• Tidak ada hasil yang ditemukan

BAB 2 TINJAUAN PUSTAKA 2.1 Uraian Tumbuhan 2.1.1 Penyebaran dan Habitat - Isolasi Senyawa Flavonoida Dari Daun Tumbuhan Ingul (Toona Sureni (Blume) Merr.)

N/A
N/A
Protected

Academic year: 2019

Membagikan "BAB 2 TINJAUAN PUSTAKA 2.1 Uraian Tumbuhan 2.1.1 Penyebaran dan Habitat - Isolasi Senyawa Flavonoida Dari Daun Tumbuhan Ingul (Toona Sureni (Blume) Merr.)"

Copied!
30
0
0

Teks penuh

(1)

BAB 2

TINJAUAN PUSTAKA

2.1 Uraian Tumbuhan

2.1.1 Penyebaran dan Habitat

Tumbuhan Ingul, (Toona sureni (Blume) Merr.) adalah genus Toona yang terdistribusi merata secara alami didaerah Nepal, India, Bhutan, Myanmar, Indochina, China selatan, Thailand, dan seluruh daerah malaysia kedaerah barat New Guinea. Di Indonesia ditemukan di Sumatera, Jawa, dan Sulawesi. Tumbuhan Ingul sering ditemukan di daerah hutan pedesaan, lereng-lereng bukit, padaketinggian1,200-2,700mdi daerah dengansuhu tahunanrata-ratasekitar22°C. Tumbuhan Ingul memiliki nama sinonim Cedrela febrifuga Blume, Toona fbrifuga (Blume) M.J Roemer, Cedrela sureni (Blume) Burkill (Darmawati, 2003).

2.1.2 Deskripsi Tumbuhan

(2)

memiliki panjang 3-6 mm dan lebar 2-4 mm. Dan bunganya dijumpai diujung cabang, berukuran kecil, berwarna putih atau merah muda pucat.

Di Indonesia dikenal dua jenis genus Toona yaitu Toona sinensis dan Toona sureni. Kedua jenis tersebut sangat sulit untuk dibedakan, tetapi jika dilihat secara jeli terdapat perbedaan pada daun dan buahnya. Tulang daun pada T.sinensis terdapat bulu-bulu halus dan ujung daun muda berwarna merah, sedangkan pada T.sureni tidak terdapat bulu-bulu halus dan daun muda berwarna hijau. Buah dari T.sinensis terdapat pada ujung ranting, sedangkan

T.sureni terdapat pada batangnya (Darmawanti, 2003).

2.1.3 Meliaceae

Tumbuhan yang tergolong dalam suku Meliaceae biasanya berupa semak atau pohon, mempunyai kelenjer resin atau minyak, daun majemuk menyirip, duduknya tersebar, tanpa daun penumpu, bunga antinomorf. Kelopak seringkali kecil, terdiri atas 4-5 daun kelopak. Buahnya berupa daun kendaga atau buah batu. Biji dengan atau tanpa endosperm, seringkali bersayap (Gembong, 1991).

2.1.4 Sistematika Tumbuhan

Menurut hasil identifikasi tanaman dari Herbarium Medanesense (MEDA) Universitas Sumatera Utara diperoleh sistematika tumbuhan Ingul sebagai berikut :

Kingdom : Plantae

(3)

Ordo : Meliales Famili : Meliaceae

Genus : Toona

Spesies : Toona sureni (Blume) Merr.

Nama lokal : Ingul

2.1.5 Nama daerah

Nama daerah dari tumbuhan Ingul secara umum Indonesia (suren), Sumatera (surian amba), Malaysia (surian wangi), Philippines (danupra), Myanmar (ye tama), Thailand (surian), dan nama dagang (cedar merah, toon, surian, limpaga).

2.1.6 Manfaat

Banyak penelitian telah membuktikan mamfaat mengkomsumsi tanaman yang berkhasiat antioksidan, seperti dapat menurunkan resiko penyakit jantung, kanker, katarak, dan penyakit degeneratif lain. Ingul merupakan salah satu tumbuhan tingkat tinggi yang terdapat di Indonesia. Tumbuhan ini telah banyak dimamfaatkan oleh masyarakat untuk berbagai keperluan. Kayu Ingul berkualitas tinggi karena sangat kuat dan tahan terhadap serangga sehingga sering digunakan untuk bahan bangunan dan pembuatan meubel.

