Kebisingan Industri Definisi dan pengertian
Bising = suara-suara yang tidak dikehendaki
Definisi secara ilmiah = sensasi yang diterima telinga sebagai akibat fluktuasi tekanan udara ‘superimposing’ tekanan atmosfir/udara yang steady
Bising = sejenis vibrasi/energi yang dikonduksikan dalam media udara, cairan, padatan, tidak tampak, dan dapat memasuki telinga serta menimbulkan sensasi pada alat dengar
Inside NOISE
What is noise?
– Definition, energy conducted and sensed, properties:
intensity/pressure, frequency, exposure,
Why unwanted?
– Health Effect, age, psychological: annoyed, concentration, rest/relax problem, communication annoyance,
physiological: blood, heart, hearing loss, nausea, muscle control, acoustic trauma (permanent) vs temporary,
Who are susceptible?
– Esp. Industrial workers, determining factors: sensitivity, age,
How to evaluate & control?
What is noise?
Definisi:
Suara-suara yang tidak dikehendaki (for Who? Why?)
Suara: sensasi yang diterima telinga sebagai akibat fluktuasi tekanan udara terhadap tekanan udara yang stabil.
Telinga akan merespons fluktuasi-fluktuasi
kecil tersebut dengan sensitivitas yang
sangat besar.
Properties of noise?
Karakteristik bising
1. Intensitas/tekanan (sound pressure/intensity)
2. Frekuensi
3. Durasi eksposur terhadap bising Ketiga karakteristik diperlukan karena:
Semakin keras suara, semakin tinggi intensitasnya
Frekuensi tinggi lebih berbahaya terhadap kemampuan dengar. Telinga manusia lebih sensitif terhadap
frekuensi tinggi
Semakin lama durasi eksposur semakin besar kerusakan pada mekanisme
pendengaran
Jenis Bising
Tergantung pada durasi dan frekuensi
Steady wide band noise, bising yang meliputi suatu jelajah frekuensi yang lebar (bising dalam ruang mesin)
Steady narrow band noise, bising dari sebagian besar energi bunyi yang terpusat pada beberapa frekuensi saja, contoh gergaji bundar.
Impact noise, kejutan singkat berulang, contoh riveting
Intermitten noise, bising terputus, contoh lalu lintas pesawat
Contoh…
Tekanan = Sound Pressure
Manusia dapat mendengar suara pada tekanan antara 0,0002 dynes/cm2 (ambang
dengar/threshold of hearing) sampai 2000 dynes/cm2 range besar sehingga satuan yang dipakai dB (decibel): logaritmik
Dinyatakan dalam decibel (dB) yang dilengkapi skala A, B, dan C
sesuai dengan berbagai kegunaan
Skala A digunakan karena merupakan response yang paling cocok dengan telinga manusia (peka terhadap frekuensi tinggi)
Skala B dan C untuk evaluasi kebisingan mesin, dan cocok untuk kebisingan frekuensi rendah
Intensitas
Laju aliran energi tiap satuan luas yang dinyatakan dalam desibell (dB) – Alexander Graham Bell-
dB adalah merupakan satuan yang dihasilkan dari perhitungan yang membandingkan suatu tekanan suara yang terukur terhadap suatu tekanan acuan (sebesar 0,0002 dyne/cm2).
B = log (int.terukur/int.acuan) untuk mendapatkan angka yang lebih akurat ditentukan dengan angka kelipatan 10 (desi)
Intensity level dB=10 Log (IT/IA)
Sound pressure level (tekanan bunyi) = 20 log (IT/IA), karena intensitas sebanding dengan kuadrat tekanan bunyi.
