• Tidak ada hasil yang ditemukan

Perancangan Sistem Perbaikan Faktor Daya (cos ) Otomatis Dengan Menggunakan Mikrokontroler ATMega8535

N/A
N/A
Protected

Academic year: 2017

Membagikan "Perancangan Sistem Perbaikan Faktor Daya (cos ) Otomatis Dengan Menggunakan Mikrokontroler ATMega8535"

Copied!
86
0
0

Teks penuh

(1)

LAMPIRAN A

(2)

LAMPIRAN B

Program Keseluruhan Pada Mikrokontroler ATMega8535

/***************************************************** This program was produced by the

CodeWizardAVR V1.25.3 Standard Automatic Program Generator

© Copyright 1998-2007 Pavel Haiduc, HP InfoTech s.r.l. http://www.hpinfotech.com

// Alphanumeric LCD Module functions #asm

.equ __lcd_port=0x15 ;PORTC #endasm

// ADC interrupt service routine // with auto input scanning

interrupt [ADC_INT] void adc_isr(void) {

register static unsigned char input_index=0; // Read the AD conversion result

(3)

// Select next ADC input

if (++input_index > (LAST_ADC_INPUT-FIRST_ADC_INPUT)) input_index=0;

ADMUX=(FIRST_ADC_INPUT | (ADC_VREF_TYPE & 0xff))+input_index;

// Start the AD conversion ADCSRA|=0x40;

}

// Declare your global variables here

int ind1, ind2, ind3, ind4, ind5, i, in1, mode, sudut; float nilai, nilai1, cos_phi, arus, tegangan, temp8,

cos(float x); unsigned char data[16];

void main(void) {

// Declare your local variables here // Input/Output Ports initialization // Port A initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTA=0x00; DDRA=0x00;

// Port B initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=P State3=P State2=P State1=P State0=P

PORTB=0x1F; DDRB=0x00;

// Port C initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTC=0x00; DDRC=0x00;

// Port D initialization

// Func7=In Func6=In Func5=Out Func4=Out Func3=Out Func2=Out Func1=In Func0=In

(4)

PORTD=0x00; DDRD=0x3C;

// Timer/Counter 0 initialization // Clock source: System Clock // Clock value: Timer 0 Stopped // Mode: Normal top=FFh // Clock source: System Clock // Clock value: Timer 1 Stopped // Mode: Normal top=FFFFh

// OC1A output: Discon. // OC1B output: Discon. // Noise Canceler: Off

(5)

MCUCSR=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization TIMSK=0x00;

// Analog Comparator initialization // Analog Comparator: Off

// Analog Comparator Input Capture by Timer/Counter 1: Off

ACSR=0x80; SFIOR=0x00;

// ADC initialization

// ADC Clock frequency: 554.202 kHz // ADC Voltage Reference: AVCC pin // ADC High Speed Mode: Off

// ADC Auto Trigger Source: None

(6)

temp8=nilai/51; nilai=(nilai-511)/51;

nilai1=adc_data[1]; nilai1=nilai1*0.26667;

if (nilai1>=tegangan) {tegangan=nilai1;} if (nilai>=arus) {arus=nilai;}

delay_us(20); }

while (adc_data[1]==0.0){delay_us(2);} while (adc_data[1]!=0.0){delay_us(2);}

if (adc_data[1]==0.0 && adc_data[0]==0.0) {cos_phi=1;} else

if (sudut<=80) {cos_phi=sudut/460.7;} else

{if (sudut<=90) {cos_phi=0;}}}}}}}} */

if (mode==7 && cos_phi <=0.82) {mode=0; PORTD.2=0; PORTD.3=0; PORTD.4=0; PORTD.5=0;}

(7)

{if (mode==6 && cos_phi <=0.82) {mode=7;

if(ind2==0) {ind2=1; PORTD.2=1;} else {ind2=0; PORTD.2=0;}

} if(PINB.2==0) {

if(ind3==0) {ind3=1; PORTD.3=1; } else {ind3=0; PORTD.3=0;}

}

(8)

if(ind4==0) {ind4=1; PORTD.4=1;} else {ind4=0; PORTD.4=0;}

} if(PINB.4==0)

{

if(ind5==0) {ind5=1; PORTD.5=1;} else {ind5=0; PORTD.5=0;}

}

if(PINB.0==0) {

if(ind1==0) {ind1=1;} else {ind1=0; PORTD.2=0; PORTD.3=0; PORTD.4=0; PORTD.5=0; mode=0;}

} if (ind1==1)

{sprintf(data,"OT",cos_phi); lcd_gotoxy(14,0);

lcd_puts(data);} else

{sprintf(data,"MA",cos_phi); lcd_gotoxy(14,0);

lcd_puts(data); } sprintf(data,"%d",mode); lcd_gotoxy(15,1); lcd_puts(data);

delay_ms(1000); };

(9)

DAFTAR PUSTAKA

Arifianto, Deni. 2011. Kamus Komponen Elektronika. Cetakan Pertama. Jakarta: PenerbitKawanPustaka.

Edminister, Joseph A. 1983. Rangkaian Listrik. Edisi Kelima. Jakarta: Penerbit Erlangga.

Fowler, Richard J. 1979.Electricity: Principles and Applications. New York: McGraw-Hill, Inc.

Rangkuti, Syahban. 2011. Mikrokontroller Atmel AVR. Bandung: Penerbit Informatika.

Susilo, Deddy. 2010. 48 Jam Kupas Tuntas Mikrokontroler MCS51 & AVR. Yogyakarta: PenerbitAndi.

Taufiq, Dwi Septian Suyadhi. 2010. Buku Pintar Robotika. Edisi I. Yogyakarta: Penerbit ANDI.

Tooley, Michael. 2003. Rangkaian Elektronik: Prinsip dan Aplikasi. Edisi Kedua. Jakarta: Penerbit Erlangga.

Tse, Chi Kong.2002. Analisis Rangkaian Linear. Jakarta: Penerbit Erlangga.

W. Mack Grady & Robert J. Gilleskie, 1993, HARMONICS AND HOW THEY RELATE TO POWER FACTOR, Proc. of the EPRI Power Quality Issues & Opportunities Conference California, San Diego, CA

Woollard, Barry. 2003. Elektronika Praktis. Cetakan Kelima. Jakarta: PT Pradnya Paramita.

Zbar, Paul Berk. 1958. Electricity−Electronics Fundamentals: A Text-Lab Manual. Second Edition. New York: McGraw-Hill, Inc.

Zbar, Paul Berk. 1983. BASIC ELECTRICITY: A Text-Lab Manual. Fifth Edition. New York: McGraw-Hill, Inc.

Zuhal.1988.Dasar Teknik Tenaga Listrik dan Elektronika Daya. Cetakan Keenam. Jakarta: Gramedia Pustaka Utama.

http://en.wikipedia.org/wiki/Capacitor. Diakses tanggal 29 Oktober 2012, Pukul 19.00 WIB

http://en.wikipedia.org/wiki/Power_factor_correction#Power_factor_correction_in_no n-linear_loads. Diakses tanggal 28 Oktober 2012, Pukul 20.00 WIB

(10)

http://iwandesetia.blogspot.com/2012/04/memperbaiki-faktor-daya-menggunakan. html. Diakses tanggal 29 Oktober 2012, Pukul 19.00 WIB

http://www.allegromicro.com. Diakses tanggal 20 Juli 2012, Pukul 15.30 WIB

http://www.atmel.com. Diakses tanggal 15 Juni 2012, Pukul 18.30 WIB

(11)

BAB III

PERANCANGAN SISTEM

3.1 Perancangan Perangkat Keras (Hardware)

Perancangan perangkat keras meliputi perancangan sistem secara umum berupa blok

diagram serta rangkaian dari masing-masing bagian.

3.1.1 Konfigurasi Sistem

Pemodelan alat dibuat dengan menggunakan diagram blok. Adapun diagram blok dari

sistem yang dirancang adalah seperti yang diperlihatkan pada gambar 3.1 berikut ini:

MCB

TOMBOL STTING

(12)

Sebagai sumber daya, jala-jala listrik bersumber dari PLN dengan tegangan 220V

50Hz.

Gambar 3.2 Bentuk fisik MCB 1 phase

MCB (Mini Circuit Breaker) digunakan untuk memutuskan atau

menghubungkan hubungan jala-jala listrik ke beban yang diuji apabila terjadi beban

berlebih maupun hubungan singkat.

Untuk mengukur tegangan digunakan sensor tegangan. Sensor tegangan yang

digunakan adalah trafo stepdown, lalu tegangannya diturunkan dengan menggunakan

rangkaian pembagi tegangan. Output dari sensor tegangan akan menjadi masukan ke

internal ADC dari mikrokontroler ATMega8535.

Sensor arus berfungsi untuk mengukur kuat arus. Output sensor arus akan

menjadi input untuk ADC internal mikrokontroler ATMega8535.

Beban uji yang digunakan adalah beban induksi berupa lampu pendar

berbentuk tabung panjang atau yang umum dikenal dengan lampu TL (tubular lamp)

atau lampu neon. Lampu ini memiliki ballas atau pemberat yang bekerja sebagai

pengatur arus listrik dan mengatur tegangan yang membuat beban ini bersifat induktif.

Ballas jenis magnetik ini bekerja dengan prinsip pembatasan arus yang bekerja dengan

cara mencekik (bahasa Inggris: choke) arus pada titik yang sudah ditentukan

berdasarkan siklus arus bolak-balik pada frekuensi jala-jala sumber, atau 50/60Hz.