(4)

diketahui mempunyai efek antibiotik serta mempunyai bioaktivitas sebagai anti mikroba terhadap staphylococcus. Pucuk daun Ingul juga dapat digunakan untuk mengatasi pembengkakan ginjal. Kulit kayu, daun, dan buahnya kaya akan kandungan minyak atsiri.

2.2 Senyawa Bahan Alam

Senyawa bahan alam didefenisikan sebagai senyawa organik yang melimpah dari alam seperti bahan tanaman mentah, bahan makanan, resin, dan eksudat tanaman atau ekstrak tanaman. Peninjauan pada setiap farmakope akan menunjukkan bahan alam memiliki peran penting sebagai senyawa yang aktif secara biologis, kenyataannya, diperkirakan bahwa 20-25% dari seluruh obat diperoleh dari alam.

Ada beberapa pendekatan yang dapat digunakan untuk menemukan induk obat baru dari alam, dan semuanya pernah digunakan oleh perusahaan farmasi dalam upaya memamfaatkan potensi hayati bahan alam yaitu :

1. Pendekatan etnobotani

Penetahuan tentang penggunaan tumbuhan tertentu oleh penduduk asli dimamfaatkan untuk mengarahkan pencarian induk obat baru, biasanya dilakukan oleh ahli botani dan kemudian menguji aktifitas biologisnya.

2. Pendekatan Kemotaksonomik

(5)

3. Pendekatan acak

Tanaman dikumpulakan tanpa memperhatikan aktifitas kimia atau biologis yang telah ada sebelumnya. Pendekatan ini tergantung pada ketersediaan tanama yang melimpah diwilayah tertentu. Pendekatan ini murni coba-coba karena seleksi tanaman secara acak akan mengarah pada penemuan ekstrak yang memiliki aktifitas biologis (bioaktivitas).

4. Pendekatan berbasis-informasi

Memamfaatkan kombinasi pendekatan etnobotani, kemotaksonomi dan acak bersama dengan mengumpulkan data yang memiliki semua informasi yang relevan mengenai spesies tumbuhan tertentu. Kumpulan data ini digunakan untuk memprioritaskan tanaman yang harus diekstraksi dan diskrining untuk mencari bioaktivitasnya.

Sejumlah kelompok senyawa bahan alam dapat dibuat dari asam amino fenillalanin, terutama fenilpropana, lignan, kumarin, dan flavonoida, semuanya memiliki substruktur umum yang berbasis cicin 6-karbon aaromatik (unit C6) dengan rantai 3-karbon (unit 3) yang melekat pada cicin aromatik ( Heinrich M, 2005).

2.3 Uraian Kandungan Kimia Tumbuhan

2.3.1 Senyawa Fenol

(6)

Jika murni, fenol sederhana berupa zat warna tan warna kelarutan dalam air kecil dan semakin besar jika gugus hidroksil semakin besar . Banyak senyawa fenolik alami mengandung sekurang-kurangnya gugus hidroksil, dan lebih banyak yang membentuk senyawa eter, ester dan glikosida (Robinson, 1995).

Senyawa fenol yang sering ditemui dialam dan telah diketahui strukturnya adalah flavonoida, fenol monosiklik sederhana, fenilpropanoid, dan kuinon fenolik terdapat dalam jumlah besar. Dan beberapa golongan bahan polimer penting dalam tumbuhan lignin, melanin, dan tanin adalah senyawa polifenol.

Bagi biokimiawan tumbuhan, senyawa fenol tumbuhan dapat menimbulkan gangguan besar karena kemampuannya membentuk kompleks dengan protein melalui ikatan hidrogen. Bila kandungan sel tumbuhan dan membran menjadi rusak selama proses isolasi, senyawa fenol cepat sekali membentuk kompleks dengan protein. Akibatnya, sering terjadi hambatan terhadap kerja enzim pada ekstrak tumbuhan kasar. Sebaliknya fenol sendiri sangat peka terhadap isolasi enzim dan mungkin hilang pada proses isolasi akibat kerja enzim fenolase yang terdapat dalam tumbuhan.

