• Tidak ada hasil yang ditemukan

TINJAUAN PUSTAKA. A. Mentimun Jepang (cucumis sativus L)

N/A
N/A
Protected

Academic year: 2021

Membagikan "TINJAUAN PUSTAKA. A. Mentimun Jepang (cucumis sativus L)"

Copied!
8
0
0

Teks penuh

(1)

II.

TINJAUAN PUSTAKA

A.

Mentimun Jepang (cucumis sativus L)

Mentimun jepang banyak dikenal oleh pedagang sayuran karena nilai ekonomis yang tinggi. Mentimun jepang memiliki beberapa perbedaan dengan mentimun lokal baik dalam hal warna, rasa dan tekstur buahnya. Mentimun jepang memiliki warna buah hijau pekat (seperti pada gambar 1), rasa yang lebih manis dan tekstur buah yang lebih renyah. Hal lain yang membedakan mentimun jepang dengan mentimun lokal adalah umur panen yang lebih cepat.

Gambar 1. Mentimun Jepang

Tanaman mentimun berasal dari India, tepatnya di lereng gunung Himalaya. Di kawasan ini

ditemukan jenis mentimun liar yaitu Cucumis Hardwichii Royle yang jumlah kromosom sepasang

(n=14) padahal jumlah kromosom mentimun pada umumnya adalah 2n =2x = 24. Sumber genetik timun yang lain ditemukan di Afrika Selatan. Dari India dan Afrika selatan tanaman mentimun meluas ke daerah Mediterania.

Mentimun jepang merupakan salah satu tanaman sayuran yang banyak ditemukan di pasaran lokal. Tanaman mentimun adalah tanaman semusim yang menjalar atau memanjat dengan alat pemegang berbentuk pilin ataupun spiral. Daun tanaman mentimun kasar dan berwarna hijau, berjari tiga hingga tujuh. Bunganya merupakan bunga tunggal berbentuk lonceng dan bewarna kuning.

Tanaman mentimun jepang dapat tumbuh di tempat yang ketinggiannya kira-kira 200-800 m dpl. Pertumbuhan optimal pada mentimun jepang ini terjadi pada penanaman di ketinggian 400 m dpl. Selain ketinggian, faktor lain yang mempengaruhi pertumbuhan tanaman mentimun jepang adalah tekstur tanah. Untuk tanaman ini tekstur tanah yang sesuai adalah tanah dengan kadar liat rendah dan pH sekitar 6-7. Tanaman mentimun juga harus mendapatkan sinar matahari yang cukup dengan suhu 210C – 26.70C.

Pembudidayaan tanaman mentimun baik dilakukan pada akhir musim hujan atau pada awal musim kemarau. Penanaman dapat dilakukan dengan penanaman biji secara langsung atau dengan pemindahan bibit dari persemaian. Dalam pertumbuhannya tanaman timun sering diserang oleh hama dan penyakit.

Beberapa jenis hama yang sering menyerang tanaman mentimun adalah sebagai berikut. 1. Oteng-oteng atau Kutu Kuya (Aulocophora similis Oliver).

(2)

Kumbang daun berukuran 1 cm dengan sayap kuning polos. Gejala : merusak dan memakan daging daun sehingga daun bolong; pada serangan berat, daun tinggal tulangnya. Pengendalian: Natural BVR atau PESTONA.

2. Ulat Tanah (Agrotis ipsilon)

Ulat ini berwarna hitam dan menyerang tanaman terutama yang masih muda. Gejala: Batang tanaman dipotong disekitar leher akar.

3. Lalat buah (Dacus cucurbitae Coq.)

Lalat dewasa berukuran 1-2 mm. Lalat menyerang mentimun muda untuk bertelur, Gejala: memakan daging buah sehingga buah abnormal dan membusuk. Pengendalian : Natural METILAT.

