• Tidak ada hasil yang ditemukan

Remediation of hexavalent chromium from

N/A
N/A
Protected

Academic year: 2018

Membagikan "Remediation of hexavalent chromium from"

Copied!
7
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Remediation

of

hexavalent

chromium

from

aqueous

solution

using

clay

mineral

Fe(II)–montmorillonite:

Encompassing

anion

exclusion

impact

Mirle

Vinuth

a

,

Halehatty

Seethya

Bhojya

Naik

a,∗

,

Jayappa

Manjanna

b

aDepartmentofIndustrialChemistry,KuvempuUniversity,Shankaraghatta577451,India bDepartmentofChemistry,RaniChannammaUniversity,PBNH-4,Belagavi591156,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16May2015 Receivedinrevisedform 14September2015 Accepted19September2015 Availableonline25September2015

Keywords:

Hexavalentchromium Remediationbyreduction Fe(II)–montmorillonite Anionexclusionimpact

a

b

s

t

r

a

c

t

Wehaveexploredthehighlyefficientandenvironmentallybenignclaymineral,Fe(II)–montmorillonite, forthereductionofCr(VI)inaqueoussolution.Fe(II)–MtwastreatedwithK2Cr2O7solutionatdifferent

pH,temperatureandsolid-to-liquidratio.The[Cr2O7]2−wasestimatedbyUV–visspectrawitha

correc-tionforanionexclusionimpact.Ingeneral,theCr(VI)reductionwasrapidatacidicpHandincreasedwith temperatureupto50◦C.Acompletereductionoccurredinabout5minatpH3–5.Thetimetakenfor

completereductionat0◦C,RT(30C)and40Care12min,8minand5min,respectively.The

reduc-tionfollowedbyimmobilizationofCr(III)onthespentclaymineralwaswellcharacterizedbyEDX andchemicalextractionanalysis.Thisremediationprocesscouldbeeasilyscaled-upforrealsystem applications.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Chromiumisanextensivelyusedinvariousindustriessuchas steel,paint,leatherand ceramics.It exitsat highconcentration in theeffluents ofelectroplating, chromiumtanning and paper industries[1].Thehexavalentstateofchromiumisawellknown carcinogenicelementwhichishighlytoxic,solubleandmobile;this wascommonlyfoundinsoilandwastewaterreleasedfromvarious industries.

The Cr(VI) is highly toxic to humans, animals, plants and microorganismsandis associatedwiththedevelopmentof var-iouschronichealthdiseasesincludingorgandamage,dermatitis andrespiratoryimpairment[2].ItiswellknownthatCr(VI)ismore toxicthanCr(III)asitleadstocancerandkidneydamagebecause ofitshighoxidizingpotential,anditcaneasilypenetrate biologi-calmembranes[3].Giventhepotentialmagnitudeoftheproblem, itisobviousthatCr(VI)contaminationofsurfaceorgroundwater possessasignificantthreattohumanhealthandtheenvironment

[4].

Theremediationbyreduction,Cr(VI)→Cr(III),isthepotentially

usefulprocesstocleanupthecontaminatedsitesbecauseCr(III)is lesstoxicandcanbeimmobilizedwithsolidphase[5]andbecame

∗Correspondingauthor.

E-mailaddress:hsbnaik@rediffmail.com(H.S.BhojyaNaik).

bioavailabletomicroorganismsandplants.Accordingly,Fe(II) con-tainingoxidesurfaceslikeFe3O4,mixedferrites,etc.arecommonly

usedforthereduction/immobilization.Recently,the biogeochem-icaltransformationi.e.,Cr(VI)reductionbythenaturallyoccurring bacteria,is alsobeing explored[6–9]. In mostof thereduction processes,thekineticsofCr(VI)reductionwasnotonlyslowbut stoichiometricallyinefficientduetothelackoffreshreactivesites and/ordiffusioncontrolledpathwaysforreactants[10–15].Inthe literature,H2S[15,16],SO2[11],H2O2[17],ferrousiron[13,18]are

reportedforthechemicalreductionofCr(VI)→Cr(III).TheSO2and

H2S,themselvesshowtoxicityandcreateadditional

environmen-talproblems.Ontheotherhand,ferrousironandglycerolarenot effectiveinbasicmedium[2].