Secara klasik untuk mendeteksi senyawa fenol sederhana ialah dengan menambahakan larutan besi (III) klorida 1% dalam air dan kalium heksasianoferrat (III) 1%. Semua senyawa fenol berupa senyawa aromatik sehingga semuanya menunjukkan serapan kuat didaerah spektrum UV. Selain itu secara khas senyawa fenol menunjukkan pergeseran batokrom pada spektrumnya bila ditambahakan basa.

(7)

2.3.2 Senyawa Flavonoida

Flavonoida berasal dari biosintesis gabungan terdiri atas unit-unit yang diturunkan dari asam sikimat dan jalur poliketida. Senyawa flavonoida diturunkan dari unit C6-C3 (fenilpropana) yang bersumber dari asam sikimat (viafenilalanin) dan unit C6 yang diturunkan dari jalur poliketida. Fragmen poliketida ini disusun dari tiga molekul malonil Ko-A, yang bergabung dengan unit C6-C3 (sebagai tioester) untuk membentuk unit awal triketida ( Heinrich M, 2005).

Senyawa flavonoida adalah senyawa yang mengandung C15 terdiri atas dua inti fenolat yang dihubungkan dengan tiga satuan karbon. Struktur dasar flavonoida dapat digambarkan sebagai berikut:

C C C

A B

Kerangka Dasar Flavonoida

(Sastrohamidjojo, 1996).

Senyawa flavonoida adalah senyawa-senyawa polifenol yang mempunyai 15 atom karbon, terdiri dari dua cincin benzena yang dihubungkan menjadi satu oleh rantai linear yang terdiri dari tiga atom karbon. Kerangka ini dapat ditullis sebagai C6-C3-C6. Jadi senyawa flavonoida adalah senyawa 1,3 diarilpropana, senyawa isoflavonoida adalah senyawa 1,2 biarilpropana, sedang senyawa-senyawa neoflavonoida adalah senyawa 1,1 diarilpropana.

(8)

cincin C dengan tingkat oksidasi yang paling rendah dan dianggap sebagai struktur induk dalam nomenklatur kelompok senyawa ini (Manitto, 1992).

Menurut perkiraan, kira-kira 2% dari seluruh karbon yang difotosintesis oleh tumbuhan diubah menjadi flavonoida atau senyawa yang berkaitan erat dengannya. Flavonoida terdapat dalam semua tumbuhan hijau. Flavonoida terdapat pada semua bagian tumbuhan termasuk daun, akar, kayu, kulit, tepung sari, nektar, bunga, buah dan biji.

Semua varian flavonoida saling berkaitan karena alur biosintesis yang sama, yang memasukkan prazat dari alur sikimat dan asetat malonat. Flavonoida pertama dihasilkan segera setelah kedua alur tersebut bertemu. Flavonoida yang dianggap pertama kali terbentuk pada biosintesis adalah khalkkon dan semua bentuk lain diturunkan darinya melalui berbagai alur (Markham, 1988).

(9)
(10)

2.3.2.1. Sifat Kelarutan Senyawa Flavonoida

Aglikon flavonoida adalah polifenol dan karena itu mempunyai sifat kimia seperti fenol yaitu bersifat agak asam sehingga dapat larut dalam basa. Tetapi bila didiamkan dalam larutan basa dan disamping itu terdapat banyak oksigen maka akan banyak yang terurai. Karena mempunyai sejumlah gugus hidroksil yang tak tersulih atau suatu gula, flavonoida merupakan senyawa polar maka umumnya flavonoida larut dalam pelarut polar seperti etanol, metanol, butanol, aseton, dimetilsulfoksida, dimetilformamida, air dan lain-lain. Adanya gula yang terikat pada flavonoida cenderung menyebabkan flavonoida lebih mudah larut dalam air. Dengan demikian campuran pelarut di atas dengan air merupakan pelarut yang lebih baik untuk glikosida. Sebaliknya, aglikon yang kurang polar seperti isoflavon, flavanon, flavon serta flavonol yang termetoksilasi cenderung lebih mudah larut dalam pelarut seperti eter dan kloroform (Markham, 1988).