4. Kutu daun (Aphis gossypii Clover)

Kutu berukuran 1-2 mm, berwarna kuning atau kuning kemerahan atau hijau gelap sampai hitam. Gejala: menyerang pucuk tanaman sehingga daun keriput, kerititing dan menggulung. Kutu ini juga penyebar virus. Pengendalian : Natural BVR atau PESTONA

Sedangkan jenis penyakit yang sering menyerang tanaman mentimun adalah

1. Busuk daun (Downy mildew)

Penyebab : Pseudoperonospora cubensis Berk et Curt. Menginfeksi kulit daun pada kelembaban udara tinggi, temperatur 16 – 22°C dan berembun atau berkabut. Gejala : daun berbercak kuning dan berjamur, warna daun akan menjadi coklat dan busuk. Pengendalian : Pemberian Natural GLIO sebelum tanam.

2. Penyakit tepung (Powdery mildew )

Penyebab : Erysiphe cichoracearum. Berkembang jika tanah kering di musim kemarau dengan kelemaban tinggi. Gejala : permukaan daun dan batang muda ditutupi tepung putih, kemudian berubah menjadi kuning dan mengering. Pengendalian : Pemberian Natural GLIO sebelum tanam.

3. Antraknose

Penyebab : cendawan Colletotrichum lagenarium Pass. Gejala: bercak-bercak coklat pada daun. Bentuk bercak agak bulat atau bersudut-sudut dan menyebabkan daun mati; gejala bercak dapat meluas ke batang, tangkai dan buah. Bila udara lembab, di tengah bercak terbentuk massa spora berwarna merah jambu. Pengendalian : Pemberian Natural GLIO sebelum tanam.

4. Bercak daun bersudut

Penyebab : cendawan Pseudomonas lachrymans. Menyebar pada saat musim hujan. Gejala : daun berbercak kecil kuning dan bersudut; pada serangan berat seluruh daun yang berbercak berubah menjadi coklat muda kelabu, mengering dan berlubang. Pengendalian : Pemberian Natural GLIO sebelum tanam.

5. Virus

Penyebab : Cucumber Mosaic Virus, CMV, Potato virus mosaic, PVM; Tobacco Etch Virus, TEV; otato Bushy Stunt Virus (TBSV); Serangga vektor adalah kutu daun Myzus persicae Sulz dan Aphis gossypii Glov. Gejala : daun menjadi belang hijau tua dan hijau muda, daun berkerut, tepi daun menggulung, tanaman kerdil. Pengendalian: dengan mengendalikan serangga vektor dengan Natural BVR atau PESTONA, mengurangi kerusakan mekanis, mencabut tanaman sakit dan rotasi dengan famili bukan Cucurbitaceae.

6. Kudis (Scab)

Penyebab : cendawan Cladosporium cucumerinum Ell.et Arth. Terjadi pada buah mentimun muda. Gejala : ada bercak basah yang mengeluarkan cairam yang jika mengering akan seperti

(3)

karet; bila menyerang buah tua, terbentuk kudis yang bergabus. Pengendalian : Pemberian Natural GLIO sebelum tanam.

7. Busuk buah

Penyebab : cendawan (1) Phytium aphinadermatum (Edson) Fizt.; (2) Phytopthora sp., Fusarium sp.; (3) Rhizophus sp., (4) Erwinia carotovora pv. Carotovora. Infeksi terjadi di kebun atau di tempat penyimpanan. Gejala : (1) Phytium aphinadermatum: buah busuk basah dan jika ditekan, buah pecah; (2) Phytopthora: bercak agak basah yang akan menjadi lunak dan berwarna coklat dan berkerut; (3) Rhizophus: bercak agak besah, kulit buah lunak ditumbuhi jamur, buah mudah pecah; (4) Erwinia carotovora: buah membusuk, hancur dan berbau busuk. Pengendalian: dengan menghindari luka mekanis, penanganan pasca panen yang hati-hati, penyimpanan dalam wadah bersih dengan suhu antara 5 – 7 derajat C. Dan pemberian Natural GLIO sebelum tanam.