Carbonaceousadsorbentssuchasactivatedcarbonsand oxi-dized activatedcarbons arealsoused fortheremoval ofCr(VI) ions[19,20]becausetheyarecheap,corrosionresistantandhave shownenhancedadsorptioncapacityforheavymetals.However, theprobleminutilizingthesematerialsistheirseparationby con-ventionalmethodssuchasfiltrationandcentrifugation,whichare timeconsumingandlikelytoloseadsorbentsinsmallamounts[20]. Cr(VI) reduction is also reported by using magnetite, Fe3O4

[21], green rust [22,23], ferrous sulfate–sodium dithionite[24], granularzero-valentiron,ZVI[25–28]andnanoscaleZVI[29,30]. Although these heterogeneous reductants provide high surface areaforadsorptionandprecipitation,theseareeffectiveonlyin lowerpH[31]andmaynotbesuitableforrealsystemapplications

(2)

Fig.1.Schematicdiagramof2:1dioctahedralsmectiteclaymineral,whereMn+ indicatestheinterlayer/exchangeablecation,fore.g.,Fe2+ionsinFe(II)–Mt.

suchaswaterandsoiltreatmentswhereinlargeamountsofthese adsorbents/reductantsarerequired.Therefore,itisimperiousto lookforeffectivereductantand/oradsorbentforCr(VI)inthewide rangeofpHandtemperature.Accordingly,wehaveexploredthe useofFe-basedclaymineralforreductionandimmobilizationof Cr(VI),andwasfoundtobehighlyeffectiveandfeasibleintermsof stoichiometryandreactionkinetics.

Claymineralsareimportantclassofmaterialswhicharereadily availableinnature.Theseare usedasverygood adsorbentsfor toxicelementssuchasarsenate[32,33],decolourationagents,ion exchangers,molecularsieves,catalystsandalsousedinbrick man-ufacturingindustries[34,35].Therearefewreportsonnaturaland modifiedclaymineralsusedforCr(VI)reduction[36–41]. More-overTunisianclay,ElHariaclayandraw/aluminumpillaredclays areusedforremovaltoxicelementslikePb2+,As(III),Cu2+andHg2+

ionsinaqueoussolutionthrough adsorptionprocesses[42–45]. Eloussaiefetal.haveinvestigatedtheefficiencyofthreedifferent claymaterialssuchasraw,acid-activatedandaluminum-pillared Tunisiansmectite(RSM, ASM, andAl-SM)for theadsorptionof Pb(II),Zn(II)andCd(II)insingleandmulti-elementsystems[46]. Fromthe aboveexperimentalresults revealedthat natural and modifiedclaymineralsactaseffectiveadsorbentforremovalof toxicelementsinaqueoussolution.

Montmorillonite(Mt)isa2:1dioctahedralsmectitegroupclay mineralhavingalayeredstructure,Fig.1.Theoctahedralalumina sheetissandwichedbetweentetrahedralsilicatesheets.The neg-ativechargeiscreatedontheclaymineralduetotheisomorphic substitutionintheoctahedralsites(byMg,Fe,andTi)and tetra-hedralsites(byAl,Fe).Suchapermanentnegativelayerchargeis balancedbyexchangeablecationslikeCa2+,Na+,etc.atthe

inter-layer.Thus, thecation exchange capacity (CEC)of clay mineral dependsonthenetelementalcomposition,whichvarieswiththe geographicalavailabilityintheenvironment.

Thepropertiesand usesofthis claymineralcanbemodified notonlybyalteringthestructuralFe(II)/Fe(III)ratio[36],butalso byreplacingtheinterlayercationswithavarietyofinorganicand organic cations [32,33]. Further, the availability as wellas the amountand/oraccessofstructuralFe(II)forredoxreactionsisvery limited.ThereforeitisrationaltomakeuseofFe(II)–Mt,i.e.,the redoxsensitiveFe(II)ionsplacedintheinterlayerofclaymineral toaugmenttherealfieldapplications.Hence,itispossibletomake useofsuchanimportantredoxsensitiveclaymineralforthe reduc-tionofCr(VI).Thus,inthepresentstudy,Fe(II)–Mtisusedasan effectivereductantforCr(VI)inaqueoussolutionfollowedbyits immobilization.Thereductionreactionwascarriedoutat differ-entpHandtemperaturebyvaryingtheamountofFe(II)–Mt.Anion exclusionimpactencounteredinthisstudyisalsoinvestigated.

2. Materialsandmethods

Na-montmorillonite (Kunipia F, Japan) with a CEC of about 113meq/100g having approximate chemical com-position, (Na0.431K0.002Ca0.002) (Al1.56Mg0.305Fe0.099Ti0.007)oct

(Si3.949Al0.051)tetO10(OH)2nH2Oisusedhere[47].Aqueous

solu-tionofK2Cr2O7waschosenasthemodelhexavalentchromium

contaminant. Double distilled water was used throughout this study.TheconcentrationofCr(VI)wasestimatedfromitsoptical densityatmax=350nmusingUV-Visspectrophotometer.

2.1. PreparationofFe(II)–Mt

Inthefirststep,Fe(III)–Mtwasobtainedbythecationexchange ofaboverawclaymineralin0.4MFeCl3solution.SuchanFe(III)–Mt

wastreatedwithascorbicacidtoreduceinterlayerFe(III)toFe(II) ions[47].Forcomparison,Na(I)–andCa(II)–Mtwerealsoprepared bytheconventionalcationexchangemethodwith1Msolutionsof NaClandCaCl2,respectively.