Ruang kelas: ?dB
Rumah
Restauran
Berbisik
Berteriak
Jet plane
The decibel
SOUND INTENSITY
SOUND SOURCE LINEAR UNITS
Bel
LOGARITHMIC UNITS Decibel
Lowest limit of hearing 1 0 0
Rustling leaf 10 1 10
Quiet farm setting 100 2 20
Whisper (5 feet) 1,000 3 30
Dripping faucet, quite office 10,000 4 40
Low conversation, residence 100,000 5 50
Ordinary conversation 1,000,000 6 60
Idling car 10,000,000 7 70
Silenced compressor, very noisy restaurant 100,000,000 8 80
Backhoe 1,000,000,000 9 90
Unsilenced compressor 10,000,000,000 10 100
Rock dril, woodworking 100,000,000,000 11 110
Pile driver* 1,000,000,000,000 12 120
Rivet gun* 10,000,000,000,000 13 130
Explosive-actuated tool*, jet plane 100,000,000,000,000 14 140
*Intermittent or "impulse" sound
Source: Construction Safety Association of Ontario, Hearing Protection for the Construction Industry, 1985, page 3
The decibel
dB = 10 log10(I1/I0) I = Intensitas
dB = 20 log10(P1/P0) P= Tekanan = 0,0002 dynes/cm2
SP (microbar) SPL (dB) Ratio Intensitas
0,0002 0 100
0,002 20 102
Jadi bila SP berubah 10x, maka dB bertambah ? x
Pressure
Pa Bel (B) Decibel (dB)
Threshold of hearing 0,00002 0 0
Quiet office 0,002 4 40
Ringing alarm clock at 1 m 0,2 8 80
Ship's engine room 20 12 120
Turbo jet engine 2000 16 160
Sound intensities
Frekuensi
Adalah jumlah getaran dalam tekanan suara per satuan waktu (Hertz atau cycle per detik), frekuensi dipengaruhi ukuran, bentuk dan pergerakan
sumber, pendengaran normal orang dewasa dapat menangkap bunyi dengan frekuensi 20-15.000 Hz.
Frekuensi
Dibagi dalam 8 octaf (octave bands), 37.5, 75, 150, 300, 600, 1200, 2400, 4800, 9600 Hz
Telinga manusia bereaksi beda terhadap berbagai frekuensi
Kebisingan ‘rata-rata’ mencakup seluruh taraf kebisingan dari setiap frekuensi dihitung Leq
Leq = ekuivalen noise level/ekuivalen energi level
Leq = 10 log10(Σ 10 Lpi/10)
Satuan (Konversi)
1bar=10
5Pa=10
5N/m
2=10
5.10
5dyne/10
4cm
2=10
6dyne/cm
2atau
1microbar = 1 dyne/cm
2Sumber > 1…..
dB=L=20 log(P
1/P
2)=10 log(P
1/P
2)
2L/10= log(P
1/P
2)
210
L/10= 10
log(P1/P2)^2=(P
1/P
2)
2L=10 log(P
1/P
2)
2=10 log 10
L/10(satu sumber)
L =10 log ( Σ 10
Li/10) (sumber banyak)
=10 log (10
L1/10+ 10
L2/10+…)
Sumber > 1….. (Contoh)
=10 log ( Σ 10
Li/10)
(banyak sumber)
=10 log (10
L1/10+ 10
L2/10+…)
Perbedaan antara sumber
bunyi
ΣdBA yang turun ditambah ke bunyi terbesar
0 3,0
1 2,6
2 2,1
3 1,8
4 1,5
5 1,2
6 1,0
7 0,8
8 0,6
10 0,4
12 0,3
14 0,2
16 0,1
Satuan (Konversi)
1bar=10
5Pa=10
5N/m
2=10
5.10
5dyne/10
4cm
2=10
6dyne/cm
2atau
1microbar = 1 dyne/cm
2Sumber > 1…..
dB=L=20 log(P
1/P
2)=10 log(P
1/P
2)
2L/10= log(P
1/P
2)
210
L/10= 10
log(P1/P2)^2=(P
1/P
2)
2L=10 log(P
1/P
2)
2=10 log 10
L/10(satu sumber)
L =10 log ( Σ 10
Li/10) (sumber banyak)
=10 log (10
L1/10+ 10
L2/10+…)
Sumber > 1….. (Contoh)
=10 log ( Σ 10
Li/10)
(banyak sumber)
=10 log (10
L1/10+ 10
L2/10+…)
Perbedaan antara sumber
bunyi
ΣdBA yang turun ditambah ke bunyi terbesar
0 3,0
1 2,6
2 2,1
3 1,8
4 1,5
5 1,2
6 1,0
7 0,8
8 0,6
10 0,4
12 0,3
14 0,2
16 0,1
Kebisingan dari 2 sumber
14 Perbedaan antara 2 tingkat bising, dB(A) 3
2,5
12 10 8 6 4 2 0,5 1,5 2
1
Decibel yang ditambahkanpada tingkatkebisinganlebihtinggi Perbedaan (dB)
Tambah pada yg lebih tinggi
0 atau 1 3
2 atau 3 2
4 – 9 1
10+ 0
Why unwanted?