Beban untuk mengosongkan kapasitor menggunakan lampu. Apabila relay

dalam keadaan tidak aktif (NC) maka kapasitor bank akan terhubung ke beban lampu

(13)

Mikrokontroler berfungsi mengolah data input, menampilkannya pada display LCD dan melakukan tindakan sesuai dengan sistem kerja alat. Cos φ dihitung dengan

cara membandingkan antara sinyal analog arus bolak balik yang dihasilkan oleh

sensor arus dan sinyal analog yang dihasilkan oleh sensor tegangan. Jika sinyal analog

tegangan mendahului sinyal analog arus, maka beban bersifat induktif, jika sebaliknya

sinyal analog arus mendahului sinyal analog tegangan maka disebut beban bersifat

kapasitif. Selanjutnya mikrokontoler akan mengendalikan model kombinasi kapasitor

melalui relay sesuai dengan hasil perhitungan yang dilakukan pada mikrokontroler.

Tombol seting berfungsi untuk menentukan apakah sistem akan dijalankan

secara manual atau otomatis.

3.1.2 Rangkaian Power Supply

Rangkaian ini berfungsi untuk mencatu tegangan ke seluruh rangkaian yang

ada.Rangkaian PSA yang dibuat terdiri dari dua keluaran, yaitu 5 volt dan 12 volt.

Keluaran 5 volt digunakan untuk mencatu tegangan ke rangkaian mikrokontroler,

sedangkan +12 volt digunakan untuk menyalurkan tegangan ke rangkaian relay.

Rangkaian power supply ditunjukkan pada gambar 3.3 berikut ini:

Gambar 3.3 Rangkaian Power Supply

Transformator CT (center tap) merupakan trafo step-down yang berfungsi untuk

(14)

volt AC akan disearahkan dengan menggunakan dua buah dioda silikon, selanjutnya

12 volt DC akan diratakan oleh kapasitor 3300 µF. IC regulator tegangan 5 volt (7805)

digunakan agar keluaran yang dihasilkan tetap (tidak melebihi) 5 volt kalaupun terjadi

perubahan pada tegangan masukannya. LED berfungsi sebagai indikator apabila PSA

dalam keadaan hidup. Sedangkan untuk tegangan 12 volt DC langsung diambil dari

keluaran jembatan dioda.

3.1.3 Rangkaian Sensor Arus ACS712

ACS712 adalah Hall Effect current sensor (sensor arus). Hall effect allegro ACS712

merupakan sensor yang presisi sebagai sensor arus AC atau DC dalam pembacaan

arus didalam dunia industri, otomotif, komersil dan sistem-sistem komunikasi. Pada

umumnya aplikasi sensor ini biasanya digunakan untuk mengontrol motor, deteksi

beban listrik, switched-mode power supplies dan proteksi beban berlebih.

Gambar 3.4 Rangkaian sensor arus ACS712

Sensor ini memiliki pembacaan dengan ketepatan yang tinggi, karena

didalamnya terdapat rangkaian low-offset linear Hall dengan satu lintasan yang

terbuat dari tembaga. Cara kerja sensor ini adalah arus yang dibaca mengalir melalui

kabel tembaga yang terdapat didalamnya yang menghasilkan medan magnet yang

ditangkap oleh integrated Hall IC dan diubah menjadi tegangan proporsional.

Ketelitian dalam pembacaan sensor dioptimalkan dengan cara pemasangan komponen

yang ada didalamnya antara penghantar yang menghasilkan medan magnet dengan

hall transducer secara berdekatan. Persisnya, tegangan proporsional yang rendah akan

menstabilkan Bi CMOS Hall IC yang didalamnya yang telah dibuat untuk ketelitian

(15)

Gambar 3.5 Diagram pin-out ACS712

Berikut deskripsi dari pin sensor arus ACS71.

Tabel 3.1 Deskripsi pin terminal sensor arus ACS712

Keluaran dari sensor ini sebesar (>VIOUT(Q)) saat peningkatan arus pada penghantar

arus (dari pin 1 dan pin 2 ke pin 3 dan 4), yang digunakan untuk pendeteksian atau

perasa arus. Hambatan dalam penghantar sensor sebesar 1,2 mΩ dengan daya yang

rendah. Jalur terminal konduktif secara kelistrikan diisolasi dari sensor leads/

mengarah (pin 5 sampai pin 8). Hal ini menjadikan sensor arus ACS712 dapat

digunakan pada aplikasi-aplikasi yang membutuhkan isolasi listrik tanpa

menggunakan opto-isolator atau teknik isolasi lainnya yang mahal. Ketebalan

penghantar arus didalam sensor sebesar 3 kali kondisi overcurrent.Sensor ini telah

dikalibrasi oleh pabrik. Untuk lebih jelas dapat dilihat pada gambar diagramblok

berikut:

(16)

3.1.4 Rangkaian Sensor Tegangan

Sensor tegangan menggunakan resistor pembagi tegangan yang dipasang secara

paralel antara fase dengan netral. Sensor tegangan ini berfungsi untuk mendeteksi

sinyal tegangan dan juga sekaligus sebagai power supply. Disamping itu, resistor juga

tidak merubah harga fase yang terjadi pada beban induktif yang terpasang. Dengan

menggunakan transformator step down sebagai sumber tegangan, rangkaian sensor

tegangan ditunjukkan pada gambar berikut ini:

Gambar 3.7 Rangkaian sensor tegangan

Resistor pembagi tegangan ini juga akan menurunkan tegangan dari tegangan

sumber menjadi tegangan yang dikehendaki. Pergeseran fasa adalah hubungan antara

tegangan yang diterapkan pada sisi tegangan tinggi dan tegangan yang dihasilkan pada

tegangan rendah dan sebaliknya. Pergeseran fasa pada tegangan tinggi terhadap

tegangan rendah biasanya sangatlah kecil. Apabila terjadi penuaan dan kerusakan

pada inti trafo maka hal ini dapat diidentifikasikan dengan terjadinya perubahan sudut

fasa yang sangat signifikan.

3.1.5 Rangkaian Relay Pengendali Kapasitor

Relay ini berfungsi sebagai saklar elektronik yang dapat menghubungkan dan

memutuskan perangkat elektrik dan dalam hal ini adalah kapasitor. Disini relay akan

menghubungkan kapasitor bank dengan lampu pengosongan kapasitor apabila dalam

keadaan tidak aktif (NO), atau akan menghubungkannya dengan sumber daya apabila

dalam keadaan aktif (NC). Rangkaian relay pengendali kapasitor tampak seperti

(17)

Gambar 3.8 Rangkaian relay pengendali kapasitor

Karena kapasitor bank yang akan dikendalikan ada 4 buah, maka rangkaian

pengendali kapasitor seperti gambar di atas juga terdiri dari 4 buah (dapat dilihat

dalam rangkaian keseluruhan). Relay 1 akan mengaktifkan kapasitor 1, relay 2 akan

mengaktifkan kapasitor 2 dan begitu juga seterusnya ununtuk relay 3 dan 4.

Relay merupakan salah satu komponen elektronika yang terdiri dari

lempengan logam sebagai saklar dan kumparan yang berfungsi untuk menghasilkan

medan magnet. Pada rangkaian ini digunakan relay 12 volt, ini berarti jika positif

relay (kaki1) dihubungkan ke sumber tegangan 12 volt dan negatif relay (kaki 2)

dihubungkan ke ground, maka kumparan akan menghasilkan medan magnet, dimana

medan magnet ini akan menarik lempengan yang mengakibatkan saklar (kaki 3)

terhubung ke kaki 4. Dengan demikian, kita dapat mengunakan kaki 3 dan kaki 4 pada

relay sebagai saklar untuk menghubungkan kapasitor ke sumber tegangan PLN.

Pada rangkaian ini untuk mengaktifkan atau menon-aktifkan relay

membutuhkan transistor tipe NPN sebagai pemicu. Dari gambar dapat dilihat bahwa

kutub negatif relay dihubungkan ke kolektor transistor NPN (2SC945), ini berarti jika

transistor dalam keadaan aktif maka kolektor akan terhubung ke emitor dimana emitor

langsung terhubung ke ground yang menyebabkan tegangan di kolektor menjadi 0

volt, keadaan ini akan mengakibatkan relay aktif. Sebaliknya jika transistor tidak aktif,

maka kolektor tidak terhubung ke emitor, sehingga tegangan pada kolektor menjadi 12

volt, keadaan ini menyebabkan relay tidak aktif.

Kumparan pada relay akan menghasilkan tegangan seketika yang besar ketika

(18)

Untuk mencegah kerusakan pada transistor tersebut sebuah dioda harus dihubungkan

ke relay tersebut. Dioda dihubungkan secara terbalik sehingga secara normal dioda ini

tidak menghantarkan. Penghantaran hanya terjadi ketika relay dinonaktifkan, pada

saat ini arus akan terus mengalir melalui kumparan dan arus ini akan dialirkan ke

dioda. Tanpa adanya dioda arus sesaat yang besar itu akan mengalir ke transistor,

yang mengakibatkan kerusakan pada transistor.

Untuk menentukan tipe transistor yang digunakan, maka harus diketahui arus

yang mengalir pada relay. Relay yang digunakan adalah JQX-4453, relay ini

membutuhkan arus 34 mA untuk dapat bekerja, maka transistor yang digunakan harus

dapat mengalirkan arus 34 mA pada kolektornya. Pada alat ini digunakan transistor

tipe NPN C945, yang dapat mengalirkan arus maksimal 100 mA pada kolektornya.

