• Tidak ada hasil yang ditemukan

ANALISIS DATA POLA PEMBELIAN KONSUMEN DE

N/A
N/A
Protected

Academic year: 2018

Membagikan "ANALISIS DATA POLA PEMBELIAN KONSUMEN DE"

Copied!
6
0
0

Teks penuh

(1)

1

M. Didik R. Wahyudi1) Fusna Failasufa2)

1) 2)

Teknik Informatika FST UIN Sunan Kalijaga

ABSTRAK. Data transaksi suatu supermarket, seperti Pamella supermarket, semakin hari semakin banyak dan bertambah. Data ini seringkali hanya disimpan tanpa diolah lebih lanjut, sehingga menjadi informasi yang sangat berguna bagi supermarket tersebut. Data transaksi yang hendak diolah, disimpan dalam data mining. Untuk mengetahui prilaku konsumen dalam membeli barang pada suatu supermarket, dapat dihasilkan dari pengolahan data transaksi harian yang diolah dengan menggunakan algoritma tertentu. Salah satu algoritma yang bisa dipergunakan adalah algoritma apriori. Algoritma apriori dapat dipergunakan untuk mengolah sekumpulan data (data mining) transaksi harian supermarket Pamella. Pengolahan untuk menganalisis pola pembelian konsumen Pamella Supermarket dapat dilakukan pada setiap cabang, sehingga dengan menerapkan metode tersebut, diharapkan dapat menghasilkan pola aturan asosiasi pembelian konsumen pada setiap cabang Pamella Supermarket. Dari pola yang dihasilkan tersebut kemudian dilakukan proses interpretasi menjadi sebuah informasi atau knowledge.

Kata Kunci : Data mining, Algoritma apriori, Analisis pola pembelian

1. PENDAHULUAN

Pertumbuhan data transaksi pada suatu supermarket semakin bertambah besar setiap hari.

Data transaksi tersebut seringkali hanya dipergunakan untuk mengolah data sirkulasi barang dan

dibiarkan menumpuk tanpa ada tindakan yang lebih lanjut. Dengan bertambahnya jumlah data

pada perusahaan tersebut, maka peran analis untuk menganalisis data secara manual perlu

digantikan dengan aplikasi yang berbasis komputer, sehingga proses analisa dan kualitas hasil

analisa dapat dilakukan lebih efektif da efisien. Analisis data transaksi ini dapat dilakukan

dengan cara implementasi data mining dengan algoritma apriori ke dalam aplikasi untuk analisis

pola pembelian konsumen di Pamella Supermarket. Dari analisis ini, akan diketahui pola

pembelian konsumen pada masing – masing cabang.

Data mining berisi pencarian trend atau pola yang diinginkan dalam database yang besar

untuk membantu pengambilan keputusan di waktu yang akan datang. KDD (Knowledge

Discovery in Database) adalah keseluruhan proses konversi data mentah menjadi pengetahuan

yang bermanfaat yang terdiri dari serangkaian tahap transformasi meliputi data preprocessing

dan postprocessing.

Algoritma apriori menggunakan strategi pemangkasan itemset dengan berbasis ukuran

(2)

Seminar Nasional Matematika, Sains dan Informatika 2015 2 Prosiding

ukuran support, support untuk itemset tidak pernah melebihi support subsetnya. Sifat seperti ini

dikenal dengan antimonotonic property dari ukuran support. Hal utama dalam teorema algoritma

Apriori menggunakan prinsip : “Jika sebuah itemset itu frekuen, semua subset dari itemset

tersebut pasti juga frekuen. Sebaliknya, jika sebuah itemset infrequent, maka semua transaksi

yang berisi itemset tersebut beserta supersetnya tentulah infrequent”.

2. METODEPENELITIAN

Penelitian ini menggunakan metode eksperimental dengan menerapkan algoritma apriori

ke dalam sistem serta menganalisis tren pembelian konsumen pada setiap supermarket dengan

karakteristik yang dimiliki pada ketiga supermarket tersebut. Tahapan yang dilakukan dalam

penelitian ini adalah sebagai berikut:

1. Seleksi Data (Data Selection). Pemilihan pada data mentah transaksi penjualan yang

diperoleh dari setiap cabang Pamella Supermarket yang akan digunakan dalam proses data

mining.

2. Preprocessing/Cleaning Data. Data yang diambil dilakukan proses preprocessing dan

cleaningyang meliputi pembuangan duplikasi data, memperbaiki kesalahan cetak pada

data, serta melengkapi value yang masih kosong, serta penambahan field yang diperlukan.