Tanaman mentimun dapat dipanen dalam 1.5 bulan. Pemungutan hasil dapat dilakukan dalam waktu kurang dari sebulan. Buah yang dapat dipungut adalah buah yang sudah besar namun tidak terlalu tua.

Tanaman mentimun jepang dikelompokkan berdasarkan klasifikasi berikut:

Kingdom : Plantae

Divisi : Spermatophyta

Sub divisi : Angiospermae

Class : Dicotyledonae

Ordo : Cucurbitales

Family : Cucurbitaceae

Genus : Cucumis

Species : Cucumis Sativus L.

Mentimun jepang memiliki banyak kandungan gizi yang bermanfaat bagi tubuh kita. Mentimun jepang banyak mengandung vitamin A, B dan vitamin C, selain itu mentimun juga mengandung sedikit saponin, enzim pencernaan, glutathione, protein, dan karbohidrat. Mentimun dapat digunakan sebagai penyegar badan, penyejuk, menghaluskan dan melemaskan kulit.

Tabel 2. Kandungan gizi dalam 100 gram mentimun

Komponen Jumlah kandungan

Protein 0,6 g Lemak 0.2 g Karbohidrat 2.4 g Serat 0.5 g Abu 0.4 g Kalsium 19 mg Fosfor 12 mg Kalium 122 mg Zat besi 0.4 mg Natrium 5 mg Vitamin B1 0.02 mg Vitamin B2 0.02 mg Niacin 0.1 Vitamin C 10 mg

(4)

Mentimun jepang biasanya dikonsumsi sebagai lalapan, namun banyak juga olahan makanan yang dibuat dengan bahan dasar mentimun seperti asinan mentimun dan minuman sari mentimun. Mentimun yang baik adalah mentimun yang segar, muda, berwarna cemerlang, dan tidak lunak. Mentimun jepang banyak diekspor ke luar negeri terutama ke negara Jepang. Permintaan pasar Jepang terhadap mentimun rata-rata 50.000 ton per tahun. Mutu mentimun jepang yang harus dipenuhi sesuai dengan permintaan konsumen menurut petani mentimun yaitu warna mentimun jepang harus hijau pekat, bentuknya lurus dan pada bagian kulit tidak ada cacat serta tingkat kekerasan yang renyah.

B.

Gelombang Ultrasonik

Gelombang terjadi apabila adanya suatu gangguan pada kesetimbangan dalam suatu sistem dan gelombang tersebut dapat merambat melalui suatu medium dimana setelah gangguan ini lewat keadaan medium akan kembali ke keadaan semula seperti sebelum gangguan itu datang. Gelombang seperti ini dinamakan gelombang mekanik seperti gelombang bunyi. Secara umum gelombang dibagi menjadi dua kategori yaitu gelombang mekanik dan gelombang elektromagnetik. Gelombang mekanik memerlukan suatu medium untuk merambat sedangkan gelombang yang tidak memerlukan medium untuk merambat disebut gelombang elektromagnetik. Contoh gelombang mekanik adalah gelombang pada tali dan gelombang akustik sedangkan contoh gelombang elektromagnetik adalah seperti gelombang radio, radiasi inframerah, sinar-X dan yang lainnya. Gelombang elektromagnetik dapat berjalan melalui ruang hampa.

Ada dua jenis gelombang yaitu gelombang transversal dan gelombang longitudinal. Gelombang transversal terjadi apabila pergeseran medium tegak lurus terhadap arah perjalanan gelombang sedangkan gelombang longitudinal terjadi apabila gerakan partikel pada medium adalah gerakan bolak-balik sepanjang arah yang sama dengan arah perjalanan gelombang.

Gelombang memiliki beberapa sifat seperti dapat berinteraksi dengan dengan benda, jika gelombang datang pada sebuah benda maka gelombang tersebut dapat di absorbs, direfleksikan, ditransmisikan atau direfraksikan.