Berikutnya akan dihitung hambatan yang digunakan pada basis. (hfe min = 90)

mA

dengan demikian nilai Rb maksimum yang harus digunakan adalah:

Jadi dapat digunakan resistor ¼ Watt.

Rb minimum yang dapat digunakan adalah (ib Max = 20 mA):

(19)

3.1.6 Rangkaian Kapasitor Bank

Dalam sistem ini, ada 4 buah kapasitor ac (kapasitor bank) yang nilainya bervariasi.

Kapasitor bank yang digunakan masing-masing nilainya dapat dilihat dalam tabel

berikut.

Tabel 3.2 Daftar masing-masing nilai kapasitor

No Nilai Kapasitor (µF)

1 1,5

2 2

3 2,5

4 4

Semua kapasitor ini dirangkai secara paralel, sehingga apabila kapasitor tersambung

maka kapasitansinya akan bertambah. Untuk mengaktifkan kapasitor, dilengkapi

dengan 2 jenis tombol yang akan memberikan inputan mikrokontroler dalam

mengaktifakan kapasitor dengan cara mengaktifkan relay. Kedua mode inputan

tersebut berfungsi untuk mengaktifkan kapasitor secara otomatis atau dengan

mengaktifkan kapasitor satu per satu. Untuk memilih mode yang diinginkan,

dilengkapi 5 tombol yang disediakan untuk melakukan mode inputan ke

mikrokontroler ATMega8535 yang akan mengaktifkan relay sehingga kapasitor bank

juga akan aktif.

(20)

Berikut penjelasan mengenai fungsi masing-masing tombol tersebut.

Tabel 3.3 Fungsi tombol inputan

Tombol Kapasitor Yang Aktif

1 Otomatis

2 1

3 2

4 3

5 4

Pada mode manual, kita dapat menentukan kapasitor yang akan diaktifkan sesuai yang

kita kehendai. Terlihat dalam tabel, apabila ditekan tombol 2 maka kapasitor 1 akan

aktif, ditekan tombol 3 maka nilai kapasitansi akan bertambah dengan aktifnya

kapasitor 2. Demikian sterusnya sampai tombol 5, dan untuk menonaktifkan kapasitor

ini cukup dengan menekan tombol sekali lagi.

Pada mode otomatis, cukup dengan menekan tombol 1 maka keempat

kapasitor ini akan terhubung paralel secara otomatis ke sumber daya oleh relay dengan

8 jenis mode kombinasi. Daftar nilai kapasitansi untuk semua kombinasi kapasitor

diperlihatkan dalam tabel berikut:

Tabel 3.4 Daftar relay yang aktif dan nilai kapasitansi setiap mode

Mode Konfigurasi relay yang aktif Kapasitansi (µF)

0 - 0

Ketujuh mode kombinasi kapasitor bank pada table di atas diaharapkan sudah mampu

(21)

mode kapasitor ini dikendalikan oleh relay atas instruksi dari mikrokontroler ATMega8535 hingga cos φ yang dikehendaki (cos φ ≥ 0,98) sudah memenuhi.

Sedangkan untuk rangkaian kapasitor bank sudah ada pada gambar (3.8).

Masing-masing kapasitor bank memiliki rangkaian yang sama seperti gambar tersebut, untuk

selengkapnya dapat dilihat dalam gambar rangkaian keseluruhan.

Relay akan mengendalikan kapasitor bank, apakah kapasitor bank akan

terhubung ke lampu (untuk mengosongkan kapasitor) atau ke sumber tegangan dan

juga sekaligus beban induksi (apabila dihubungkan dengan beban). NC (normally

close) relay terhubung ke lampu pengosongan kapasitor, maka ini berarti pada saat

relay tidak aktif, kapasitor bank akan terhubung ke lampu tersebut dengan tujuan agar

kapasitor tidak bermuatan lagi. NO (normally open) relay terhubung ke sumber

tegangan ac 220V 50Hz, maka pada saat relay aktif, kapasitor bank akan terhubung ke

sumber tegangan tersebut.

3.1.7 Rangkaian Mikrokontroler ATMega8535

Pada perancangan alat ini akan digunakan mikrokontroler ATMega8535 yang

berfungsi untuk membaca tegangan analog dari sensor tegangan dan sensor arus serta

menghitung nilai cos φ, membaca inputan dari tombol, menampilkan data hasil

perhitungan ke LCD dan mengendalikan relay.

Rangkaian ini berfungsi sebagai pusat kendali dari seluruh sistem yang

ada.Komponen utama dari rangkaian ini adalah IC mikrokontroler ATMega8535.

Pada IC inilah semua program diisikan, sehingga rangkaian dapat berjalan sesuai

dengan yang dikehendaki. Dalam menjalankan chip IC mikrokontroler ATMega8535

memerlukan rangkaian tambahan beberapa komponen elektronikalain sebagai

pendukung. Komponen pendukung ini akan dirangkai dalam bentuk sederhana dan

minim sehingga disebut sebagai rangkaian sistem minimum. Dengan rangkaian sistem

minimum ini, maka rangkaian mikrokontroler baru dapat bekerja. Dalam perancangan

(22)

1. Chip IC mikrokontroler ATMega8535

2. Kristal 11.0592 MHz

3. Kapasitor

4. Resistor

Rangkaian mikrokontroler ATMega8535 master ditunjukkan pada gambar berikut ini:

Gambar 3.10 Rangkaian sistem minimum mikrokontroler ATMega8535

Mikrokontroler ini memiliki 32 port I/O, yaitu port A, port B, port C dan port D. Pin

33 sampai 40 adalah Port A yang merupakan port ADC, dimana port ini dapat

menerima data analog. Pin 1 sampai 8 adalah port B. Pin 22 sampai 29 adalah port C.

Dan Pin 14 sampai 21 adalah port D. Pin 10 dihubungkan ke sumber tegangan 5 volt.

Dan pin 11 dihubungkan ke ground. Rangkaian mikrokontroler ini menggunakan

komponen kristal sebagai sumber clocknya. Nilai kristal ini akan mempengaruhi

kecepatan mikrokontroler dalam mengeksekusi suatu perintah tertentu.

Pada pin 9 dihubungkan dengan sebuah kapasitor dan sebuah resistor yang

terhubung ke ground. Kedua komponen ini berfungsi agar program pada

mikrokontroler dijalankan beberapa saat setelah power aktif. Lamanya waktu antara

aktifnya power pada IC mikrokontroler dan aktifnya program adalah sebesar perkalian

(23)

3.1.8 Rangkaian LCD (Liquid Crystal Display)

LCD (Liquid Crystal Display) adalah modul indikator yang banyak digunakan karena

tampilannya yang menarik. LCD yang paling banyak digunakan saat ini ialah LCD

LMB162ABC karena harganya cukup murah. LCD LMB162ABC merupakan modul

LCD dengan tampilan 2 × 16 (2 baris × 16 kolom) dengan konsumsi daya rendah.

Modul tersebut dilengkapi dengan mikrokontroler yang didesain khusus untuk

mengendalikan LCD.

Mikrokontroler HD44780 buatan Hitachi yang berfungsi sebagai pengendali LCD

memiliki CGROM (Character Generator Read Only Memory), CGRAM (Character

Generator Random Access Memory), dan DDRAM (Display Data Random Access

Memory).

LCD yang umum, ada yang panjangnya hingga 40 karakter (2 × 40 dan 4 × 40),

dimana kita menggunakan DDRAM untuk mengatur tempat penyimpanan karakter

tersebut.

Tabel 3.5 Peta memori LCD

Gambar berikut menampilkan hubungan antara LCD dengan port mikrokontroler:

(24)

Pada gambar rangkaian di atas pin 1 dihubungkan ke Vcc (5V), pin 2 dan 16

dihubungkan ke GND (Ground), pin 3 merupakan pengaturan tegangan Contrast dari

LCD, pin 4 merupakan Register Select (RS), pin 5 merupakan R/W (Read/Write), pin

6 merupakan Enable, pin 11-14 merupakan data. Reset, Enable, R/W dan data

dihubungkan ke mikrokontroler Atmega8535. Fungsi dari potensiometer (R4) adalah

untuk mengatur gelap/ terangnya karakter yang ditampilkan pada layar LCD.

3.2 Perancangan Perangkat Lunak (Software)

Perancangan perangkat lunak meliputi penjelasan mengenai perancangan program

yang dipergunakan dan flowchart dari program untuk mengendalikan sistem.

3.2.1 Perancangan Program

Pada perancangan ini digunakan Code Vision AVR sebagai editor dan compiler dari

program yang dirancang. Untuk memulai pemrograman Code Vision AVR dilakukan

langkah sebagai berikut :

1. Buka software program CodeVisionAVR.

2. Pilih menu File New dan pilih Project kemudian tekan OK.

Gambar 3.12 Pemilihan tipe file

3. Kemudian pilih “Yes” saat ada pilihan menggunakan CodeWizardAVR, seperti

(25)

Gambar 3.13 Dialog konfirmasi tentang penggunaan CodeWizardAVR

4. Pada setingan CodeWizardAVR, atur konfigurasi chip menggunakanATMega8535

sesuai dengan yang ada pada modul, dengan nilai clock 11,059200 MHz.

Gambar 3.14 Pemilihan tipe Mikrokontroler dan Kristal

5. Kemudian pada tab Port, PortA diatur sebagai input, PortA digunakan sebagai input

dari sensor yang akan digunakan untuk mendeteksi sinyal. Dan PortB diatur

sebagai input dan output yang akan dihubungkan dengan keypad. Tampilannya

(26)

Gambar 3.15 Seting PortA dan PortB

6. Selanjutnya mengatur penempatan LCD pada PortC. Tampilannya sebagai berikut:

(27)

7. Setelah itu, pilih menu File Generate, Save and Exit, dan simpan file dengan

nama sesuai keinginan uji.