Health Effect, age, psychological:
annoyed, concentration, rest/relax
problem, communication annoyance,
physiological: blood, heart, hearing loss,
nausea, muscle control, acoustic trauma
(permanent) vs temporary,
Efek bising pada manusia
Psikologis, terkejut, mengganggu dan memutuskan konsentrasi, tidur dan saat istirahat
Fisiologis, seperti menaikkan tekanan darah dan detak jantung, mengurangi ketajaman pendengaran, sakit telinga, mual, kendali otot terganggu, dll.
Gangguan komunikasi yang
mempengaruhi kenyamanan kerja dan keselamatan.
Interference with communication by speech
When background or ambient noise levels are sufficiently high enough, the background noise can mask the sound levels of speech that wish to be heard.
Restaurants can often be classic examples of excessive noise interference due to lack of sufficient quality or quantity of sound absorbing materials that prevent excessive noise buildup.
Diners have to speak louder and louder to be heard and in doing so compete with one another, thereby increasing the sound levels to even greater levels.
Appropriate acoustical treatment will prevent the reflected noise buildup and significantly reduce the necessity for diners to speak louder to enjoy conversations with one another.
Mechanics of hearing
Mekanisme pendengaran
• Terdiri dari 3 bagian: telinga luar (daun telinga sampai membran timpani) meneruskan gelombang ke telinga tengah
• Telinga tengah: membran timpani (yang
melekat pada 3 tulang kecil sampai membrana ovale) getaran diteruskan
• Telinga dalam: tube berspiral seperti rumah
siput berisi cairan cairan bervibrasi
stimulasi rambut sel impuls syaraf otak
Gangguan pendengaran
Pemaparan pada suara tinggi dan periode/durasi yang lama akan
menyebabkan sel syaraf pendengar dan rambut pada corti over aktif sehingga menimbulkan kehilangan pendengaran permanen
Pengukuran kebisingan
• Mengukur overall level sound level meter (satuan dBA)
• Mengukur kebisingan pada setiap level frekuensi SLM dengan frequency analyzer
• Penentuan eksposur kebisingan pada pekerja noise dosimeter (satuan dBA)
Alat ukur
Sound level meter, mencatat keseluruhan suara yang dihasilkan tanpa
memperhatikan frekuensi yang
berhubungan dengan bising total (30-130 d) – (20-20.000Hz)
Sound level meter dengan octave band analyzer, mengukur level bising pada berbagai batas oktaf di atas range pendengaran manusia dengan
mempergunakan filter menurut oktaf yang diinginkan (narrow band analyzers untuk spektrum sempit 2-200 Hz)
NOISE KALIBRATOR
SOUND LEVEL METER
NOISE
MEASUREMENT KIT
NOISE DOSIMETER
PENGUKURAN PADA
PEKERJA DOSEBADGER
Pneumatic
chip hammer 103-113 Crane 90-96 Jackhammer 102-111 Hammer 87-95 Concrete joint
cutter 99-102 Gradeall 87-94
Skilsaw 88-102 Front-end
loader 86-94
Stud welder 101 Backhoe 84-93
Bulldozer 93-96
Garbage disposal (at 3 ft.)
80
Earth Tamper 90-96 Vacuum
cleaner 70
Pengukuran akibat bising
Untuk mengevaluasi akibat
pemaparan terhadap kehilangan pendengaran, kenyamanan, interferensi komunikasi dan mengumpulkan informasi untuk pengontrolan.
How Does Excessive Noise Damage Your Ears?
Microscopic hair cells of the cochlea are exposed to intense noise over time
Hair cells become fatigued and less responsive, losing their ability to recover.
Damage becomes permanent resulting in noise- induced permanent threshold shift.
Risk of Hearing Loss
Estimated Risk of Incurring Material Hearing Impairment as a Function of Average Daily Noise Exposure Over a 40-year Working Lifetime (source: NIOSH)
Average Exposure 90 dBA 29%
Average Exposure 85 dBA 15%
Average Exposure 80 dBA 3%
Ketulian
= berkurangnya ketajaman pendengaran
dibanding/terhadap orang normal (15 dB)/ gol usia
• Ada 2 macam:
-permanen: karena penyakit, usia tua, obat, trauma, dan kebisingan
-temporer:akibat ekposur bising, dapat pulih setelah istirahat beberapa saat tergantung keparahan
• Ketulian temporer akan menjadi permanen bila terus terekpos bising (dari rumah, tempat umum, rekreasi, musik, industri, dll.)