Gelombang akustik seperti bunyi merupakan salah satu gelombang mekanik yang dapat merambat baik di dalam fluida maupun di dalam padatan. Di dalam fluida gelombangnya merupakan longitudinal sedangkan dalam padatan gelombangnya dapat berupa gelombang longitudinal dan gelombang transversal. Gelombang sinusoidal adalah jenis gelombang bunyi yang memiliki frekuensi, amplitudo dan panjang gelombang tertentu.

Manusia memiliki batas pendengaran pada frekuensi tertentu yaitu sekitar 20-20.000 Hz yang disebut dengan gelombang audiosonik. Frekuensi tersebut disebut audible range atau jangkauan

yang dapat didengar oleh manusia. Selain itu ada juga yang disebut dengan gelombang ultrasonik yaitu gelombang dengan frekuensi di atas jangkauan dengar manusia (di atas 20 kHz) seperti magnet listrik, getaran Kristal piezo elektrik dan gelombang infrasonik dengan frekuensi gelombang di bawah jangkauan dengar manusia (dibawah 20 Hz) seperti getaran gempa,dan tanah longsor. Gelombang bunyi berjalan ke semua arah dari sumber bunyi dengan amplitudo tergantung pada arah dan jarak dari sumber.

Gelombang ultrasonik merupakan gelombang mekanik sehingga dalam perambatannya membutuhkan medium perantara. Gelombang ultrasonik tidak dapat merambat pada ruang hampa sehingga proses transmisi pada ruang hampa tidak pernah terjadi. Perambatan gelombang

(5)

Gelombang ultrasonik memiliki prinsip yang sama dengan gelombang mekanik lainnya sehingga proses pembiasan, pemantulan, polarisasi atau yang lainnya tetap terjadi. Proses pemantulan dan pembiasan pada gelombang ultarsonik bisa terjadi bila melewati medium yang indeks biasnya berbeda. Pada proses tersebut akan terjadi pengurangan intensitas gelombang yang menandakan adanya pengurangan energi dari gelombang tersebut. Ditinjau dari sudutnya, pembiasan memiliki sudut bias 00 sampai 900 sementara pemantulan memiliki sudut bias 900

sampai 1800 atau sudut pantul sebesar 00 sampai 900. Pemantulan dan pembiasan yang kompleks

akan terjadi pada medium fluida, hal ini terjadi karena pada medium padat gelombang yang terjadi bukan saja gelombang longitudinal tapi ada kemungkinan terdapat juga gelombang transversal.

Selain proses pembiasan dan proses pemantulan, proses lainnya adalah proses penyerapan atau absorpsi. Proses penyerapan pada gelombang sering terjadi pada medium padat yang ditandai dengan adanya penurunan amplitudo gelombang. Besaran yang menyatakan konstanta absorpsi dikenal dengan koefisien absorpsi. Koefisien absorpsi dipengaruhi oleh konsentrasi medium yang dilalui gelombang tersebut. Besarnya penyerapan yang terjadi tergantung pada karakteristik fisik dari medium yang dilaluinya.

Blitz (1971) menyatakan bahwa dalam proses perambatannnya dalam medium, intensitas gelombang ultrasonik berkurang terhadap jarak yang ditempuh. Pengurangan intensitas terjadi karena adanya penyerapan energi oleh medium. Besarnya penyerapan energi dinyatakan dalam koefisien absorpsi atau koefisien atenuasi.

Pemanfaatan gelombang ultrasonik telah banyak dilakukan dalam berbagai bidang, seperti dalam bidang kedokteran atau dalam bidang instrumentasi untuk mengukur besaran suhu, kecepatan aliran, viskositas cairan, tekanan gas dan yang lainnya. Penerapan gelombang ultrasonik adalah dengan mengamati sifat akustik gelombang ultrasonik yang merambat dalam suatu medium. Sifat yang diukur meliputi kecepatan gelombang dan koefisien atenuasi atau koefisien penyerapan energi. Untuk pengukuran bahan pertanian biasanya digunakan gelombang dengan intensitas yang rendah sekitar 1-10 MHz sehingga tidak merusak bahan pertanian tersebut. Gooberman (1968) menyatakan gelombang ultrasonik akan merambat lebih baik pada medium padat dibandingkan pada medium cair atau gas.