Gambar 3.17 Generate, Save dan Exit

8. Akan muncul file.c yang akan digunakan untuk pemrograman. Selanjutnya ditulis

(28)

3.2.2 Perancangan Metode Penghitungan cos φφφφ oleh Mikrokontroler

Yang menjadi poin utama dalam penelitian ini adalah perbaikan faktor daya (cos φ),

maka metode penghitungannya perlu ditegaskan. Disini mikrokontroler ATMega8535

akan menerima sinyal masukan dari sensor tegangan dan sensor arus lalu

membandingkan keduanya terhadap waktu dan kemudian menghitung cos φ. Lalu

kedua jenis sinyal yang akan ditinjau dalam bentuk sinyal tegangan saja, karena

sensor arus akan memberikan keluaran ke mikrokontroler ATMega8535 dalam bentuk

tegangan.

Karena daya yang bersumber dari jala-jala PLN adalah 220 V dan memiliki

frekuensi 50 Hz, maka didapat perioda (T) dari sinyal tegangannya adalah 0,02 sekon.

Gambar 3.18 Metode perhitungan sinyal tegangan terhadap waktu

Sehingga pada sudut 90° perioda (T) sinyal tersebut adalah 5 ms. Maka lamanya waktu untuk sudut 1° adalah 0,055556 ms atau sama dengan 55,56 µs. Untuk sensor

arus, metode perhitungan ini juga yang digunakan karena sensor arus arus tidak akan

mengalami pergeseran fasa.

Dari hasil perhitungan di atas waktu untuk setiap 1° sudah diketahui, maka

beda fasa sinyal arus dan tegangan sudah dapat dihitung. Dari hasil perhitungan yang

telah didapatmaka untuk mendapatkan besarnya sudut beda fasa antara sinyal arus dan

tegangan adalah dengan cara membagi selisih waktu munculnya sinyal arus dan

tegangan (zero cross) dengan 55,56 µs. Setelah besar sudutnya diketahui, maka nilai

cos φ sudah dapat dihitung oleh mikrokontroler ATMega8535 untuk kemudian

(29)

3.2.3 Flowchart Program

Flowchart (diagram alir) pemrograman ini merupakan algoritma perintah dalam

bahasa mesin yang yang membuat sistem bekerja sesuai dengan perintah tersebut.

Bahasa yang digunakan dalam perancangan alat ini adalah bahasa C mikrokontroler

(30)
(31)

BAB IV

PENGUJIAN DAN ANALISA

Untuk mengetahui kinerja sistem ini, maka dilakukan pengujian dan analisa

berdasarkan perancangan sistem yang telah dibuat.

4.1 Data HasilPengujian

Dilakukan pengujian beberapa tahap dalam berbagai beban dan kapasitansi dengan

sedemikian rupa untuk dapat dianalisa apakah sistem bekerja sesuai dengan yang

diharapkan.

4.1.1Pengujian Daya untuk Beban Tanpa Sambungan Kapasitor

Pada pengujian beban tanpa kapasitor ini, memperlihatkan nilai yang terukur oleh alat

tanpa terhubung ke kapasitor dengan beban yang bervariasi.

Tabel 4.1 Hasil pengujian dayauntuk beban tanpa sambungan kapasitor

No. BEBAN ARUS

(Ampere)

TEGANGAN

(Volt) cos φφφφ

DAYA

(Watt)

1 TANPA BEBAN 0 210 1,00 0

2 LAMPU TL 18 W 0,1 210 0,96 20,16

3 LAMPU TL 36 W 0,22 210 0,94 43,43

4 LAMPU TL 36 W + 18 W 0,34 209 0,85 60,40

5 LAMPU TL 36 W + 36 W 0,47 209 0,82 80.54

6 LAMPU TL 36 W + 36 W + 18 W 0,82 208 0,59 100,63

(32)

4.1.2Pengujian Daya untuk Beban Tetap (108 W) dengan Kapasitansi diatur. Pengujian untuk beban tetap (108 Watt) dilakukan dengan 6 jenis mode kombinasi

sambungan kapasitor bank dilakukan untuk melihat daya yang dihasilkan.

Tabel 4.2 Hasil pengujian daya untuk beban tetap dengan kapasitansi diatur.

No. Kapasitor Dilakukan juga hasil secara perhitungan agar terlihat perbandingannya apakah sistem

sudah bekerja sesuai dengan apa yang diharapkan.

Tabel 4.3 Perbandingan hasil perhitungan dengan pengujian untuk beban tetap.

No. Kapasitor (µF)

Arus(Ampere) Tegangan (Volt) cos φφφφ

Perhitungan Pengukuran Perhitungan Pengukuran Perhitungan Pengukuran

1 1,5 1,328 1,05 207 208 0,64 0,506

4.1.3 Pengujian Dayauntuk Kapasitansi Diatur Secara Otomatis

Pada pengujian ini, nilai kapasitansi yang diatur oleh sistem (mikrokontroler ATMega8535) secara otomatis hingga cos φ mencapai nilai maksimum (cos φ ≥ 0,98)

(33)

Tabel 4.4 Hasil pengujian daya untuk kapasitansi diatur secara otomatis

diabaikan, terlihat dengan nilai cos φ yang sudah mendekati 1 sehingga daya nyata P

juga sudah hampir sama dengan daya tampak S. Kemudian data ini lalu dibandingkan

dengan melihat kembali hasil pengujian daya untuk bebantan pasambungan kapasitor

yang telah didapatkan sebelumnya.

Tabel 4.5 Perbandingan perhitungan daya sebelum dansetelah perbaikan.

(34)

4.2 Analisa Data HasilPengujian

Dilakukan perhitungan secara teori untuk mengidentifikasi hasil yang sudah

didapatkan dari data-data di atas.

4.2.1 Analisa Data Hasil Pengujian Daya untuk BebanTanpa Sambungan Kapasitor

Untuk mencari daya nyata P maka dapat dilakukan dengan menggunakan persamaan:

= cos

Sedangkan untuk mendapatkan besar daya reaktif Q:

+ = sin

Sedangkan nilai kapasitasi yang diperlukan untuk mendapatkan cos φ ≈ 1 ditentukan

dengan menggunakan persamaan:

I = +ω

1. Tanpa beban (0 W):

P = (210) (0) (1)

= 0 Watt

Q = (210)(0) sin {cos-1(1)}

= 0 VAR

C = 0 (karena cos φ =1)

2. Beban 18 W

P = (210) (0,1) (0,96)

= 20,16 Watt

(35)
(36)

C = ( _b)\a, ca= ( X)(\_) = 4,098 µF

6. Beban (36 + 36 + 18) W

P = (208) (0,82) (0,59)

= 100,63Watt

Q = (208)(0,82) sin{cos-1-(0,59)}

= (170,56)(0,807)

= 137,71 VAR

C = ( _^)BO`,`B= ( X)(\_) = 10,31 µF

7. Beban (36 + 36 + 18 + 18) W

P = (208) (1,1) (0,54)

= 123,55 Watt

Q = (208)(1,1) sin{cos-1-(0,54)}

= (228,8)(0,841)

= 192,573 VAR

C = ( _^)Bb ,\`O= ( X)(\_) = 14,168 µF

4.2.2 Analisa Data Hasil Pengujian Beban Tetap (108 W) dengan kapasitansi diatur.

Beban :4 buah Lampu TL total beban 108 Watt

Tegangan : 207 Volt

Arus : 1,40 A

(37)

Mencari nilai daya tampak (S), daya nyata (P), daya reaktif (Q), arus dan cos φ untuk

setiap kenaikan kapasitansi dengan perhitungan sebagai berikut :

S = V I P = V I cos φ

S = (207) (1,40) = 289,8 VA P = (207)(1,40)(0,48) = 139,104 Watt Q = V I sin φ

Q = (207) (1,40) (0,8873) = 257,1395 VAR

Untuk setiap nilai kapasitansi yang diatur secara manual di bawah ini, akan dicari

besarnya Qs (daya reaktif yang tersisa) dan φs (sudut yang tersisa) yang harus

dikompensasi oleh kapasitor agar didapatkan cos φ maksimum.

1. Kapasitansi 1,5 µF

C = 1,5 µF

WT =2efI =1 (6,28)(50)(1,5 ∙ 101 ja) = 2,123 l

+T = W T =

(207)

2123 = 20,18

+ = 257,1395 V 20,18 = 236,959 o φ = p.jBqZr

0s = p.jBqBOb,B_cOa,b\bs = p.jB(1,703) = 59,586°

cosφ = cos(59,586°) = 0,506

= sin(+ φ ) =(207) sin(59,586) = 1,328 o236,959

= = (207)(1,328) = 274,896 o

= cosφ = (207)(1,328)(0,506) = 139,098 p + = sinφ = (207)(1,328)(0,862) = 236,960 o

2. Kapasitasi 2 µF

C = 2 µF

(38)
(39)
(40)

+T = W

T =

(207)

318,471 = 134,546 o

+ = 257,1395 V 134,546 = 122,593 o

φ = p.jBqZr

0s = p.jBq B ,\bO

BOb,B_cs = p.jB(0,881) = 41,380°

cosφ = cos(41,380°) = 0,750

= sin(+ φ ) =(207) sin(41,380) = 0,895 o122,593

= = (207)(0,895) = 185,256 o

(41)

4.2.3 Analisa data hasil pengujian daya untuk kapasitansi diatur secara otomatis

Karena nilai cos φ sudah sesuai dengan yang diharapkan (cos φ ≥ 0,98) maka nilai

kapasitansi yang diatur secara otomatis sudah tepat.