In order to estimate theinterlayer iron, Fe(II)–Mt was sub-jectedforcationexchangewith0.05MH2SO4forabout24h.The

ratioofferroustoferricions(Fe2+/Fe

totalwhereFetotal=Fe2++Fe3+)

released was determined by 1,10-phenanthroline method [48]

usingUV-Visspectrophotometer(max=510nm).

The X-ray diffraction pattern (XRD) of the samples were recordedusingD2phaserXRD(BrukerAXSGmbH,Germany)with Ni-filteredCuK␣radiation,=1.5417nm.Infraredspectraofthe

sampleswererecorded byKBrpelletmethodusingIRanalyzer (FT-IR8600PC,ShimadzuCorporation,Japan).Themicrographsof freshly prepared and spent Fe(II)–Mt was recorded using field emissionscanningelectronmicroscope(NovaNanoSEM600,FEI Company,Netherlands)alongwithenergydispersiveX-ray(EDX) analysisforelementalcomposition.

2.2. ReductionofCr(VI)Cr(III)byFe(II)–Mtinaqueoussolution

In a typical stoichiometric case, freshly prepared Fe(II)–Mt (0.35g)wasaddedtotheK2Cr2O7solution(1mM,100mL)andkept

stirringmagnetically.Thereactionswerealsocarriedoutat differ-entsolid-to-liquidratio,pH(adjustedwithdil.HClandNaOH)and temperature.Thereactionmixturewaswithdrawnperiodicallyby usingsyringetubeandthenfilteredthrough0.2␮mmembrane

fil-tertoremovedispersedclayparticles.Thedecreaseinthe[Cr(VI)] concentrationwasestimatedfromitsopticaldensity.Itis impor-tanttonotethattheabsorbancevaluesherewerecorrectedfor anionexclusionimpacti.e.,equivalenttothatobservedwithtypical divalentclaymineral,Ca(II)–Mt(obtainedinaseparateexperiment withidenticalconditions).ThedecreaseinK2Cr2O7concentration,

duetoreductionofFe(II)–Mt,wasexpressedhereintermsof% reductionasfunctionoftime.

ThespentoroxidizedFe(II)–Mtwasseparatedby centrifuga-tion,washedthoroughlywithwater andvacuumdried atroom temperature for further characterization using FESEM/EDX and FT-IR.Theadsorbed(immobilized)chromiumonspent/oxidized Fe(II)–Mtwasextractedusingdifferentreagentsviz.,0.05MH2SO4,

0.5M(NH)4C2O4,1MNaCl,0.05MNa2EDTA.Ineachcase,aknown

amount(≈0.2g)ofthespent/oxidizedFe(II)–Mtwasdispersedin

50mLofreagentsfor24h.Aftertheextraction, thesupernatant liquid,filteredthrough0.2␮mmembranefilter,wasanalyzedfor

chromiumbyinductivelycoupledplasmaopticalemission spec-troscopy(ICP-OES;PerkinElmer,Optima-7000DV,USA).

3. Resultsanddiscussion

3.1. FormationofFe(II)–Mt

The ratio of ferrous to ferric ions (Fe2+/Fe

total where

Fetotal=Fe2++Fe3+)releasedfromthefreshlypreparedFe(II)–Mt

oncationexchangewith0.05MH2SO4 wasfoundtobecloseto

(3)

10 20 30

Fig.2. PowderXRDpatternsofFe(II)–MtincomparisonwithCa(II)–andNa(I)–Mt atrelativehumidityof40%.

500 1000 1500 2000 2500 3000 3500 4000

Fig.3.FT-IRspectraoffreshlypreparedFe(II)–MtcomparedwithNa(I)–Mtaswell asspent/oxidizedFe(II)–Mt.

tobe97meq/100g.InadditiontotheXRDandFT-IRresultsalso confirmedtheformationofFe(II)–Mt.

TheXRDpatternsofFe(II)–MtincomparisonwithCa(II)–Mtand Na(I)–Mtatrelativehumidity(RH)of40%isshowninFig.2.The basalspacing(d001)areasfollows: Fe(II)–Mt,15.2 ˚A;Ca(II)–Mt,

14.9 ˚A and Na–Mt, 12.1 ˚A. It is clear that the divalent cation exchangedclaymineralsshowedhigherd001 duetolargerlayer

ofhydrationwhencomparedtomonovalentcationexchangedclay mineral.Thesevaluesareingoodagreementwiththepreviously reportedvalues[49,50].