3. Transformation. Proses transformasi data melalui preprocessing/cleaning sehingga

menghasilkan data yang siap diolah dengan data mining.

4. Data Mining. Data siap diolah dan diproses dengan data mining untuk pencarian pola

menggunakan algoritma apriori, sehingga akan menghasilkan pola pembelian konsumen

yang akan menjadi acuan untuk proses interpretation/evaluatin.

5. Interpretation/Evaluation. Pola yang dihasilkan dari proses data mining akan

diinterpretasikan menjadi sebuah informasi atau bahkan pengetahuan (knowledge).

3. HASILPENELITIANDANPEMBAHASAN

Proses penelitian dilaksanakan dengan tahapan sebagai berikut :

1. Seleksi Data. Data transaksi penjualan diperoleh dalam format excel kemudian di

(3)

Seminar Nasional Matematika, Sains dan Informatika 2015 3 Prosiding

2. Preprocessing/Cleaning. Proses membuang data yang terduplikasi serta melengkapi

data-data yang masih kosong. Diperoleh data-data transaksi penjualan seperti berikut :

Tabel 1 : Perbandingan data sebelum dan sesudah preprocessing

No Cabang Pamella Sebelum Preprocessing Sesudah Preprocessing

1. Pamella1 24.679 record 18.563 record dengan jumlah transaksi 2.272 dan 5.712 data barang

2. Pamella4 9.693 record 6.185 record dengan jumlah transaksi 1.388 dan 3.278 data barang

3 Pamella6 16.417 record 11.557 record dengan jumlah transaksi 1.887 dan 5.173 data barang

3. Transformation. Data di import ke dalam database dan dipecah menjadi data transaksi

penjualan dan data master barang.

4. Proses Data Mining. Data diolah dengan algoritma apriori. Proses ini menghasilkan rule

atau aturan asosiasi pada setiap cabang Pamella Supermarket sebagai berikut

Tabel 2 : Perbandingan jumlah kandidat 1-itemset pada setiap cabang Pamella Supermarket

Pada tabel di atas ditunjukkan bahwa Pamella Supermarket 1 menghasilkan kandidat

1-itemset paling banyak diantara ketiga cabang yang lain. Berikut ini hasil pengolahan data

untuk kandidat1-itemset tertinggi yang disajikan pada tabel 3 berikut ini :

Tabel 3 : Perbandingan kandidat 1-itemset pada setiap cabang Pamella Supermarket

Cabang Kandidat 1-itemset tertinggi Suppport (%)

Pamella Supermarket 1 Indomie goreng special 5,9

Pepsodent pg white 75 gr 3,26

Multi roll tom 02 3,21

Gula pasir 1kg 3,08

Sedaap mie goreng 3,08

Pamella Supermarket 4 Indomie goreng spc 2,59

Sedaap mie goreng 2,16

Beras kiloan 1,87

Pepsodent white 75 gr 1,8

Gula 1 kg 1,66

Pamella Supermarket 6 Indomie goreng special 5,25

Sedap mie goreng 2,28

Multi grafis refill mp-01/40 2,01

Sunlight pouch lime 800 ml 2,01

Gula ½ kg putih 1,85

Support (%) Pamella Supermarket 1 Pamella Supermarket 4 Pamella Supermarket 6

1,5 27 8 11

1,8 22 4 6

2 17 2 4

(4)

Seminar Nasional Matematika, Sains dan Informatika 2015 4 Prosiding

Dari tabel di atas dapat dilihat bahwa pada semua cabang Pamella Supermarket, item

INDOMIE GORENG SPECIAL adalah merupakan item yang paling sering dibeli oleh

konsumen. Pada Pamella Supermarket 1, item yang paling sering dibeli selanjutnya adalah

PEPSODENT PG WHITE 75 GR, sedangkan untuk Pamella Supermarket 4 dan Pamella

Supermarket 6 item yang paling sering dibeli selanjutnya adalah SEDAAP MIE GORENG.

