RPP dan wawancara menunjukkan bahwa meteri ajar yang dikembangkan dalam RPP memang masih parsial (berdiri sendiri) atau belum menunjukkan

Ragam tafsir bermunculan ke dalam tradisi keilmuan Islam -khususnya al-Qur’ān- sebenarnya berangkat dari asumsi bahwa mufassir atau si pembaca teks tidak diatur

Sedangkan, pendek berarti kisahnya pendek (kurang dari pada 10.000 kata) yang memberikan kesan tunggal yang dominan dan memutuskan diri pada satu tokoh dalam satu

Sistem perpipaan harus mempunyai fleksibilitas yang cukup, agar pada saat terjadi ekspansi termal dan kontraksi, pergerakan dari penyangga dan titik persambungan pada system

SAAT INI CMNP MERUPAKAN BAGIAN DARI CITRA KONSORSIUM DENGAN MITRA STRATEGIS CITRA CONSORTIUM Philippines Sri Lanka Vietnam Others Providing Value Providing Capital. Konsesi