2.3.2.2. Klasifikasi Senyawa Flavonoida

Flavonoida biasanya terdapat sebagai flavonoida O-glikosida. Pada senyawa tersebut satu gugus hidroksil flavonoida atau lebih terikat pada satu gula atau lebih dengan ikatan hemimasetal yang tak tahan asam. Pengaruh glikosilasi menyebabkan flavonoida menjadi kurang reaktif dan lebih mudah larut dalam air. Glukosa merupakan gula yang paling umum terlibat walaupun galaktosa, ramnosa, xilosa dan arabinosa juga sering ditemukan.

Gula dapat juga terikat pada atom karbon flavonoida dan dalam hal ini gula tersebut terikat langsung pada inti benzena dengan suatu ikatan karbon-karbon yang tahan asam. Glikosida yang demikian disebut C-glikosida. Jenis gula yang terlibat lebih sedikit dibandingkan dengan gula pada O-glikosida.

(11)

Biflavonoida merupakan flavonoida dimer. Flavonoida yang biasanya terlibat adalah flavon dan flavanon yang secara biosintesis mempunyai pola oksigenasi yang sederhana dan ikatan antar flavonoida berupa ikatan karbon-karbon atau ikatan eter. Monomer flavonoida yang digabungkan menjadi biflavonoida dapat berjenis sama atau berbeda, dan letak ikatannya berbeda-beda. Banyak sifat fisika dan kimia biflavnoida menyerupai sifat monoflavonoida pembentuknya dan akibatnya kadang-kadang biflavonoida sukar dikenali. Biflavonoida jarang ditemukan sebagai glikosida.

Sejumlah aglikon flavonoida mempunyai atom karbon asimetrik dengan demikian dapat menunjukkan keaktifan optik (yaitu memutar cahaya terpolarisasi-datar). Yang termasuk dalam golongan flavonoida ini adalah flavanon, dihidroflavonol, katekin, pterokarpan, rotenoid dan beberapa biflavonoida (Markham, 1988).

Menurut Robinson (1995), flavonoida dapat dikelompokkan berdasarkan keragaman pada rantai C3 yaitu:

1. Flavonol

Flavonol sering terdapat sebagai glikosida, biasanya 3-glikosida dan aglikon flavonol yang umum yaitu kamferol, kuarsetin dan miresetin yang berkhasiat sebagai antioksidan dan antiinflamasi. Flavonol lain yang terdapat di alam bebas kebanyakan merupakan variasi struktur sederhana dari flavonol. Larutan flavonol dalam suasana basa dioksidasi oleh udara tetapi tidak begitu cepat sehingga penggunaan basa pada pengerjaannya masih dapat dilakukan.

(12)

paling umum dijumpai adalah apigenin danluteolin. Luteolin merupakan zat warna yang pertama kali dipakai di Eropa. Jenis yangpaling umum adalah 7-glukosida dan terdapat juga flavon yang terikat pada gulamelalui ikatan karbon-karbon. Contohnya luteolin 8-C-glikosida.Flavon dianggapsebagai induk dalam nomenklatur kelompok senyawa flavonoida.

O O

Flavon

3. Isoflavon

Isoflavon merupakan isomer flavon, tetapi jumlahnya sangat sedikit dan sebagai fitoaleksin yaitu senyawa pelindung yang terbentuk dalam tumbuhan sebagai pertahanan terhadap serangan penyakit. Isoflavon sukar dicirikan karena reaksinyatidak khas dengan pereaksi warna manapun. Beberapa isoflavon (misalnya daidzein)memberikan warna biru muda cemerlang dengan sinar UV bila diuapi amonia, tetapikebanyakan yang lain tampak sebagai bercak lembayung yang pudar dengan amonia berubah menjadi coklat.

O O

Isoflavon

4. Flavanon

(13)

O O

Flavanon

5. Flavanonol

Senyawa ini berkhasiat sebagai antioksidan dan hanya terdapat sedikit sekali jika dibandingkan dengan flavonoida lain. Sebagian besar senyawa ini diabaikan karena konsentrasinya rendah dan tidak berwarna.

O O

OH

Flavanonol

6. Katekin

Katekin terdapat pada seluruh dunia tumbuhan, terutama pada tumbuhan berkayu. Senyawa ini mudah diperoleh dalam jumlah besar dari ekstrak kental Uncaria gambir dan daun teh kering yang mengandung kira-kira 30% senyawa ini. Katekin berkhasiat sebagai antioksidan.