Berikut ini data hasil pengolahan untuk kandidat 2-itemset pada masing-masing Cabang

Pamella Supermarket :

Tabel 4. Kandidat 2-itemset tertinggi pada masing-masing cabang Pamella Supermarket

Cabang Kandidat 2-itemset tertinggi Suppport (%)

Pamella Supermarket 1

Indomie goreng special, indomei ayam bawang 1,232

Indomie goreng special, lifebuoy soap lemon fresh 80 gr 0,572

Indomie goreng special, indomie goreng pedas 0,572

Indomie goreng special, selection kapas 35 gr 0,528

Indomie goreng special, gula pasir 0,5 gr 0,528

Pamella Supermarket 4

Sedaap mie goreng, sedaap mie ayam bawang 0,36

Pepsodent white 75 gr, gula ½ kg 0,288

Indomie goreng spc, pepsodent white 75 gr 0,216

Indomie goreng spc, sedaap mie goreng 0,144

Indomie goreng spc, beras kiloan 0,144

Pamella Supermarket 6

Indomie goreng special, indomie ayam bawang 1,166

Indomie goreng special, indomie soto mie 1,113

Indomie goreng special, sunlight pouch lime 800 ml 0,689

Sunlight pouch lime 800 ml, pepsodent white 190 gr 0,477

Indomie goreng special, multi grafis refill mp-01/40 0,424

Dari kandidat 2-itemset diatas dapat dihasilkan rule atau aturan asosiasi yang merupakan

pola pembelian konsumen pada setiap cabang Pamella Supermarket sebagai berikut :

Tabel 5 : Hasil pembangkitan Aturan Asosiasi /pola pembelian konsumen pada setiap

cabang dan nilai confidence-nya

Cabang Kandidat 2-itemset tertinggi Confidence(%)

Pamella Supermarket 1

Indomei ayam bawang=> indomie goreng special 60,87

Indomie goreng pedas =>indomie goreng special 27,08

Lifebuoy soap lemon fresh 80 gr=>indomie goreng special, 26,53

Selection kapas 35 gr=> indomie goreng special 21,05

Gula pasir 0,5 gr=> indomie goreng special 21,05

Pamella Supermarket 4

Sedaap mie ayam bawang =>sedaap mie goreng 22,73

Gula ½ kg=> pepsodent white 75 gr 18,18

Sedaap mie goreng=>sedaap mie ayam bawang 16,67

Pepsodent white 75gr=> gula ½ kg 16

Gula ½ kg=>sedaap mie ayam bawang 9,09

Pamella Supermarket 6

Indomie ayam bawang=> indomie goreng special 73,33

Indomie soto mie=> indomie goreng special 67,74

Sunlight pouch lime 800 ml=> indomie goreng special 34,21

Pepsodent white 190 gr=> sunlight pouch lime 800 ml 29,03

Sunlight pouch lime 800 ml=> pepsodent white 190 gr 23,68

(5)

Seminar Nasional Matematika, Sains dan Informatika 2015 5 Prosiding

Dari pengujian setiap cabang Pamela Supermarket, menghasilkan aturan sebagai berikut :

1. Untuk pamella Supermarket 1

Itemset tertinggi adalah INDOMIE GORENG SPESIAL, INDOMIE AYAM BAWANG

dengan nilai support 1,232%. Artinya 1,232% dari seluruh transaksi mengandung

pembelian dengan item INDOMIE GORENG SPESIAL dan INDOMIE AYAM

SPECIAL. Aturan asosiasi dengan nilai confidence tertinggi adalah INDOMIE AYAM

BAWANG => INDOMIE GORENG SPECIAL dengan nilai confidence 60,87%, yang

artinya sebanyak 60,87% konsumen yang membeli INDOMIE AYAM BAWANG juga

membeli INDOMIE GORENG SPECIAL.

2. Untuk Pamella Supermarket 4

Itemset tertinggi adalah SEDAAP MIE GORENG, SEDAAP MIE AYAM BAWANG

dengan nilai support 0,36%. Artinya 0,36% dari seluruh transaksi mengandung pembelian

dengan item SEDAAP MIE GORENG dan SEDAAP MIE AYAM BAWANG. Aturan

asosiasi dengan nilai confidence tertinggi adalah SEDAAP MIE AYAM BAWANG =>

SEDAAP MIE GORENG dengan nilai confidence 22,73%, yang artinya sebanyak 22,73%

konsumen yang membeli SEDAAP MIE AYAM BAWANG juga membeli SEDAAP MIE

GORENG.

3. Untuk Pamella Supermarket 6

Itemset tertinggi adalah INDOMIE GORENG SPECIAL, INDOMIE AYAM BAWANG

dengan nilai support 1,166%. Artinya 1,166% dari seluruh transaksi mengandung

pembelian dengan item INDOMIE GORENG SPECIAL dan INDOMIE AYAM

BAWANG. Aturan asosiasi dengan nilai confidence tertinggi adalah INDOMIE AYAM

BAWANG => INDOMIE GORENG SPECIAL dengan nilai confidence 73,33%, yang

artinya sebanyak 73,33% konsumen yang membeli INDOMIE AYAM BAWANG juga

membeli INDOMIE GORENG SPECIAL.