Pengukuran kecepatan gelombang ultrasonik telah banyak diterapkan untuk mendeteksi cacat

buah bagian dalam. Kecepatan gelombang pada medium padat merupakan fungsi dari massa jenis, modulus young dan perbandingan poisson.

Koefisien atenuasi merupakan besaran yang menyatakan kehilangan sejumlah energi karena gelombang melewati suatu medium. Besarnya energi yang hilang tergantung pada jenis mediumnya. Pada gas atenuasinya besar, pada cairan atenuasinya sedang sedangkan padatan atenuasinya kecil. Kehilangan energi disebabkan oleh beberapa hal yaitu kehilangan energi akibat adannya penyerapan oleh medium dan peristiwa gelombang pada bidang batas medium. Kehilangan energi di dalam medium dapat disebabkan oleh tiga penyebab utama yang berbeda mekanismenya, yaitu absorpsi akibat viskositas, konduktivitas panas, dan pertukaran energi molekuler. Koefisien atenuasi dapat diketahui dengan mengkonversi tegangan sinyal yang dikirim dan diterima setelah melalui suatu jarak tertentu. Nilai tegangan dari sinyal ini menggambarkan besarnya energi gelombang ultrasonik. Energi gelombang ultrasonik berbanding lurus dengan amplitudo tegangan sinyal listrik yang dideteksi. Pengukuran atenuasi gelombang ultrasonik dapat menggunakan rumus berikut:

(6)

Cara lain untuk mengetahui koefisien atenuasi ini adalah dengan mengetahui terlebih dahulu nilai

Moment Spectral Density (Mo).

]………..……….(2) a

dim na :

X = jarak

Ao = Amplitudo mula-mula (volt)

Ax = Amplitudo setelah menempuh jarak x (volt)

Moo = Moment spectral density mula-mula

Mox = Moment spectral density pada jarak x

Garret et al (1972) mengukur kecepatan gelombang dengan menurunkan rumus berikut :

Vb2 = E/ρ……… (3) sedangkan E = F / (ε.A) dengan : Vb = kecepatan gelombang (m/s) E = massa jenis (kg/m3)

= modulus young (Pa)

F = gaya (Newton)

A = luas permukaan (m2)

ε = tensile strain

Dari rumus di atas diketahui modulus young berbanding lurus dengan kecepatan gelombang. Modulus young berbanding lurus dengan gaya, semakin besar besar gaya yang dibutuhkan maka semakin besar tingkat kekerasan, dengan demikian modulus young juga semakin besar sehingga kecepatan gelombang juga semakin besar.

C.

Transduser Ultrasonik

Transduser adalah suatu alat yang mengubah suatu energi ke dalam bentuk energi lainnya. Transduser ultrasonik mengubah energi listrik menjadi energi mekanik dalam bentuk suara dan sebaliknya, transduser ultrasonik juga dapat mengubah energi mekanik seperti suara menjadi energi listrik. Transduser akan mengeluarkan gelombang ultrasonik dengan frekuensi di atas 20 kHz. Besarnya gelombang ultrasonik yang dapat dibangkitkan tergantung pada jenis transdusernya. Sebagai contoh transduser 40 kHz akan membangkitkan gelombang ultrasonik dengan frekuensi 40 kHz. Transduser akan aktif jika diberi sinyal sebesar 40 kHz . Pada penelitian ini digunakan gelombang ultrasonik dengan frekuensi sebesar 50 kHz, hal tersebut dikarenakan transduser yang digunakan adalah t ransduser dengan frekuensi 50 kHz.. Transduser terdiri dari

(7)

Transduser ultrasonik terbuat dari material piezoelectric yaitu terbuat dari bahan quartz

(SiO3) dan Barium titanat (BaTiO3) yang akan menghasilkan medan listrik pada saat material

berubah bentuk atau dimensinya sebagai akibat dari gaya mekanik. Hal tersebut sering disebut efek piezoelektrik.