AsshowninFig.3,theFT-IRspectraoffreshlypreparedFe(II)–Mt issimilartothatofNa(I)–Mt.Thebasicstructureofclaymineral hasnotundergoneanychanges.Forinstance,thebendingvibration bandsat∼520cm−1forSi O Al,and920cm−1forAl2OHareintact.

HoweverthestretchingvibrationsofSi Ogroup∼1046cm−1are

slightlybroadened.Thevibrationbandsat1628cm−1corresponds

500

Fig.4.UV–visabsorptionspectraofK2Cr2O7solutionwithandwithoutCa(II)–Mt andFe(II)–Mt[theanionexclusionimpactisclearlyseenwithCa(II)–Mt].

toadsorbedwaterand3429cm−1forwaterpresentatthe

inter-layer.

3.2. Cr(VI)reductionbyFe(II)–Mt

3.2.1. Anionexclusionimpact(AEI)

Itiswell-establishedthatthepermanentnegativelycharged lay-eredclaymineralsuchasmontmorillonite exhibitstronganion exclusion impact(AEI).Theseeffects have animportantimpact on the adsorption and diffusion of anion. The diffusion of Cl−

ionsin compactedmontmorillonite hasbeenstudiedfor better understandingandmodelingofengineeredbarriersystemforthe geologicaldisposalofnuclearwaste[51].Inviewofthis,ithasbeen suggestedtocorrecttheAEIforCr2O72−ionstoarriveattheproper

reductionlevelofhexavalentchromiumbyFe(II)–Mt.Hence,we treatedatypicaldivalentcation-exchangedclaymineral,Ca(II)–Mt withK2Cr2O7solutionunderidenticalconditionbeforesubjecting

theactualclaymineral,Fe(II)–Mt.AsshowninFig.4,theoverall absorptionvalueofK2Cr2O7solutionhasincreasedsignificantlyin

presenceofCa(II)–Mt(OD:1)whencomparedtoabsorption spec-traofK2Cr2O7solutionalone(OD:0).InthepresenceofFe(II)–Mt,

althoughasimilarAEIis applicable,wecouldseea decreasein absorbancevalue(OD:2)ofK2Cr2O7 solutionduetoredox

reac-tion(Cr6++3Fe2+

→Cr3++3Fe3+).However,theabsorbancevalue

herehasbeeninfluencedbytheAEI.Inordertoobtaintheactual decreaseinabsorbancevaluewithFe(II)–Mt,wemustsubtractby avaluewhich isequaltothatenhanced valueobservedin case ofCa(II)–Mt.ItisimportanttonotethattheAEIvariedwith dif-ferentparametersviz.,contacttime,pH,solid-to-liquidratioand temperature.Thereforehere,alltheabsorptionvalueshavebeen correctedusingthecorrespondingOD:1andOD:2valueswhilethe OD:0remainedalmostthesame.

3.2.2. Effectofstoichiometryonredoxreaction

Fig.5(a–c)showsthe%reductionof[Cr2O7]2−atdifferentpHas

afunctionoftimefordifferentsolid-to-liquidratioviz.,(a)oxidant andreductantareinstoichiometricamounts,(b) reductantisin excessand(c)oxidantinexcess.Ingeneral,[Cr2O7]2−reduction

(4)

0 5 10 15 20 25 120 150 180

Reductant & oxidant are in stoichiometric amounts

i.e. [Fe(II)-mont] : [Cr2O72-]

Fig.5. ReductionofCr(VI)by(a)stoichiometricamountofFe(II)–Mtatdifferent pH.(b)ExcessamountofFe(II)–MtatpH5and6.(c)Sub-stoichiometricamountof Fe(II)–MtatpH5and6.

Itiswell-knownthatthepHhasasignificanteffectontheCr(VI) reduction.Forinstance,Xiang-Rongetal.[2]haveshownthatthe reductionofCr(VI)byascorbicacidunderacidicpHisfasterthanin neutralpHandslowerinalkalinepH.Asimilarlyobservationwas madeforCr(VI)reductionusingmagnetite[52].Therewas>90% removalofCr(VI)bymagneticnanoparticlesatpH2–4whereasit was55%atpH4–7andonly40%atpH7–10[53].Usingnanoscale zerovalentironsupportedonmesoporoussilica(nZVI@MCM-41)

[54],acompletereductionwasachievedatpH3inabout9hand itwasdecreased to50%atpH5.Butatneutral andhigher pH,

0 2 4 6 8 10 12 14 16

Stoichiometric amounts of reductant & oxidant @ pH = 5

i.e. [Fe(II)-mont] : [Cr2O72-]

Fig.6.ReductionofCr(VI)atpH5by(a)stoichiometricamountofFe(II)–Mtat differenttemperatures.(b)ExcessamountofFe(II)–Mtat0◦CandRT.(c)

Sub-stoichiometricamountofFe(II)–montat0◦CandRT.

therewasnoreductionofCr(VI)usingnZVI@MCM-41. Bentonite-supportednZVIisalsousedforremovalCr(VI)fromwastewater.At pH2,almostcompletereductionoccurredwithinonemin,butat pH8only27%reductionwasobservedevenafter20min[40]. How-ever,inthepresentstudy,wecouldobtainasignificantreduction ofCr(VI)evenatpH8.