• Secara mekanisme: ketulian ada 2:
-konduktif:peralatan konduksi suara rusak akibat trauma atau sakit
-sensorinueral: akibat persyarafan pendengaran rusak
Audiometric test
Audiometric test
Audiometric test
Current OSHA Standards
•1926.52 Occupational Noise Exposure
•TABLE D-2 - PERMISSIBLE NOISE EXPOSURES
Duration per day, hours Sound Level dBA slow response
8 90
6 92
4 95
3 97
2 100
1 1/2 102
1 105
1/2 110
1/4 or less 115
What Is The Purpose of Having a Hearing Test on a Regular Basis?
An audiometric testing program is used to track your ability to hear over time.
– Baseline and annual
Test records provide the only data that can be used to determine whether the program is preventing noise-induced permanent threshold shifts. It is an integral part of the hearing
conservation program.
Case Study 1. Teenage Girl
From the American Academy of Family Physicians website, Rabinowitz article
FIGURE 1. Audiogram findings in the patient in case 1.
The area below the curves represents sound levels that the patient could still hear.
(X = left ear; O = right ear)
Case Study 1 Conclusion
"Temporary threshold shift" example
Common in persons exposed to high noise
Represents transient hair cell dysfunction
Complete recovery can occur
Repeated episodes of such shifts causes permanent threshold shifts because hair cells in the cochlea are progressively lost.
Case Study 2 Factory Worker Age 55
Case Study 2 Conclusion
Noise Induced Hearing Loss
– Speech discrimination and social function interference
– Difficulty in perceiving and differentiating consonant sounds
– Sounds such as a baby crying or a distant telephone ringing, may not be heard at all.
Tinnitus
– Common symptom of noise overexposure – Further interferes with hearing acuity, sleep and
concentration.
These impairments have been associated with depression and an increased risk of accidents.
Carpenter Hearing Losses by Age
Damage risk criteria
Variation in individual susceptibility
The total energy of the sound
The frequency distribution of the sound
Other characteristics of the noise exposure, such as whether it is
continuous, intermittent, or made up of a series of impacts
The total daily time of exposure
The length of employment in the noise environment.
Noise control
A source radiating sound energy
A path along which the sound energy travels
A receiver such as the human ear
Pengendalian kebisingan
Pengendalian dilakukan di 3 bagian: SUMBER, RUANG ANTARA sumber dan penerima/pekerja, pada
PENERIMA/PEKERJA Urutan pengendalian paling efektif:
• Kurangi/hilangkan sumber bising
• Pengendalian pathway: jarak diperjauh dengan perisai/isolator/automatisasi
• Perlindungan penerima dari bising (APD)
SUMBER PATHWAY/MEDIA PENERIMA/RECEIVER
•Cara teknis:
APD Perpanjang jarak
Reduksi waktu Perisai
Insulasi sumber
Isolasi pekerja Absorpsi/damping
Substitusi
PENERIMA PATHWAY
SUMBER
•Cara medis:
Pemeriksaan ketajaman pendengaran secara periodik Penempatan pekerja sesuai dengan kepekaan thd bising Monitor ketulian temporer
•Cara manajemen:
Reduksi waktu eksposur
Diklat pemakaian dan pemeliharaan APD
Noise control
Source: modification or redesigning of the source.
– The modification of compressed air jets for parts ejection, to reduce noise by altering the jet flow.
– Multiple-opening air ejection nozzel: less noise than single-opening.
Noise control
Noise can be controlled at the source, along the path or at the worker.
At the source, equipment may be replaced by quieter models, or less noisy work procedures can be adopted.
- In general, less friction and vibration mean less noise. Maintenance procedures such as lubrication may sometimes reduce noise by reducing friction.
- Equipment can sometimes be modified to reduce the amount of noise that is generated.
Sound-absorbing material may be attached to the noise source. Or the frequency of the noise may be shifted to one that is less hazardous.
Noise control
Noise can often be controlled along the path to the worker with:
- the use of sound-absorbing paneling on walls or ceilings, and
- enclosures around noisy machinery.