O HO

OH

OH OH

OH

(14)

Leukoantosianidin merupakan senyawa tanwarna, terutama terdapat pada tumbuhan berkayu. Senyawa ini jarang terdapat sebagai glikosida, contohnya melaksidin, apiferol.

O

OH

HO

OH

Leukoantosianidin

8. Antosianidin

Antosianin merupakan pewarna yang paling penting dan paling tersebar luas dalam tumbuhan. pigmen yang berwarna kuat dan larut dalam air ini adalah penyebab hampir semua warnamerah jambu, merah marak, ungu dan biru dalam daun, bunga dan buah pada tumbuhan tinggi. Secara kimia semua antosianin merupakan struktur aromatik tunggal yaitu sianidin dan semuanya terbentuk dari pigmen sianidin ini dengan penambahan atau pengurangan gugus hidroksil atau dengan metilasi atau glikosilasi.

O

OH

Antosianidin

9. Khalkon

(15)

O

Khalkon

10. Auron

Auron berupa pigmen kuning emas yang terdapat dalam bunga tertentu dan briofita. Dalam larutan basa senyawa ini berwarna ros dan tampak pada kromatografi kertas berupa bercak kuning, dengan sinar ultraviolet warna kuning kuat berubah menjadi merah jungga bila diberi uap amonia (Robinson, 1995).

HC

O

O

Auron

(16)

Tabel 1 Sifat golongan flavonoida

Golongan flavonoida

Penyebaran Ciri khas Antosianin Pigmenbunga merah marak,dan

biru juga dalam daun dan jaringan lain.

Larutdalam air, λmaks 515-545 nm, bergerak dengan BAA pada kertas.

Proantosianidin Terutama tanwarna, dalam daun tumbuhan berkayu.

Menghasilkan antosianidin bila jaringan dipanaskan dalam HCl 2M selama setengah jam.

Flavonol Terutamako-pigmen tanwarna dalam bunga sianik dan asianik tersebar luas dalam daun.

Setelah hidrolisis, berupa bercak kuning murup pada kromatogram Forestal bila disinari sinar UV; λmaks spektrum pada 330 – 350 nm.

Flavon Seperti flavonol Setelah hidrolisis, berupa bercak coklat redup pada kromatogram Forestal; λmaks

spektrum pada 330-350 nm.

Glikoflavon flavonol Mengandung gula yang terikat melalui ikatan C-C; bergerak dengan pengembang air, tidak seperti flavon biasa.

Biflavonil Tanwarna;hampir seluruhnya terbatas pada gimnospermae

Pada kromatogram BAA beupa bercak redup dengan RF tinggi.

Dengan amonia berwarna merah (perubahan warna dapat diamati in situ), maksimal spektrum 370-410 nm.

Flavanon Tanwarna; dalam daun dan buah(terutama dalamCitrus)

Berwarna merah kuat dengan Mg/HCl; kadang – kadang sangat pahit

Isoflavon TanwaTanwarna; sering kali dalam akar; hanya terdapat dalam satu suku,Leguminosae

(17)

2.3.3 Senyawa Alkaloid

Alkaloid merupakan senyawa metabolit sekunder bersifat basa yang mengandung satu atau lebih atom nitrogen membetuk heterosiklik. Alkaloid seringkali beracun bagi manusia dan banyak mempunyai kegiatan fisiologis yang menonjol jadi digunakan secara luas dalam bidang pengobatan (Harbone,1987).

Pembagian alkaloid menurut Hegnauer sebagai berikut : 1. Alkaloid sesungguhnya

Alkaloid sesungguhnya bersifat basa yang merupakan turunan asam amino dan mengandung gugus nitrogen dalam cicin heterosiklik dan biasanya terdapat dalam tanaman sebagai garam asam organik.

2. Protoalkaloid

Protoalkaloid merupakan amin yang relatif sederhana dimana nitrogen asam amino tidak terdapat dalam cincin heterosiklik diperoleh berdasarkan biosintesa asam amino.