Bahan piezoelektik yang digunakan pada transduser ultrasonik mengubah sinyal listrik menjadi getaran mekanik dan mengubah kembali getaran mekanik menjadi energi istrik. Elemen aktif dari transduser adalah inti transduser yang mengubah energi listrik menjadi energi suara dan sebaliknya mengubah energi suara menjadi energi listrik. Elemen aktif pada transduser biasanya adalah sebuah material terpolarisasi. Material terpolarisasi adalah beberapa bagian molekul bermuatan positif dan sebagian lagi bermuatan negatif dengan elektroda yang menempel pada dua sisi yang berlawanan. Pada saat medan listrik melewati material, molekul yang terpolarisasi akan

menyesuaikan dengan medan listrik sehingga menghasilkan dipole yang terinduksi dengan

molekul. Penyesuaian molekul akan menyebabkan perubahan dimensi pada material.

Komponen utama pada transduser ultrasonik adalah elemen aktif, backing, dan wear plate.

Elemen aktif terbuat dari bahan piezo atau ferroelectric yang mengubah energi listrik yang

dihasilkan oleh pembangkit pulsa menjadi energi ultrasonik. Backing mempunyai penguatan yang

tinggi. Material yang mempunyai kerapatan yang sangat tinggi digunakan untuk mengontrol getaran dari transduser dengan menyerap radiasi energi dari bagian belakang elemen. Wear plate

berfungsi untuk melindungi bagian elemen aktif serta sebagai medium yang kontak langsung dengan material yang akan diuji.

D.

Penelitian Ultrasonik Pada Komoditas Pertanian

Penelitian mengenai gelombang ultrasonik telah banyak dilakukan sebelumnya. Beberapa penelitian mengkaji gelombang ultrasonik dalam penentuan tingkat kematangan buah, deteksi adanya lalat buah dan banyak penelitian lainnya.

Trisnobudi et al melakukan penelitian mengenai evaluasi kematangan buah apel dengan

menggunakan gelombang ultrasonik. Berdasarkan hasil penelitian dinyatakan bahwa kecepatan menunjukkan kolerasi yang kuat terhadap kekerasan dan rapat massa sedangkan terhadap keasaman dan kadar gula kolerasinya tidak kuat. Sementara itu atenuasi terhadap kekerasan menunjukkan penurunan.

Budiastra et al melakukan pengujian mutu buah-buahan dengan gelombang ultrasonik.

Pengujian dilakukan tanpa merusak buah. Dalam pengujian mutu buah dianalisa hubungan antara sifat fisiko kimia buah dengan sifat akustiknya.

Penelitian lain yang dilakukan Budiastra et el adalah hubungan sifat fisik dan gelombang

ultrasonik durian utuh dengan sifat fisiko kimia daging durian. Berdasarkan penelitian dinyatakan bahwa buah yang matang akan memiliki rongga udara di bagian dalamnya dan menyebabkan atenuasi gelombang ultrasonik membesar dan semakin kecilnya sinyal yang dapat diteruskan.

Penelitian dengan produk yang sama dilakukan oleh Haryanto (2002) yaitu pengembangan model empiris untuk menentukan tingkat ketuaan dan kematangan durian unggul secara non destruktif dengan gelombang ultrasonik. Dari penelitian disimpulkan bahwa sifat akustik dapat digunakan untuk membedakan antara durian muda dan durian tua, dan dari beberapa parameter ternyata sifat akustik berhubungan lebih erat dengan tingkat kekerasan.