1. Tanpa beban

P = VI cos φ

= (210)(0)(1)

= 0 Watt

Q = (210)(0) sin{cos-1-(1)}

= (0)(0)

= 0 VAR

2. Untuk beban 18 watt

P = VI cos φ

= (210)(0,04)(1)

= 8,4 Watt

Q = (210)(0,04) sin{cos-1-(1)}

= (8,4)(0)

= 0 VAR

3. Untuk beban 36 watt

P = VI cos φ

= (210)(0,05)(1)

= 10,5 Watt

Q = (210)(0,25) sin{cos-1-(1)}

= (10,5)(0)

(42)
(43)

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Setelah dilakukan proses perencanaan, pembuatan dan pengujian alat serta dengan

membandingkan dengan teori-teori pendukung dan dari data yang didapat, maka dapat

disimpulkan bahwa:

1. Input captures pada Mikrokontroler ATMega8535 dapat digunakan untuk

mengetahui beda fasa antara sinyal tegangan dan sinyal arus yang selanjutnya

digunakan untuk mengetahui besarnya faktor daya (cos φ).

2. Dari hasil pengujian, tegangan mengalami penurunan dan arus mengalami

peningkatan seiring dengan penambahan beban induktif.

3. Dari hasil pengujian dengan beban tanpa sambungan kapasitor, maka dapat

dihitung nilai kapasitansi kapasitor yang harus terhubung guna mendapatkan

cos φ maksimum (cos φ ≈ 1) secara teori.

No. BEBAN Cos φφφφ Q (VAR) C (µF)

1 TANPA BEBAN 1,00 0 0

2 LAMPU TL 18 W 0,96 5,88 0,424

3 LAMPU TL 36 W 0,94 15,76 1,14

4 LAMPU TL 36 W + 18 W 0,85 37,717 2,744

5 LAMPU TL 36 W + 36 W 0,82 56,246 4,098

6 LAMPU TL 36 W + 36 W + 18 W 0,59 131,71 10,31

7 LAMPU TL 36 W + 36 W + 18 W + 18 W 0,54 192,573 14,168

4. Setelah perbaikan faktor daya, nilai cos φ yang diharapkan yaitu cos φ ≥ 0,98

sudah tercapai dan juga setelah melalui analisa data pengujian bahwa daya

(44)

No BEBAN (W)

cos φφφφ Daya Reaktif (VAR)

Sebelum Setelah Sebelum Setelah

1 0 1 1 0 0

Harmonics Analyzer) meter rata-rata sebesar 5% tergantung dari beban yang

digunakan.

5.2 Saran

Agar sistem ini dapat lebih sempurna dan bermanfaat, maka penulis memberikan

saran-saran sebagai berikut ini:

1. Untuk mendapatkan nilai kapasitansi yang lebih tepat sehingga

pengkompensasian lebih optimal sesuai nilai beban, sebaiknya kombinasi

kapasitor lebih variatif (dirangkai seri dan paralel) sesuai beban yang ada.

2. Sistem ini dirancang untuk beban induksi saja karena umumnya umumnya

beban yang bersifat reaktif induktif yang banyak ditemukan di rumah tangga

ataupun industri. Namun ada baiknya kepada peneliti berikutnya merancang

alat pengkompensasi yang juga dilengkapi pengkompensasian untuk beban

reaktif kapasitif.

3. Sebaiknya peneliti berikutnya juga merancang untuk daya 2 atau 3 fasa, karena

kebutuhan listrik semakin hari semakin mengalami perkembangan.

4. Untuk mendapatkan hasil pengujian yang bebar-benar lebih objektif, beban

juga harus ditambahi dengan jenis beban resistif murni seperti misalnya lampu

(45)

BAB II

TINJAUAN PUSTAKA

2.1 Daya

Daya adalah sebuah kuantitas yang penting dalam rangkaian-rangkaian praktis.Daya

merupakan ukuran disipasi energi dalam sebuah alat. Karena tegangan dan arus dapat

berubah sesuai fungsi dari waktu, kita segera memperkirakan bahwa nilai sesaat dan

nilai rata-rata dapat digunakan untuk menggambarkan disipasi. Berdasarkan defenisi,

daya sesaat adalah perkalian antara tegangan dan arus sesaat.

( ) = ( ) × ( ) (2.1 )

Jadi, kita dapat menggunakan p(t) untuk mempelajari intensitas disipasi energi pada

setiap saat waktu tertentu.

Daya disipasi dalam rangkaian ac (arus bolak-balik) resistif didefinisikan

sebagai hasil dari tegangan dan arus, yaitu, W = V × I, dimana W dalam Watt, V

dalam Volt, dan I dalam Ampere. Sehingga W dapat juga dihitung dengan

menggunakan persamaan = = / . Tentunya V dan I adalah konstan, tidak

berubah dan memiliki nilai.

Konsumsi daya dalam arus ac lebih rumit karena tegangannya sinusoidal dan

arusnya berubah secara kontiniu dalam amplitudo, dan dapat keluar atau masuk fase.

Ada beberapa sirkuit ac yang sekaligus memiliki komponen resistif dan juga reaktif.

Komponen resistif mendisipasi (membuang) energi pada rangkaian ac, sama halnya

dengan rangkaian dc. Ada kalanya komponen reaktif tidak mendisipasi energi, tetapi

melepaskannya ke sumber daya dalam satu selang siklus tegangan sebanyak energi

(46)

pada suatu rangkaian ac yang mengandung komponen resistif, dan sama sekali tidak

mengandung komponen reaktif.

Karena adanya disipasi energi yang diakibatkan oleh sifat komponen tertentu

dalam sirkuit ac, maka sistem listrik arus ac dikelompokkan dalam 3 jenis daya,

khususnya untuk beban yang memiliki impedansi (Z), yaitu:

1. Daya Nyata P atau WT (True Power)

2. Daya Reaktif Q (Reactive Power)

3. Daya Tampak S atau WAatau Papp (Apparent Power)

Ketiga jenis daya yang telah dikelompokkan di atas perlu dijabarkan dengan lebih

detail lagi agar hubungan dan perbedaannya lebih terlihat. Dalam sub bab daya

kompleks berikut ini akan dijelaskan rincian serta analoginya pada gambar 2.1.

2.2 Daya Kompleks

Istilah daya aktif dan daya nyata seringkali dipertukarkan dalam penggunaannya

dengan merumuskan daya rata-rata yang didisipasikan di dalam sebuah alat. Untuk

kasus impedansi umum Z, kita memperkirakan bahwa daya aktif adalah tidak-nol

sedangkan total produk dapat lebih besar dari disipasi daya rata-rata. Situasi

ini tampaknya agak rumit.

Daya nyata, reaktif, dan daya tampak dapat diuraikan dalam notasi bilangan

kompleks.

Daya tampak kompleks didefenisikan sebagai hasil kali tegangan dengan konjugasi

kompleks arus,

= . ∗ = | |. | |∠ (2.2)

Dan ketiga pengelompokan daya ini dapat dianalogikan dengan menggambarkannya

dalam bentuk segitiga daya, maka daya tampak S direpresentasikan oleh sisi miring

sedangkan daya nyata dan daya reaktif direpresentasikan oleh sisi-sisi segitiga yang

(47)

Q (VAR)

S, WA (VA)

P, WT (Watt) ϕ

Gambar 2.1 Diagram Daya

Maka daya nyata atau daya aktif dan daya reaktif dapat diambil saja dari bagian real

dan bagian imajiner dari S.

Daya nyata = ℜ! " = | |. | | cos (2.3)

Daya Reaktif + = ℑ! " = | |. | | sin (2.4)

2.2.1 Daya Nyata WT (True Power)

Daya yang diserap oleh suatu perangkat listrik yang memiliki komponen resistif dan

reaktif didefenisikan sebagai daya aktif atau disebut juga daya nyata P. Daya nyata

atau terkadang disebut juga daya aktif didefinisikan sebagai laju energi yang

dibangkitkan atau dikonsumsi oleh suatu peralatan listrik, satuannya adalah Joule per

detik atau sama dengan Watt.

Dalam sirkuit yang mengandung komponen reaktif, daya nyata P adalah

bagian yang lebih kecil dibandingkan daya tampak S. Daya nyata didefenisikan

sebagai hasil perkalian antara tegangan dan arus serta koefisien faktor dayanya.

= × cos (2.5)

Sedangkan dalam sirkuit yang mengandung resistif murni, daya nyata P sama dengan

daya tampak S, karena koefisien faktor daya (cos φ) adalah 1, sehingga tidak ada daya

(48)

2.2.2 Daya Reaktif Q (Reactive Power)

Selain daya aktif, dikenal juga daya reaktif Q (daya kuadratur) yaitu daya yang

terdisipasi akibat sifat reaktansi komponen dalam sirkuit, memiliki satuan VAR

(volt-amper reaktif). Daya reaktif dapat didefenisikan sebagai hasil perkalian antara tegangan dan arus serta nilai sin φ.