Kaduetal.[55]havereportedtheremediationofCr(VI)from simulated water streams using Fe–Ni bimetallic nanoparticles (Fe–NiNPs)andtheirnanocompositespreparedwith montmoril-loniteclay.Batchexperimentswitha25mgL−1Cr(VI)solutionand

(5)

10minthatfollowedfirstorderreactionkinetics. Amongst25%, 50%,75%in situ andloadednanocomposites, 75%compositions showedbetteractivitywithenhancedreductioncapacitybelowpH 4duetothegenerationofreactiveH•species.

Among the clay minerals used for Cr(VI) reduction, Fe(II)-bearingphyllosilicatessuchasiron-richmontmorillonite,chlorite andaregularlyinterstratifiedchlorite-smectite(corrensite)have beenstudiedatacidicpH3[37].Chloriteandcorrensite,owingto thetheirhighFe(II)/Fe(III)ratio,showedrapidreductionofCr(VI). TheoxidationofstructuralFe(II)toFe(III)wasconfirmedbyFe K-edgechangesintheX-rayabsorptionspectra.Similarly,iron-rich claymineral(ferroussaponitefromDeccanregionofIndia)was showntoreduceCr(VI)gradually[38].Therearenotmanyreports onnaturalormodifiedclaymineralsforCr(VI)reduction.Further, theavailabilityaswellastheamountand/oraccessofstructural Fe(II)forredoxreactionsisverylimited.Hence,thisstudyishaving agreatsignificancebecauseFe(II)–Mtcouldbepreparedinlarge amountstoaugmenttherealfieldapplications.

AlthoughtherewasstoichiometricallylessamountofFe(II)–Mt (0.2g≈65%)inFig.5c,itisinterestingtoseeacomplete

reduc-tionofCr(VI)inabout30min.Thismustbeduetothedifference intheabsorptionvaluewhilecorrectingtheAEIbecausetheentire Fe(II)–Mtisconsumed(oxidized)within30min,therebyceasing theAEIvalueclosetozero.Therearesomereports onthe sol-ventextractionofCr(VI)withtetrabutylammoniumbromidefrom aqueoussolution[56]whichshowedthattheefficiencydecreased considerablywithincreasingpHandceasedtozeroatpH∼6.

How-ever,inthepresentstudyweseetheefficientreductionofCr(VI) evenatnearneutralpH.

3.2.3. EffectoftemperatureonCr(VI)reductionbyFe(II)–Mt

ThereductionofCr(VI)byFe(II)–Mtwascarriedoutindifferent temperatures(0–50◦C)atpH5,Fig.6(a–c).Ingeneral,theCr(VI)

reductionincreasedwithtemperatureupto40◦C.Thetimetaken

forcompletereductionat0◦C,RT(30C)and40Care12min,8min

and5min,respectively.Whentherewasanexcessof Fe(II)–Mt (Fig.6b),ittookjust3minforcompleteCr(VI)reductionat0◦Cand

RT.However,whenFe(II)–Mt(Fig.6c)wasstoichiometricallyless, atRTittookabout40minforcompleteCr(VI)reductionwhereas at0◦C,thereductionwasabout95%evenafter1h.

Xiang-Rong et al. [2] have reported that the temperature dependentreduction of Cr(VI) byascorbic acidin the range of 5–40◦CatpH7took30minforcompletion.Asignificanteffecton

thereductionofCr(VI)wasobservedwhenthetemperaturewas 5–25◦C.InvitrostudiesofCr(VI)reductionbycellfreeextracts

ofchromate-reducingbacteriahaveshownthemaximum reduc-tionatambienttemperature,28◦C[57].Bentonite-supportednZVI

Table1

AmountsofFeandCrreleasedfromspentoroxidizedFe(II)–Mtindifferentreagents.

Extractionreagents Fepresentin(mM) Crpresentin(mM)

0.05MH2SO4 3.45 3.65

0.5M(NH)4C2O4 2.42 3.39

1MNaCl 1.29 2.0

0.05MNa2EDTA 1.22 8.51

usedfortheremovalCr(VI)fromwastewater[40]showedabout 74%reductionat25◦Cand82%reduction40C.Onthecontrary,

whenFe3O4-stabilizedFe0nanoparticleswereusedforreduction

ofCr(VI)fromaqueoussolution[41],therateofreductionwashigh atlowertemperature,forinstance,about90%reductionwasseenat 25◦Cwhileitis79%at40C.However,inthepresentstudy,wesee

theefficientreductionofCr(VI)byFe(II)–Mtinallthetemperatures from0to50◦C.