Jajang Juansyah (2005) membuat rancang bangun sistem pengukuran gelombang ultrasonik untuk penentuan mutu buah manggis. Dari hasil penelitian disimpulkan pengukuran sifat akustik

(8)

terutama kecepatan dan atenuasi memiliki kontribusi yang sejalan. Meningkatnya kekerasan buah menyebabkan semakin rendahnya kecepatan gelombang ultrasonik, sedangkan peningkatan total padatan terlarut sejalan dengan peningkatan kecepatan gelombang. Buah manggis yang telah matang memiliki kekerasan yang rendah, total padatan terlarut yang tinggi dan atenuasi yang rendah.

Selain penelitian di atas, penelitian yang juga berkaitan dengan gelombang ultrasonik yaitu penelitian yang dilakukan oleh Arie Soeseno (2007) mengenai karakteristik gelombang ultrasonik untuk mendeteksi tingkat kematangan buah pisang raja bulu. Dari hasil penelitian disimpulkan tidak ada kolerasi antara kecepatan gelombang dengan tingkat kekerasan namun kecepatan berkolerasi dengan total padatan terlarut. Atenuasi berpengaruh terhadap kekerasan buah yaitu semakin tinggi atenuasi maka semakin rendah kekerasan buah. Sedangkan momen zero berbanding lurus dengan tingkat kekerasan dan berbanding terbalik dengan nilai TPT. Sifat akustik yang digunakan untuk pendugaan tingkat kematangan buah adalah atenuasi dan momen zero. Buah matang ditunjukkan dengan nilai atenuasi yang tinggi dan nilai momen zero yang kecil.

Nasution (2006) melakukan pengembangan sistem evaluasi buah manggis secara non destruktif dengan gelombang ultrasonik. Berdasarkan hasil penelitian diketahui bahwa kecepatan rambat gelombang memiliki hubungan korelasi dengan sifat fisik berupa tingkat kekerasan dan sifat kimia buah yang meliputi total gula dan total padatan terlarut.

Djamila (2010) juga melakukan evaluasi mutu dengan gelombang ultrasonik untuk produk buah naga dan dapat disimpulkan bahwa kecepatan gelombang berkorelasi positif dengan kekerasan dan total asam sedangkan untuk total gula berkorelasi negatif. Bila dilihat dari umur panen maka kecepatan gelombang ultrasonik akan menurun dengan meningkatnya umur panen sementara itu koefisien atenuasi ikut meningkat.

Gambar

Tabel 2. Kandungan gizi dalam 100 gram mentimun

Referensi

Dokumen terkait

Dari kesekian manfaat labu siam tersebut, kami bermaksud untuk membuat selai yang berbahan dasar dari labu siam tersebut, alasannya adalah untuk menyelamatkan

Locus Green Community lokasi untuk demo/percontohan 3) Sosialisasi atau kampanye dalam bentuk penyebarluasan informasi, temu lapang untuk mempromosikan dan membahas

TARGET (Rp) REALISASI (Rp) 1 2 3 4 5 6 7 8 9 10 11 12 1 245.755.000,00 69.000.000,00 - 424.455.000,00 Melakukan koordinasi dengan intansi Horisontal

Karakteristik RTH di Kecamatan Kelapa Gading terdiri dari beberapa aspek yaitu jenis dan fungsi RTH, kondisi fisik RTH, skala RTH, serta vegetasi yang terdapat dalam RTH

Dapat juga dikemukakan bahwa layanan ini bertujuan untuk membimbing seluruh siswa agar (a) memiliki kemampuan untuk merumuskan tujuan, perencanaan, atau pengelolaan

Data hasil belajar siswa dapat diperoleh dari hasil posttest yang dilakukan oleh siswa kelas XI Jurusan Multimedia di SMKN 1 Pungging, menggunakan media pembelajaran

Metode analisis deskriptif digunakan pada tahap awal untuk mendapatkan data tentang kondisi objektif lapangan yang meliputi: (1) kondisi model layanan bimbingan yang sudah

Hal penting yang tidak dapat dilepaskan dari perkembangan opini publik dunia sejak tahun 1860an yaitu peran aktor-aktor non-negara, mulai dari NGO hingga individu.. Salah satu