• Tidak ada hasil yang ditemukan

T1 Abstract Institutional Repository | Satya Wacana Christian University: Deteksi Anomaly Host Based Network Menggunakan Artificial Neural Network

N/A
N/A
Protected

Academic year: 2018

Membagikan "T1 Abstract Institutional Repository | Satya Wacana Christian University: Deteksi Anomaly Host Based Network Menggunakan Artificial Neural Network"

Copied!
1
0
0

Teks penuh

(1)

Deteksi Anomaly Host Based Network Menggunakan Artificial

Neural Network

1)Ronaldson Fernando Salimuka, 2)Hindriyanto Dwi Purnomo, S.T., MIT., Ph.D

Fakultas Teknologi Informasi Universitas Kristen Satya Wacana Jl. Diponegoro 52-60, Salatiga 50771, Indonesia

Email: 1)[email protected], 2)[email protected]

Abstract

Intrusion Detection System (IDS) could be in the form of hardware or software in network for misuse detection or anomaly detection. The main characteristics possessed by IDS is the timeliness, high probability, low against false alarms, specificity in detecting certain attacks, and also being able to recognize the potential of new attacks. The use of ANN as the detection method in IDS conducted in five phases of research namely compose training/testing dataset, pre-process training/testing dataset, determine the neural network secure, train the neural network, and test neural network obtained the results of 99,8 % ANN accuracy (ACC) level, 100% sensitivity level or true positive rate with only 0,2 % generated false alarm rate.

Keywords :Intrusion Detection System, Anomaly, Artificial Neural Network

Abstrak

Intrusion Detection System (IDS) dapat berupa perangkat keras atau perangkat lunak pada jaringan yang mendeteksi adanya penyalagunaan (missuse detection) atau mendeteksi anomali (anomaly detection). Karakteristik utama IDS adalah ketepatan waktu, probabilitas

tinggi, rendah false alarm, mendeteksi serangan tertentu, mampu mengenali serangan baru. Penggunaan ANN sebagai metode deteksi pada IDS yang dilakukan dalam lima tahapan penelitian yaitu compose training/testing dataset, pre-process training/testing dataset, determine the neural network secure, train neural network, dan test neural network

diperoleh hasil tingkat accuracy (ACC) ANN adalah 99.8% akurat, tingkat sensitivity atau

true positive rate adalah 100% dengan false alarm rate yang dihasilkan hanya 0.2%.

Kata Kunci : Intrusion Detection System, Anomali, Jaringa Saraf Tiruan

1) Mahasiswa Fakultas Teknologi Informasi Program Studi Teknik Informatika, Universitas

Kristen Satya Wacana Salatiga.

Referensi

Dokumen terkait

Each vocabulary had five sample sentences for the dictionary which were selected from a Corpus Concordances available in the Vocabulary Profiler.. The findings showed that the

This study found five main benefits of role play that help the students to improve their speaking skill:role play helps the students to understand the materials easily,

Hasil penelitian ini adalah alat bantu penyandang tunanetra yang berupa sensor yang direkatkan pada topi dan rompi berbasis Wireless Sensor Networ k yang mempermudah penyandang

Penelitian yang dilakukan menghasilkan akurasi sistem diagnosa Anorexia Nervosa Menggunakan Finite State Automata sesuai dengan hasil diagnosa sistem pakar dan dapat

The analysis of this study used Exponential Smoothing method that used for early detection landslides by averaging and repairing forecasting a value from time to

The main objective of this paper is to make a primary flooding detector device using Internet of Things technology which is to make people easier, saving time and

The primary aim of this study is to explore ELEP (English Language Education Program) pre- service teachers’ perception toward the use of songs in teaching young

For the reasons for code mixing, only four out of ten reasons were proved by the data in this study namely, talking about particular topic, repetition used