3.3. ExaminationofspentoroxidizedFe(II)–Mt

InordertounderstandthereductionofCr(VI)and immobiliza-tionofCr(III)ontheclaymineral,itisimportanttoexaminethe spentoroxidizedFe(II)–Mt.Fig.7showsthephotographofadry claymineralFe(II)–Mtbeforeandaftertreatingwith1mMK2Cr2O7

solutionatpH5.ThespentFe(II)–MtwasanalyzedbyFESEM/EDX spectratoobserveanymorphologicalchangesuponCr(VI) reduc-tion.AsshowninFig.8therewasnoappreciablechangeinthe microstructureof Fe(II)–Mt.However,EDX confirmedthe pres-enceofimmobilizedCrpresentinthespent/oxidizedFe(II)–Mt.As revealedbyFTIRspectra(Fig.3),thespentclaymineralisintact whencomparedtofreshFe(II)–Mtinallrespects.

Thefollowing reactionsmaybe writtenfor theoxidation of interlayerFe(II)ionsandtheirprecipitationtoneutralspecies(if any)andtheCr(VI)reductionfollowedbyimmobilizationasCr(III) species: 6 (Fe2+

→Fe3++e−); 3Fe3++9H2O3Fe(OH)3+9H+;

(Cr2O7)2−+8H++6e−→2Cr(OH)3+H2O.

Also, thereis noindicationaboutthepresence ofadditional Fe–Croxidephaseprobablyduetotheirsmallfraction.Inorderto quantitativelyestimatetheadsorbedCrandironinthespentclay mineral,Fe(III)–Mt,thechemicalextractionwasdonewith differ-entreagentsviz.,0.05MH2SO4,0.5M(NH)4C2O4,1MNaCl,0.05M

Na2EDTA.Ineachcase,aknownamount(0.2g)ofthespentclay

mineralwasdispersedin50mLofreagentsfor24handthe sam-pleswereanalyzedbyICP-OES.AsshowninTable1,Na2EDTAwas

foundtobetheeffectivereagenttoextractthesemetalsdueto itschelatingability.TheFeandCrcontentwereslightlysmaller thantheexpectedvalues.Thisisprobablyduetotheirexistenceas

(6)

Fig.8. FESEMwithEDXof(a)freshFe(II)–Mtand(b)oxidized/spentFe(II)–Mt.

oxyhydroxides(FeOOHorCrOOH)whichrequirerepeated treat-mentpreferablyatelevatedtemperatureforcompleteextraction.

AlthoughsomeFe-containingclaymineralslikeferroussaponite arefoundinthenaturalenvironment[38],theavailabilityaswellas theamountand/oraccessofstructuralFe(II)isverylimitedforlarge scalerealsystemapplications.Ontheotherhand,fewreduction processesdevelopedseemedtoberestrictedonlyforlaboratoryuse

[58]andnotforrealsystemapplications.Ifferroussulfateorsodium sulfiteisusedasreductantsforCr(VI)→Cr(III),ferrichydroxideand

sulfurdioxide(toxicandhighlyvolatile)willbeformed, respec-tively,asbyproductswhicharedifficulttohandle[59].Henceitis essentialtoproposeasuitablereductant/adsorbentforfield appli-cation,especiallytotreatwaterandsoil.WebelievethatFe(II)–Mt couldbetheefficientandsuitable materialtoaugmentthereal filedapplications.Forthis,aslurryofFe(II)–Mtfilledindialysis bagscouldbesuspendedinthecontaminatedbodiessuchas flow-ingorstagnantwatersand/orindustrialeffluents.Inthecaseof soilcontamination,itmustbesufficientlymoisturized(wet)before dispersingtheFe(II)–Mt.

4. Conclusions

WehaveconfirmedoneofthepotentialapplicationsofFe(II)–Mt totreatthehazardousCr(VI)contaminationinaqueoussolution.

Theanionexclusionimpactof[Cr2O7]2−ionwiththenegatively

chargedclaymineralherewasconsideredinallourestimations ofCr(VI)reductions.Ingeneral,[Cr2O7]2−reductionbyFe(II)–Mt

isarapidprocess,especiallyunderstoichiometricconditions.For instance,acompletereductionoccurredinabout5minatpH3–5. AtneutralpHandabove,thereductionwasrelativelyslow.The Cr(VI)reductionincreasedwithtemperatureupto40◦C.Thetime

takenforcompletereductionat0◦C,RT(30C),40Care12min,

8minand5min,respectively.Theimmobilizationofthereduced Cr(III)wasconfirmedfromtheEDXspectraofspentclaymineral andchemicalextractions,especiallyinNa2EDTA.