+ = × - .φ (2.6)

Daya reaktif tidak memiliki dampak positif dalam kerja suatu beban listrik. Dengan

kata lain daya reaktif ini tidak berguna dalam konsumsi listrik. Daya ini adalah

kuantitas daya baru yang muncul diakibatkan oleh komponen pasif (beban yang

memiliki sifat induktif atau kapasitif) atau dapat dikatakan rugi-rugi daya yang

tentunya tidak diinginkan. Daya ini tidak dapat dihilangkan sama sekali namun dapat

diminimalisir dengan cara penyeimbangan antara sifat kapasitif dan induktif dalam

sistem tenaga listrik ac tersebut.

2.2.3 Daya Tampak WT (Apparent Power)

Gabungan antara daya aktif dan reaktif adalah daya tampak S dengan satuan VA atau

(volt-amper). Daya tampak (daya total) adalah daya yang masuk ke rangkaian ac atau

dengan kata lain daya yang sebenarnya diterima dari pemasok sumber tegangan arus

ac, adalah merupakan resultan daya antara daya aktif dan daya reaktif.

Daya tampak WA didefenisikan serbagai hasil perkalian dari tegangan dan arus

dalam rangkaian ac tanpa memperhatikan selisih sudut fase arus dan tegangan.

= × (2.7)

Sama halnya seperti defenisi dari daya disipasi dalam rangkain dc. Oleh karena itu

daya tampak sering dinyatakan dengan satuan volt-ampere (VA). Peralatan listrik

rumah tangga ditetapkan satuannya sebagai volt-ampere dengan catatan bahwa daya

ini bukanlah daya yang diserap, namun satuan yang disebut dengan daya daya aktif P.

Kapasitor dan induktor tidak mendisipasikan daya apapun dalam arti rata-rata, atau

(49)

2.3 Faktor Daya cos φφφφ (Power Factor)

Faktor daya PF yang merupakan rasio daya nyata terhadap daya tampak merupakan

faktor indikator penting tentang bagaimana efektifnya sebuah beban melaksanakan

fungsinya sehubungan dengan disipasi daya, yang didefenisikan sebagai:

/ =0

1 (2.8)

Maka faktor daya PF adalah perbandingan antara daya nyata P (Watt) dengan daya

tampak S (VA). Dalam diagram daya, PF adalah cosinus sudut antara daya aktif dan

daya tampak (Gambar 2.1).

Perlu dicatat bahwa notasi daya nyata P juga terkadang disimbolkan sebagai

WT dan daya tampak S juga disimbolkan dengan WA atau juga Papp tergantung

keinginan atau kebiasaan masing-masing menggunakan notasi yang dirasa lebih

lumrah di mata umum. Jadi tidak ada salahnya jika faktor daya dapat juga ditulis

sebagai:

/ = 23

24 (2.9)

Untuk kasus tegangan-tegangan dan arus-arus sinusoidal, dari defenisi dan persamaan

(2.6) dan (2.7) maka dapat ditulis menjadi:

/ =0

(50)

φ adalah sudut yang dibentuk antara sisi daya aktif P dan daya tampak S, sedangkan

daya reaktif Q tegak lurus terhadap daya aktif P.

Maka oleh sebab itu nilai PF adalah antara 0 dan 1, apabila sirkuit tetap.

Sekarang defenisi daya nyata telah dibuktikan dengan jelas dan telah ditulis secara

matematis dalam persamaan (2.5).

Jika melihat persamaan (2.12) jelas bahwa ketika φ = 0, maka cos φ = 1

sehingga = = × . Keadaan ini terdapat dalam sirkuit resistif murni ketika

sinyal tegangan dan arus satu fase. Sehingga kita dapat menghitung bahwa di dalam

suatu sirkuit resistif murni, daya nyata dan daya tampak adalah sama. Sedangkan

dalam sirkuit reaktif, nilai daya aktif selalu lebih kecil dari pada daya tampak, karena

besar sudut fase munculnya arus dan tegangan berlarut antara lebih besar dari 0° sampai 90° (0° < φ ≤ 90°). Untuk nilai sudut demikian, cos φ (faktor daya) lebih kecil

dari 1. Efisiensi daya yang lebih adalah ketika P sama atau mendekati S, yaitu ketika cos φ = 1 atau mendekati 1.

Daya reaktif yang tinggi akan meningkatkan sudut ini dan sebagai hasilnya PF

akan menjadi lebih rendah (PF < 1), karena memang pada prinsipya PF pasti selalu

lebih kecil atau sama dengan satu.

Secara teoritis, jika seluruh beban daya yang dipasok oleh perusahaan listrik

memiliki PF = 1, maka daya maksimum yang ditransfer setara dengan kapasitas

sistem pendistribusian. Sehingga, dengan beban yang terinduksi dan jika faktor daya

berkisar dari 0,2 hingga 0,5 maka kapasitas jaringan distribusi listrik menjadi tertekan.

Jadi, daya reaktif Q (VAR) harus serendah mungkin untuk keluaran kW yang sama

dalam rangka meminimalisir kebutuhan daya tampak S (VA).

Bisa juga dikatakan bahwa PF menggambarkan cosinus sudut fase antara arus

dan tegangan atau cosinus sudut antara daya nyata P dan daya tampak S (Gambar 2.1).

Faktor daya yang rendah merugikan karena mengakibatkan arus beban tinggi, oleh

karena itu dalam perbaikan PF diperlukan keseimbangan antara sifat kapasitif dan

(51)

2.3.1 Beban Resistif Murni

Dalam sebuah sumber arus bolak-balik, bila beban yang diaplikasikan bersifat resistif

murni, maka gelombang tegangan dan arus adalah sefasa seperti tampak pada gambar

2.2 berikut.

Gambar 2.2 Sinyal arus dan tegangan untuk beban bersifat resistif

Apabila beban yang dimiliki suatu peralatan listrik tidak seimbang antara sifat

kapasitif dan induktifnya, maka titik persilangan nol (zero cross) antara arus dan

tegangan seperti yang terlihat sebelumnya pada gambar. Contoh beban induktif murni

yaitu: lampu pijar dan pemanas.

Namun apabila sifat kapasitif dan induktif tidak seimbang, sinyalnya tidak

(52)

2.3.2 Beban Induktif

Gambar 2.3 Sinyal arus dan tegangan untuk beban bersifat induktif

Apabila sifat bebannya adalah induktif, maka persilangan nol (zero cross) gelombang

arus muncul beberapa saat setelah persilangan nol sinyal tegangan muncul, atau

dengan kata lain sinyal arus tertinggal dari sinyal tegangan sebesar φ, dan keadaan ini disebut lagging. Apabila digambarkan dalam diagram vektor:

V (Volt)

I (A

m

pe

re)

P (W)

S (V

A)

Q (VAR)

Gambar 2.4 Sifat beban induktif (arus tertiggal dari tegangan/ lagging)

Contoh beban yang bersifat induktif yaitu: motor induksi, transformator, lampu neon

(53)

2.3.3 Beban Kapasitif

Gambar 2.5 Sinyal arus dan tegangan untuk beban kapasitif

Sedangkan untuk beban bersifat kapasitif, maka sebaliknya persilangan nol (zero

cross) sinyal arus muncul beberapa saat sebelum sinyal tegangan muncul, atau dengan

kata lain sinyal arus mendahului tegangan sebesar φ, keadaan ini disebut dengan

leading. Apabila digambar dalam diagram vektor:

ф

V (Volt) I (Am

pere )

ф

P (W) S (VA

)

Q (VAR)

Gambar 2.6 Sifat beban kapasitif (arus mendahului tegangan/ leading)

(54)

Kita dapat mendefenisikan φ adalah besarnya sudut sinyal arus yang mendahului

tegangan dalam suatu sirkuit kapasitif atau besarnya sudut sinyal arus yang tertinggal

di dalam sirkuit induktif, dan cos φ adalah faktor daya, dengan menggunakan

persamaan:

/ = cosφ =9

: = ;<

; (2.13)

Dalam persamaan ini R adalah tahanan total rangkaian dalam ohm, Z adalah

impedansi rangkaian dalam ohm, 9 adalah tegangan yang melewati R, dan V adalah

tegangan yang terpakai di dalam rangkaian.

Ada beberapa persamaan selain (2.9) untuk menghitung daya nyata, yaitu:

= = (;<)=

9 (2.14)

Dalam persamaan ini, I adalah arus rangkaian dalam ampere, R adalah tahanan total

rangkaian dalam ohm, 9 adalah tegangan yang melalui R, dan W satuannya adalah

dalam Watt.

Beban-beban induktif dan kapasitif memiliki faktor daya yang lebih kecil dari satu,

sedangkan beban resistif memiliki faktor daya satu.

0 ≤ / < 1 untuk beban-beban reaktif

(55)

2.4 Kapasitor Bank

2.4.1 Struktur dan Defenisi Kapasitor

Struktur sebuah kapasitor terbuat dari 2 buah plat metal yang dipisahkan oleh suatu

bahan dielektrik. Bahan-bahan dielektrik yang umum dikenal misalnya udara vakum,

keramik, gelas dan lain-lain. Jika kedua ujung plat metal diberi tegangan listrik, maka

muatan-muatan positif akan mengumpul pada salah satu kaki (elektroda) metalnya

dan pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang

satu lagi. Muatan positif tidak dapat mengalir menuju ujung kutub negatif dan

sebaliknya muatan negatif tidak bisa menuju ke ujung kutub positif, karena terpisah

oleh bahan dielektrik yang non-konduktif. Muatan elektrik ini tersimpan selama tidak

ada konduksi pada ujung-ujung kakinya. Di alam bebas, fenomena kapasitor ini terjadi

pada saat terkumpulnya muatan-muatan positif dan negatif di awan.