Controls at the worker include both administrative controls and personal protective equipment.
– Administrative controls modify how the work is carried out.
– The time employees spend in noisy areas may be reduced.
– Workers in noisy areas may be rotated to less noisy areas.
As the distance from the noise source increases, the pressure (or intensity) of the noise decreases faster than its sound level.
Noise control
Noisy operations may be conducted outside normal working hours to reduce the number of people exposed.
Where noise exposures cannot be reduced by other methods, hearing protection is required. This
includes ear plugs and ear muffs.
Insulation of the workers
A separate noise insulated room provides effective control (up to 30 dB noise reduction).
Machine insulation
Machine: on floors and walls
vibrate them sound radiation proper use of machine mountings insulates the machine and reduce the transmission of vibration
Control of noise by absorption
Travels out in all direction
When encounter walls reflected
Total noise exposure within the room = direct + reflected noise
Application of sound absorption
material (However, limited: no
effect on direct noise).
Reduction of exposure time
Limiting the total daily exposure reduces the noise hazard.
See TLV
Personal protection against noise
Many operations cannot be quieted by engineering methods.
Therefore protection: ear plugs
Properly worn: 25 – 400 dB protection
Degree of discomfort employee education is adequate
Example….
Durasi tingkat bising yang diijinkan dapat dilihat dari tabel di bawah ini:
Kebisingan yang terukur di suatu area adalah 90 dB selama 2 jam sehari, 97 dB selama 2 jam, dan sisa 4 jam berikutnya terdapat variasi tingkat bising secara bergantian 95 dB selama 10 menit dan 80 dB selama 10 menit.
Tentukan apakah tingkat kebisingan yang terukur masih dalam batas yang diijinkan atau tidak.
Durasi per hari
Tingkat bising 8
6 4 3 2 1,5
1
¾
½
¼
90 92 95 97 100 102 105 107 110 115
Faktor-faktor yang mempengaruhi bising
Tipe bising: menerus dan terputus
Lokasi pekerja
Waktu kerja
NAB Kebisingan di lingkungan kerja
USA (TLV ACGHI) t (eksposur) jam dB(A)
8 90
6 92
4 95
3 97
2 100
1,5 102
1 105
0,5 110
<0,25 115 kebisingan impulsif < 140 dB
t dBA
8 85
4 88
2 91
1 94
30 mnt 97
15 mnt 100 7,5 mnt 103 3,75 mnt 106 1,88 mnt 109
dst
dilarang > 140 dB
INDONESIA Permen 51/1999
Waktu pemaparan vs dB (TLV)
Waktu Waktu Waktu
Waktu pemaparan pemaparan pemaparan pemaparan (jam) (jam) (jam) (jam) dB dB dB dB
8 88 8 6 66 6 4 44 4 2 22 2 1,5 1,51,5 1,5 1 11 1 0,5 0,50,5 0,5
<0,25
<0,25
<0,25
<0,25
90 90 90 90 92 92 92 92 95 95 95 95 100 100 100 100 102 102 102 102 105 105 105 105 110 110 110 110 115 115 115 115 ((((SumberSumberSumber: FHI)Sumber: FHI): FHI): FHI)
Steps aiming to control noise at work
Assess risks to develop a noise control plan
Reduce risks for all employees
Investigate and implement good practice for control of noise
Prioritise noise control measures
Use hearing protection for residual risks
Carry out a noise dosimetry program to check the effectiveness of noise control measures
Some simple noise control techniques
Application of damping material to chutes, hoppers, machine guards etc., can give a 5-25 dB reduction in the noise radiated
Cabin internal noise can be reduced by 10-12 dB by applying damping pads and sound barrier mats to floor and engine bulkhead
Reduce fan speed by 30% to achieve a
noise reduction of 8 dB
BARRIER-BARIER ATAU PANEL
ISOLASI PEKERJA/MESIN DI TEMPAT BISING
BAHAN ABSORBER BAHAN BARRIER
Noise control can be complex
Use noise control consultants to help solve your problems if complex Engage employees in process
Hearing protectors
Selected for protection, user preference and work activity
Guard against over-protection — isolation can lead to under-use and safety risks
Require information, instruction, training, supervision and motivation
Will only protect if worn all the time and
properly
Rating hearing protectors
The sound level conversion (SLC80 ) rating of a hearing protector, ear plugs or headset is a simple number and class rating that is derived from a test procedure as outlined in the Australian/New Zealand Standard AS/NZS 1270:2002
Class and specification of hearing protectors
SLC
80Class
May be used up to this noise exposure level10 to 13 1 90 dB(A)
14 to 17 2 95 dB(A)
18 to 21 3 100 dB(A)
22 to 25 4 105 dB(A)
26 or
greater 5 110 dB(A)
Ear plugs
Properly fitted Wrongly fitted
Ear muffs
Proper clamping force Worn-out head band
Reduction in protection provided by hearing protectors with decreased wearing time
Example:
Effectiveness of wearing an ear muff with a rating of 30 dB for an exposure time of one hour
Wear time Effective attenuation 60 minutes 30 dB
55 minutes 11 dB
50 minutes 8 dB
45 minutes 6 dB
Our challenge
Away from …
Noise assessment as the end point
Reliance on hearing protection Towards …
Control of noise risks through prioritised action plans
Introducing equipment with good noise and vibration characteristics – ‘Buy Quiet’
TWA untuk kebisingan: berdasarkan standar kebisingan.