Hasil interpretasi knowledge yang diperoleh dari pola pembelian konsumen di atas adalah :

1. Pola pembelian ketiga cabang Pamella Supermarket tidak jauh berbeda. Hal ini dapat

dilihat dari aturan-aturan yang dihasilkan. Dari ketiga cabang Pamella Supermarket,

pola yang paling banyak dihasilkan adalah pola pembelian untuk pembelian MIE

(6)

Seminar Nasional Matematika, Sains dan Informatika 2015 6 Prosiding

2. Item yang sering dibeli oleh konsumen pada semua cabang Pamella Supermarket

adalah INDOMIE GORENG SPECIAL, sehingga persediaan/stok barang untuk item

tersebut harus paling banyak daripada stok Mie untuk jenis lain.

3. Untuk pola yang mempunyai nilai confidence tinggi, bisa dijadikan sebagai sarana

paket promo untuk dua item yang bersamaan. Misalnya, untuk rule/pola INDOMIE

AYAM BAWANG => INDOMIE GORENG SPECIAL, bisa menggabungkan kedua

item tersebut menjadi suatu paket promo dengan harga promosi.

DAFTAR PUSTAKA

Azmi, K. N. 2012. Data Mining Menggunakan Algoritma Agglomerative Hierarchical

Clustering dan Algoritma Apriori pada Data Transaksi Swalayan. Skripsi. UGM

Yogyakarta.

Dewantara, H. 2013. Perancangan Aplikasi Data Mining Algoritma Apriori untuk Frekuensi

Analisis Keranjang Belanja pada Data Transaksi Penjualan. Skripsi. Universitas

Brawijaya Malang.

Gunadi, G. (2012). Penerapan Metode Data Mining Market Basket Analysis terhadap Data

Penjualan Buku dengan Menggunakan Algoritma Apriori dan Frequent Pattern Growth

(FP-Growth). Jurnal. Telematika MKOM .

Hermawati, F. A. (2013). Data Mining. Penerbit ANDI Yogyakarta.

Kusrini, & Luthfi, E. T. 2009. Algoritma Data Mining. Penerbit ANDI Yogyakarta.

Moertini, V. 2002. Data Mining sebagai Solusi Bisnis. Penelitian Staf Pengajar Jurusan Ilmu

Komputer Universitas Katholik Parahyangan Bandung .

Olson, D., & Shi, Y. (2008). Pengantar Ilmu Penggalian Data Bisnis. Salemba Jakarta.

Prasetyo, E. (2012). Data Mining Konsep dan Aplikasi Menggunakan Matlab. Penerbit ANDI

Yogyakarta.

Gambar

Tabel 3 : Perbandingan kandidat 1-itemset pada setiap cabang Pamella Supermarket
Tabel 4. Kandidat 2-itemset  tertinggi pada masing-masing cabang Pamella Supermarket

Referensi

Dokumen terkait

Bisnis ke konsumen dalam e-commerce merupakan suatu transaksi bisnis secara elektronik yang dilakukan pelaku usaha dan pihak konsumen untuk memenuhi suatu kebutuhan tertentu

Terdapat beberapa faktor yang dapat mempengaruhi konsumen dalam keputusan pembelian pada suatu supermarket atau toko dianalisis melalui lokasi, harga, kelengkapan

Data yang diperoleh diolah secara deskriptif untuk mengetahui karakteristik konsumen dan perilaku konsumen dalam proses pembelian minuman isotonik Fatigon Hydro, kemudian

Keputusan pembelian adalah sebuah tindakan yang dilakukan konsumen untuk membeli suatu produk. Biasanya konsumen selalu mempertimbangkan kualitas, harga produk

penjualan barang atau layanan secara langsung kepada konsumen akhir, yang.. membeli untuk kebutuhan pribadi tidak

Tujuan dari jurnal ini ialah untuk mendapatkan suatu informasi mengenai pola pembelian konsumen yang dimana informasi tersebut ditujukan untuk membantu owner dalam membuat

kepentingan yang berbeda. Dengan mengetahui sikap konsumen, perusahaan dapat mengetahui sejauh mana pengaruh sikap terhadap keputusan konsumen untuk membeli suatu

• Hornby: “ Konsumen consumer adalah seseorang yang membeli barang atau menggunakan jasa” “Seseorang atau suatu perusahaan yang membeli barang tertentu atau menggunakan jasa tertentu”