Kapasitor merupakan komponen yang dapat menyimpan muatan

listrik.Kapasitansi didefenisikan sebagai kemampuan dari suatu kapasitor untuk dapat

menampung muatan elektron. Sebuah kapasitor akan memiliki kapasitansi sebesar 1

farad jika dengan tegangan 1 volt dapat memuat muatan elektron sebanyak 1 coulomb

atau setara dengan 6,25 x 1018 elektron. Struktur sebuah kapasitor yang terbuat dari 2

buah pelat metal yang dipisahkan oleh suatu bahan dielektrik ditunjukkan pada

Gambar 2.7. Bahan-bahan dielektrik yang umum dikenal misalnya keramik, gelas dan

lain-lain. Jika kedua ujung pelat metal diberi tegangan listrik, maka muatan-muatan

positif akan mengumpul pada salah satu kaki elektroda metalnya dan pada saat yang

sama muatan-muatan negatif terkumpul pada ujung metal yang lain. Muatan positif

tidak dapat mengalir menuju ujung kutub negatif dan sebaliknya muatan negatif tidak

bisa menuju ke ujung kutub positif, karena terpisah oleh bahan dielektrik yang

non-konduktif. Muatan elektrik ini tersimpan selama tidak ada kondukif pada ujung-ujung

kakinya.

(56)

Kapasitor bank adalah peralatan listrik yang mempunyai sifat kapasitif yang

akan berfungsi sebagai penyeimbang sifat induktif. Kapasitas kapasitor diproduksi

dalam berbagai kapasitas mulai dari ukuran 5 kVAR sampai 60 kVAR dengan interval

tegangan kerja 230 V sampai 525 Volt tergantung nilai kapasitansi yang diperlukan.

Kapasitor Bank terdiri dari beberapa kapasitor yang disambung secara paralel untuk

mendapatkan kapasitas kapasitif tertentu. Besaran kapasitas kapasitor bank yang

sering dipakai adalah kVAR (Kilovolt ampere reaktif) meskipun didalamnya

tercantum besaran kapasitansi yaitu Farad. Kapasitor ini mempunyai sifat listrik yang

kapasitif (leading). Sehingga mempunyai sifat mengurangi terhadap sifat induktif

(lagging). Sehingga dapat dikatakan dalam perbaikan faktor daya untuk arus ac

dengan beban bersifat induktif, digunakan kapasitor daya atau kapasitor bank untuk

arus ac.

2.4.2 Rangkaian Kapasitor

Untuk mendapatkan nilai kapasitor yang dibutuhkan, kapasitor tetap dapat disusun

secara seri atau paralel.

Kapasitor yang terhubung secara seri akan mengakibatkan nilai kapasitansi

total semakin kecil. Di bawah ini contoh kapasitor yang dirangkai secara seri.

Gambar 2.8 Rangkaian kapasitor secara seri.

Pada rangkaian kapasitor yang dirangkai secara seri berlaku rumus :

(57)

Sedangkan kapasitor yang terhubung secara paralel akan mengakibatkan nilai

kapasitansi pengganti semakin besar. Di bawah ini contoh kapasitor yang dirangkai

secara paralel.

Gambar 2.9 Rangkaian kapasitor secara paralel.

Pada rangkaian kapasitor yang dirangkai secara seri berlaku rumus:

IJKJLM = IBG I G IO (2.17)

2.4.3 Prinsip Perbaikan Faktor Daya (cos φφφφ)

Perhitungan nilai kapasitor digunakan untuk setiap beban yang terpasang pada sistem,

sehingga dapat memperbaiki faktor daya PF dengan maksimal. Dalam menentukan

kapasitansi kapasitor bank dilakukan terlebih dahulu perhitungan daya reaktif

kompensator (Qc). Daya reaktif kompensator dibagi dengan banyaknya step VAR

kompensator. Daya reaktif kompensator tiap step VAR kompensator digunakan untuk

perhitungan kapasitansi kapasitor bank tiap step VAR kompensator. Dengan demikian

akan didapatkan kapasitansi kapasitor untuk tiap step VAR kompensator yang

digunakan.

Pada prinsipnya, dalam perbaikan PF agar nilai PF ≈ 1, sebuah kapasitor daya

ac (kapasitor bank) harus mempunyai nilai daya reaktif kompensator Qc yang sama

dengan nilai daya reaktif Q dari sistem yang akan diperbaiki faktor dayanya, atau

dapat ditulis dengan:

Qc = Q (2.18)

(58)

Dari persamaan

Jadi daya reaktif kompensator dalam beban yang bersifat reaktansi,

+T = ;=

UT (2.21)

Untuk menghitung daya reaktif kompensator yang dibutuhkan terhadap perubahan

daya reaktif yang diinginkan, digunakan persamaan:

+T = +BV + (2.22)

Jika keadaan ini dipenuhi, kapasitor bank akan memperbaiki faktor daya menjadi

bernilai maksimum (cos φ = 1). Besarnya nilai daya Qc kapasitor bank yang

diperlukan untukmengubah faktor daya dari cos

φ

1 menjadi cos

φ

2 dapat ditentukan

dengan:

+T = (tanφBV tanφ ) (2.23)

Dimana:

Qc= daya reaktif kapasitor (VAR)

P = daya nyata (Watt)

φ1 = sudut fase sebelum perbaikan

φ2 = sudut fase seteleah perbaikan

(59)

Sedangkan untuk menghitung besarnya nilai kapasitor yang dibutuhkan agar didapat nilai sudut φ2 yang diinginkan dapat ditentukan dengan:

Dari persamaan:

WT = B

XYC (2.24)

atau sama dengan,

WT = B

ωC (2.25)

Sehingga dari persamaan (2.21):

+T = B

ωC

+T

ωI=

Maka nilai kapasitor yang dibutuhkan sebagai daya reaktif kapasitif adalah:

I = Z[

;=ω (2.26)

Dari persamaan (2.20) maka untuk menentukan nilai kapasistansi kompensator dapat

ditulis menjadi:

I = Z

;=ω (2.27)

Dimana: C = nilai kapasitansi kapasitor (Farad)

Qc = daya reaktif kapasitor (VAR)

V = Tegangan (Volt)

(60)

2.5 Mikrokontroler AVR ATMega8535

Mikrokontroler AVR (Alf and Vegard’s Risc processor) dari Atmel ini menggunakan

arsitektur RISC (Reduced Instruction Set Computer) yang artinya prosesor tersebut

memiliki set instruksi program yang lebih sedikit dibandingkan dengan MCS-51 yang

menerapkan arsitektur CISC (Complex Instruction Set Computer).

Hampir semua instruksi prosesor RISC adalah instruksi dasar (belum tentu

sederhana), sehingga instruksi-instruksi ini umumnya hanya memerlukan 1 siklus

mesin untuk menjalankannya. Kecuali instruksi percabangan yang membutuhkan 2

siklus mesin. RISC biasanya dibuat dengan arsitektur Harvard, karena arsitektur ini

yang memungkinkan untuk membuat eksekusi instruksi selesai dikerjakan dalam satu

atau dua siklus mesin, sehingga akan semakin cepat dan handal. Proses downloading

programnya relatif lebih mudah karena dapat dilakukan langsung pada sistemnya.

Sekarang ini, AVR dapat dikelompokkan menjadi 6 kelas, yaitu keluarga ATiny,

keluarga AT90Sxx, keluarga ATMega, keluarga AT90CAN, keluarga AT90PWM dan

AT86RFxx. Pada dasarnya yang membedakan masing-masing kelas adalah memori,

peripheral, dan fungsinya, sedangkan dari segi arsitektur dan instruksi yang

digunakan, mereka hampir sama. Sebagai pengendali utama dalam pembuatan robot

ini, digunakan salah satu produk ATMEL dari keluarga ATMega yaitu ATMega8535.

2.5.1 Arsitektur ATMega8535

Mikrokontroler ATMega8535 memiliki fitur-fitur utama, seperti berikut.

Saluran I/O sebanyak 32 buah yaitu Port A, Port B, Port C, dan Port D.

1. ADC 10 bit sebanyak 8 saluran.

2. Tiga unit Timer/Counter dengan kemampuan pembandingan.

3. CPU yang terdiri atas 32 buah register.

4. Watchdog Timer dengan osilator internal.

5. SRAM sebesar 512 byte.

(61)

7. Unit interupsi internal dan eksternal.

8. Port antarmuka SPI.

9. EEPROM sebesar 512 byte yang dapat diprogram saat operasi.

10. Antarmuka komparator analog.

11. Port USART untuk komunikasi serial.

Mikrokontroler AVR ATMega8535 merupakan mikrokontroler produksi

Atmel dengan 8 KByte In-System Programmable-Flash, 512 Byte EEPROM dan 512

Bytes Internal SRAM.AVR ATMega8535 memiliki seluruh fitur yang dimiliki

AT90S8535.Selain itu, konfigurasi pin AVR ATMega8535 juga kompatibel dengan

AT90S8535.

Diagram blok arsitektur ATMega8535 ditunjukkan oleh Gambar 2.11.

Terdapat sebuah inti prosesor (processor core) yaitu Central Processing Unit, di mana

terjadi proses pengumpanan instruksi (fetching) dan komputasi data. Seluruh register

umum sebanyak 32 buah terhubung langsung dengan unit ALU (Arithmatic and Logic

Unit). Tedapat empat buah port masing-masing delapan bit dapat difungsikan sebagai

masukan maupun keluaran.