Acknowledgements

TheleadauthorM.VinuthwishestothankMr.K.Chandrasekhar forhishelpwithXRDanalysis,PavanS.atTuv-SudSouthAsiaPvt. Ltd.BangaloreforassistancewithICP-OESanalysisandProf.G.U. KulkarniatJNCASRforprovidingFESEMfacility.

References

[1]M.Barkat,D.Nibou,S.Chegrouche,A.Mellah,Chem.Eng.Prog.48(2009) 38–47.

(7)

[3]M.E.Losi,C.Amrhein,W.T.J.Frankenberger,Environ.Contam.Toxicol.136 (1994)91–121.

[4]S.L.Friess,Sci.TotalEnviron.86(1989)109–112.

[5]I.J.Buerge,S.J.Hug,Environ.Sci.Technol.32(1998)2092–2099. [6]J.M.Chen,O.J.Hao,Environ.Sci.Technol.28(1998)219–251. [7]A.R.Shakoor,S.Tahseen,R.U.Haq,FoliaBiol.44(1999)50–54.

[8]B.Wielinga,M.M.Mizuba,C.M.Hansel,S.Fendorf,Environ.Sci.Technol.35 (2001)522–527.

[9]J.L.Nyman,A.B.Cunningham,F.J.Caccavo,R.Gerlach,Biorem.J.6(2002) 39–55.

[10]E.I.Onstott,W.S.Gregory,Environ.Sci.Technol.7(1973)333–337. [11]L.E.Eary,D.Rai,Environ.Sci.Technol.22(1988)972–977.

[12]C.D.Palmer,P.R.Wittbrodt,Environ.HealthPerspect.92(1991)25–40. [13]S.E.Fendorf,G.C.Li,Environ.Sci.Technol.30(1996)1614–1617. [14]J.C.Seaman,P.M.Bertsch,L.Schwallie,Environ.Sci.Technol.33(1999)

938–944.

[15]C.Kim,Q.H.Zhou,B.L.Deng,E.C.Thornton,H.F.Xu,Environ.Sci.Technol.35 (2001)2219–2225.

[16]E.C.Thornton,J.E.Amonette,Environ.Sci.Technol.33(1999)4096–4101. [17]M.Pettine,L.Campanella,F.J.Millero,Environ.Sci.Technol.36(2002)

901–907.

[18]D.L.Sedlak,P.G.Chan,Geochim.Cosmochim.Acta61(1997)2185–2192. [19]B.V.Babu,S.Gupta,Adsorption14(2008)85–92.

[20]L.-H.Zhang,Q.Sun,D.-H.Liu,A.-H.Lu,J.Mater.Chem.A1(2013)9477–9483. [21]T.Kendelewicz,P.Liu,C.S.Doyle,G.E.BrownJr.,Surf.Sci.469(2000)144–163. [22]D.L.Bond,S.Fendorf,Environ.Sci.Technol.37(2003)2750–2757.

[23]L.E.Legrand,A.Figuigui,F.Mercier,A.Chausse,Environ.Sci.Technol.38 (2004)4587–4595.

[24]R.D.Ludwig,C.Su,T.R.Lee,R.T.Wilkin,S.D.Acree,R.R.Ross,A.Keeley, Environ.Sci.Technol.41(2007)5299–5305.

[25]M.J.Alowitz,M.M.Scherer,Environ.Sci.Technol.36(2002)299–306. [26]S.S.Chen,C.Y.Cheng,C.W.Li,P.H.Chai,Y.M.Chang,J.Hazard.Mater.142

(2007)362–367.

[27]S.W.Jeen,D.W.Blowes,R.W.Gillham,J.Contam.Hydrol.95(2008)76–91. [28]B.Flury,J.Frommer,U.Eggenberger,U.Mader,M.Nachtegaal,R.Kretzschmar,

Environ.Sci.Technol.43(2009)6786–6792. [29]Y.Xu,D.Zhao,WaterRes.41(2007)2101–2108.

[30]X.Q.Li,J.Cao,W.X.Zhang,Ind.Eng.Chem.Res.47(2008)2131–2139. [31]J.-H.Kim,J-H.Kim,K.V.Bokare,E.-J.Kim,Y.-Y.Chan,Y.-S.Chang,J.Nanopart.

Res.14(2012)1010–1022.

[32]T.Grygar,D.Hradil,P.Bezdicka,B.Dousova,L.Capek,O.Schneeweiss,Clays ClayMiner.2(2007)165–176.

[33]C.Leungo,V.Puccia,M.Avena,J.Hazard.Mater.2(2011)1713–1719. [34]J.T.Kloprogge,J.PorousMater.5(1998)5–41.