Jumlah jam dB(A)
1,5 102
1,0 105
0,75 107
0,5 110
0,25 115
Jumlah jam dB(A)
8 90
6 92
4 95
3 97
2 100
dB(A) 80 90 95 97 100
1 T ukur 2 jam 4 jam 2 jam T TLV tt 8 jam 4 jam 3 jam
TWA 0 4/8 2/4 = 1 < batas aman
2 T ukur 0 2
jam
2 jam 2 jam
T TLV tt 8 jam 4 jam 3 jam
TWA 0 2/8 2/4 2/3 = 17/12 >batas aman STANDA
R
KEBISING AN
Noise
3. 4 orang pekerja printer di unit percetakan dimana terdapat
offset press. Masing-masing terpapar sbb:
Berapa dosis harian yang diterimanya? dan Equivalent 8-hour Sound Pressure Level (SPL) yang dialami pekerja percetakan tersebut?
No. of presses operating
Average Sound Pressure Level (dBA)
Average daily time in operation
(hours)
0 81 4.5
1 93 2.1
2 96 1.0
3 98 0.4
Jawab:
5 / ) 90 max (
2 8
= L−
T
5 / ) 90 81 max (
2 81 8
@ dBA= −
T = 27.858 jam
Untuk SPL 81 dBA:
5 / ) 90 93 max (
2 93 8
@ dBA= −
T = 5.278 jam
Untuk SPL 93 dBA:
5 / ) 90 96 max (
2 96 8
@ dBA= −
T = 3.482 jam
Untuk SPL 96 dBA:
5 / ) 90 98 max (
2 98 8
@ dBA= −
T = 2.639 jam
Untuk SPL 98 dBA:
Noise
n
i T
C T
C T
C T
D C n
n
i i
1 max max
2 max
1 max
....
2 1
+ + +
=
=
∑
=
639 . 2
4 . 0 482 . 3
0 . 1 278 . 5
1 . 2 858 . 27
5 . 4
inter = + + +
Dpr = 0.998
Now, expressing this result as a percentage as required by the problem statement, we have: Dprinter= 99.8%
The Printing Company that employs these four Printers is not in violation of any established OSHA SPL dosage standards.
Noise
L
equivalent= 90 + 16.61 log[D]
L
equivalent= 90 + 16.61 log[0.998]
= 89.987
~ 90 dBA
These Printers experience an equivalent SPL of ~ 90 dBA
Noise
4. How much longer is an individual, without
hearing protection, permitted to work at a
location where the noise level has just been
reduced from 104 dBA to 92 dBA?
To answer this question, we must first determine the OSHA permitted duration, in hours, for each of the two identified noise levels.
Tmax= 8 / [2(L-90)/5]
For an SPL of 104 dBA: Tmax @ 104 dBA= 8 / [2(104-90)/5] = 1.149 hours
For an SPL of 92 dBA: Tmax @ 92 dBA= 8 / [2(92-90)/5] = 6.063 hours
The additional time permitted at the lesser noise level of 92 dBA, ∆Tmax, is simply the difference between these two OSHA permitted time intervals; thus:
∆Tmax=6.063 – 1.149 = 4.914 hours
This individual can spend an additional 4.9 hours at a 92 dBA noise level