Media penyimpan program berupa Flash Memory, sedangkan penyimpan data

berupa SRAM (Static Ramdom Access Memory) dan EEPROM (Electrical Erasable

Programmable Read Only Memory). Untuk komunikasi data tersedia fasilitas SPI

(Serial Peripheral Interface), USART (Universal Synchronous and Asynchronous

serial Receiver and Transmitter), serta TWI (Two-wire Serial Interface).

Di samping itu terdapat fitur tambahan, antara lain AC (Analog Comparator), 8

kanal 10-bit ADC (Analog to Digital Converter), 3 buah Timer/Counter, WDT

(Watchdog Timer), manajemen penghematan daya (Sleep Mode), serta osilator

internal 8 MHz. Seluruh fitur terhubung ke bus 8 bit. Unit interupsi menyediakan

sumber interupsi hingga 21 macam. Sebuah stack pointer selebar 16 bit dapat

(62)

Gambar 2.11 Arsitektur ATmega8535

Mikrokontroler ATMega8535 dapat dipasang pada frekuensi kerja hingga 16 MHz

(maksimal 8 MHz untuk versi ATMega8535L). Sumber frekuensi bisa dari luar

berupa osilator kristal, atau menggunakan osilator internal.

Keluarga AVR dapat mengeksekusi instruksi dengan cepat karena menggunakan

teknik “memegang sambil mengerjakan” (fetch during execution). Dalam satu siklus

(63)

2.5.2 Konfigurasi Pin

ATMega8535 terdiri atas 40 pin dengan konfigurasi seperti pada tabel 2.1.

Tabel 2.1 Deskripsi pin ATMega8535

Nama Pin Fungsi VCC Catu daya

GND Ground

Port A

(PA7..PA0)

Port I/O 8-bit dua arah dengan resistor pull-up internal.

Juga berfungsi sebagai masukan analog ke ADC (ADC0 s.d.

ADC7)

Port B

(PB7..PB0)

Port I/O 8-bit dua arah dengan resistor pull-up internal.

Fungsi khusus masing-masing pin :

Port Pin Fungsi lain

PB0 T0 (Timer/Counter0 External Counter Input)

PB1 T1 (Timer/Counter1 External Counter Input)

PB2 AIN0 (Analog Comparator Positive Input)

PB3 AIN1 (Analog Comparator Negative Input)

PB4 SS (SPI Slave Select Input)

PB5 MOSI (SPI Bus Master Output/Slave Input)

PB6 MISO (SPI Bus Master Input/Slave Output)

PB7 SCK (SPI Bus Serial Clock)

Port C

(PC7..PC0)

Port I/O 8-bit dua arah dengan resistor pull-up internal.

Dua pin yaitu PC6 dan PC7 berfungsi sebagai oscillator luar untuk

Timer/Counter2.

Port D

(PD7..PD0)

Port I/O 8-bit dua arah dengan resistor pull-up internal.

Fungsi khusus masing-masing pin :

Port Pin Fungsi lain

PD0 RXD (UART Input Line)

PD1 TXD (UART Output Line)

PD2 INT0 (External Interrupt 0 Input)

PD3 INT1 (External Interrupt 1 Input)

(64)

Output)

PD5 OC1A (Timer/Counter1 Output CompareA Match

Output)

PD6 ICP (Timer/Counter1 Input Capture Pin)

PD7 OC2 (Timer/Counter2 Output Compare Match Output)

RESET Masukan reset. Sebuah reset terjadi jika pin ini diberi logika

rendah melebihi periode minimum yang diperlukan.

XTAL1 Masukan ke inverting oscillator amplifier dan masukan ke

rangkaian clock internal.

XTAL2 Keluaran dari inverting oscillator amplifier.

AVCC Catu daya untuk port A dan ADC.

AREF Referensi masukan analog untuk ADC.

AGND Ground analog.

(65)

2.5.3 Peta Memori

Arsitektur AVR terdiri atas dua memori utama, yaitu Data Memori dan Program

Memori.Sebagai tambahan fitur dari ATMega8535, terdapat EEPROM 512 byte

sebagai memori data dan dapat diprogram saat operasi.

ATMega8535 terdiri atas 8K byte On-chip In-System Reprogrammable Flash

memori untuk penyimpan program. Karena seluruh instruksi AVR dalam bentuk 16

bit atau 32 bit, maka Flash dirancang dengan komposisi 4K × 16. Untuk mendukung

keamanan software atau program, Flash Program Memori dibagi menjadi dua bagian

yaitu bagian Boot Program dan bagian Application Program.Gambar 2.13

mengilustrasikan susunan Memori Program Flash ATMega8535.

Gambar 2.13 Peta memori program

Memori data terbagi menjadi 3 bagian, yaitu 32 buah register umum, 64 buah register

I/O, dan 512 byte SRAM Internal. Konfigurasi memori data ditunjukkan oleh gambar

(66)

Gambar 2.14 Peta memori data

2.5.4 Stack Pointer

Stack pointer merupakan suatu bagian dari AVR yang berguna untuk menyimpan data

sementara, variabel lokal, dan alamat kembali dari suatu interupsi ataupun subrutin.

Stack pointer diwujudkan sebagai dua unit register, yaitu SPH dan SPL.

Saat awal, SPH dan SPL akan bernilai 0, sehingga perlu diinisialisasi terlebih dahulu.

SPH merupakan byte atas (MSB), sedangkan SPL merupakan byte bawah (LSB). Hal

ini hanya berlaku untuk AVR dengan kapasitas SRAM lebih dari 256 byte. Bila tidak,

maka SPH tidak didefinisikan dan tidak dapat digunakan.

2.5.5 Komunikasi Serial Dengan Uart

AVR ATMega8535 memiliki 4 buah register I/O yang berkaitan dengan komunikasi

UART, yaitu UART I/O Data Register (UDR), UART Baud Rate Register (UBRR),

UART Status Register (USR) dan UART Control Register (UCR).

2.5.6 Timer ATMega8535

AVR ATMega8535 memiliki tiga buah timer, yaitu Timer/Counter0 (8 bit),

(67)

2.5.7 Interupsi

ATMega8535 memiliki 21 buah sumber interupsi. Interupsi tersebut bekerja jika bit I

pada Register status atau Status Register (SREG) dan bit pada masing-masing register

bernilai 1. Penjelasan sumber interupsi terdapat pada tabel 2.2

Tabel 2.2 Vektor interupsi ATMega 8535

No. Alamat Sumber Keterangan

1. 0x000 RESET Hardware Pin, Power-on Reset and

Watchdog Reset

2. 0x001 INT0 External Interrupt Request 0

3. 0x002 INT1 External Interrupt Request 1

4. 0x003 TIMER2 COMP Timer/Counter 2 Compare Match

5. 0x004 TIMER2 OVF Timer/Counter2 Overflow

6. 0x005 TIMER1 CAPT Timer/Counter1 Capture Event

7. 0x006 TIMER1 COMPA Timer/Counter1 Compare Match A

8. 0x007 TIMER1 COMPB Timer/Counter1 Compare Match B

9. 0x008 TIMER1 OVF Timer/Counter1 Overflow

10. 0x009 TIMER0 OVF Timer/Counter0 Overflow

11. 0x00A SPI, STC SPI Serial Transfer Complete

12. 0x00B UART, RX UART, RX Complete

13. 0x00C UART, UDRE UART, Data Register Empty

14. 0x00D UART, TX UART, TX Complete

15. 0x00E ADC ADC Conversion Complete

16. 0x00F EE_RDY EEPROM Ready

17. 0x010 ANA_COMP Analog Comparator

18. 0x011 TWI Two Wire Serial Interface

19. 0x012 INT2 External Interrupt Request 2

20. 0x013 TIMER0 COMP Timer/Counter Compare Match

Gambar

Gambar Rangkaian Keseluruhan
Gambar 3.2 Bentuk fisik MCB 1 phase
Gambar 3.3 Rangkaian Power Supply
Gambar 3.4 Rangkaian sensor arus ACS712
+7

Referensi

Dokumen terkait

Tujuan penelitian ini adalah untuk mengetahui Bagaimana Sistem Pemrosesan Transaksi ATM yang digunakan oleh PT Bank Rakyat Indonesia (Persero) Tbk Kantor Cabang Sibolga..

Pada saat petugas melakukan sensus, cukup membaca QR code tersebut dengan smart phone menggunakan aplikasi QR Code Reader, kemudian petugas dapat mengakses SIMBADA yang telah

Komunikasi interpersonal adalah komunikasi yang dilakukan kepada orang lain atau4. komunikasi yang dilakukan oleh dua orang

38 Dalam Kompilasi Hukum Islam pada pasal 113, disebutkan bahwa perkawinan dapat putus karena: (1) Kematian (2) Perceraian (3) Putusan Pengadilan Pada pasal

Revitalisasi dilakukan dengan cara mendeskripsikan mengenai sejarahnya dalang jemblung di Kabupaten Banyumas dan menampilkan kembali bentuk pertunjukan Dalang Jemblung yang meliputi

Langkah-langkah yang dilakukan pada tahap akhir antara lain: (1) Menghitung rata-rata hasil belajar Ilmu Pengetahuan Sosial tanpa penggunaan model pembelajaran

Tari Gambyong Tayub pertama kali dipentaskan dalam acara Pagelaran Seni Tayub Blora (Mustika Manis) yang diselenggarakan di kota Blora, oleh DPPKKI (Dinas Perhubungan,

Berdasarkan hasil penelitian yang dilakukan di kelas V Sekolah Dasar Negeri 15 Pontianak Selatan pada pembelajaran bahasa Indonesia, diadakan pertemuan dengan guru