[35]M.Eloussaief,N.Fakhfakh,A.Sdiri,S.Bouaziz,M.Benzina,Trans.Ind.Ceram. Soc.71(2012)195–202.

[36]J.W.Stucki,Ironredoxprocessesinsmectites,in:F.Bergaya,B.K.G.Theng,G. Lagaly(Eds.),HandbookofClayScience,Elsevier,Amsterdam,2006(Chapter 8).

[37]M.F.Brigatti,C.Lugli,G.Cibin,A.Marcelli,G.Giuli,E.Paris,A.Mottana,Z.Wu, ClaysClayMiner.2(2000)272–281.

[38]G.Parthasarathy,B.M.Choudary,B.Sreedhar,A.C.Kunwar,R.Srinivasan,Am. Mineral.88(2003)1983–1988.

[39]M.Eloussaief,N.Kallel,A.Yaacoubi,M.Benzina,Chem.Eng.J.168(2011) 1024–1031.

[40]L.-N.Shi,X.Zhang,Z.-L.Chen,WaterRes.45(2011)886–892. [41]Y.Wu,J.Zhang,Y.Tong,X.Xu,J.Hazard.Mater.172(2009)1640–1645. [42]M.Eloussaief,W.Hamza,N.Kallel,M.Benzina,Environ.Prog.Sustain.Energy

32(2013)229–238.

[43]M.Eloussaief,S.Bouaziz,N.Kallel,M.Benzina,Desalin.WaterTreat.(2013) 1–5.

[44]M.Eloussaief,I.Jarraya,M.Benzina,Appl.ClaySci.46(2009)409–413. [45]M.Eloussaief,A.Sdiri,M.Benzina,Environ.Sci.Pollut.Res.20(2012)469–479. [46]M.Eloussaief,M.Benzina,J.Hazard.Mater.178(2010)753–757.

[47]J.Manjanna,Appl.ClaySci.42(2008)32–38.

[48]B.M.Vinoda,J.Manjanna,Appl.ClaySci.97(2014)78–83.

[49]J.Manjanna,T.Kozaki,N.Kozai,S.Sato,J.Nucl.Sci.Technol.44(2007) 929–932.

[50]N.Kozai,Y.Adachi,S.Kawamura,K.Inada,T.Kozai,S.Sato,H.Ohashi,T. Ohnuki,T.Banba,J.Nucl.Sci.Technol.38(2001)1141–1143.

[51]L.R.Vanloon,M.A.Glaus,W.Muller,Appl.Geochem.229(2007)2536–2552. [52]Y.H.Thomas,J.T.Samuel,Environ.Sci.Technol.39(2005)4499–4504. [53]Y.Panga,G.Zeng,L.Tang,Y.Zhang,Y.Liu,X.Lei,Z.Li,J.Zhang,Z.Liu,Y.Xiong,

Chem.Eng.J.175(2011)222–227.

[54]E.Petala,K.Dimos,A.Douvalis,T.Bakas,J.Tucek,R.Zboril,M.A.Karakassides, J.Hazard.Mater.261(2013)295–306.

[55]B.S.Kadu,Y.D.Sathe,A.B.Ingle,R.C.Chikate,K.R.Patil,C.V.Rode,Appl.Catal.B 104(2011)407–414.

[56]P.Venkateswaran,K.Palanivelu,Sep.Purif.Technol.40(2004)279–284. [57]K.S.Sumit,S.Rakshapal,A.Ashutosh,S.Mangal,K.Alok,Environ.Sci.Pollut.

Res.20(2013)1661–1674.

Referensi

Dokumen terkait

Di balik ketatnya persaingan dan juga berbagai kendala yang harus dihadapi oleh RBTV sebagai stasiun televisi lokal, masih terdapat peluang bagi RBTV untuk dapat bertahan

[r]

Berawal darisana lah muncul berbagai teori seperti Receptio in Complexu yang membahas penduduk berlaku agamanya masing-masing, Receptie yang membahas hukum Islam mengikuti hukum

[r]

5. Metagenesis pada lumut didominasi oleh fase… A. Suatu tumbuhan memiliki ciri-ciri urat daun sejajar, bagian bungakelipatan tiga, akar dan batang tidak tumbuh membesar. Tumbuhan

Proses Berpikir Siswa SMA dalam Menyelesaikan Masalah Matematika Ditinjau dari Perbedaan Gaya Belajar dan Perbedaan Gender.. Pipit Firmanti 82

Penulis melakukan penelitian dengan tujuan untuk menghitung besarnya selisih yang terjadi antara biaya yang diterapkan / dianggarkan oleh perusahaan tersebut (biaya standar)

Kesehatan Mental dalam penelitian ini adalah suatu kondisi dimana seseorang mampu dengan seimbang dan dengan sebaik-baiknya mengoptimalkan fungsi-fungsi kejiwaannya