3. Pseudoalkaloid

Pseudoalkaloid merupakan alkaloid yang tidak diturunkan dari asam amino dan biasanya bersifat basa (Sastrohamidjojo,1996).

Mamfaat Alkaloida dalam bidang farmakologi yaitu :

1. Sebagai analgetika dan narkotika seperti opium dan morfin

2. Alkaloid jantung digunakan untuk mengubah kerja jantung seperti kinidin dan spartein. 3. Alkaloid mempengaruhi peredaran darah dan pernapasan seperti Veratum, Rauvolfia 4. Sebagai kemoteraupika dan antiparasit seperti alkaloid kina

5. Sebagai stimulan uterus seperti secale alkaloid

(18)

Alkaloid merupakan senyawa bahan alam yang telah menyumbangkan begitu banyak bagi dunia medis dan sediaan farmasetik. Alkaloid menunjukkan aktifitas biologis dan tersebar luas, terdapat pada tanaman, fungi, bakteri, amfibi, serangga, hewan laut dan manusia. Alkaloid juga terdapat dialam sebagai garam yang merupakan hasil reaksi antara basa (alkaloid) dan asam. Alakaloid merupakan bahan alam heterosiklik yang mengandung nitrogen ( Heinrich M, 2005).

2.3.4 Senyawa Terpenoida

Senyawa terpen tersebar luas dialam dalam banyak spesies, kadang-kadang disebut isoprena unit C5 berulang bercabang. Senyawa terpen adalah contoh sempurna bahan alam yang memiliki struktur sangat beragam, mempunyai banyak angota kiral dan memiliki gugus kimia fungsional yang ekstensif. Terpen yang paling sederhana adalah hemiterpen (C5) kemudian monoterpen (C10), seskuiterpen (C15), diterpen (C20), triterpen, dan steroid (Turunan C30), dan tetraterpen (Kareotenoid, C40), semuanya berfungsi penting dalam pengobatan ( Heinrich M, 2005).

Terpenoid merupakan senyawa alam yang terbentuk dengan proses biosintesis, terdistribusi luas dalam dunia tumbuhan dan hewan. Struktur terpenoid dibangun oleh molekul isoprena.Senyawa terpenoid berkisar dari senyawa yang volatil, yakni komponen minyak atsiri, yang merupakan monoterpen dan seskuiterpen, senyawa yang kurang volatil yakni diterpen sampai senyawa yang nonvolatil seperti triterpenoid dan sterol serta pigmen karotenoid (Midian, 2007).

(19)

2.3.5 Senyawa Sterol

Sterol merupakan triterpena yang kerangka dasarnya sistem cicin siklopentana perhidropenantrena. Senyawa fitosterol yang sering ditemukan yaitu sitosterol, stigmasterol, dan kampesterol. Saponin adalah glikosida triterpen dan sterol dimana merupakan senyawa aktif yang bersifat seperti sabun membentuk busa dan menghemolisis sel darah (Harbone, 1987).

2.3.6 Senyawa Glikosida

Glikosida adalah suatu senyawa, bila dihidrolisis akan terurai menjadi gula (glikon) dan senyawa lain (aglikon atau genin). Glikosida yang gulanya berupa glukosa disebut glukosida. Pembagian glikosida dapat dilakukan berdasarkan glikon, aglikon, dan khsiatnya. Glikosida yang berkasiat obat dapat digolongkan menjadi kardioaktif, antrakinon, saponin, sianofor, tiosianat, flavonol, alkohol, aldehid, lakton, dan fenol. Umunya glikosida mudah terhidrolisis oleh asam mineral atau enzim. Hidrolisis oleh asam memerlukan panas. Dan hidrolisis dengan enzim tidak memerlukan panas. Kegunaannya bagi manusia sebagai obat jantung, diuretika, tonika, ekspektoran, dan sebagai prekursor hormon steroid (Midian, 2007).

2.3.7 Senyawa Tanin

(20)

hidrolisis tanin. Beberapa tanin yang terbukti mempunyai aktivitas antioksidan, menghambat pertumbuhan tumor, dan menghambat enzim (Robbinson, 1995).

Secara garis besar tanin dibagi menjadi dua golongan: tanin dapat terhidrolisis, yang terbentuk dari esterifikasi gula dengan asam fenolat sederhana yang merupakan tanin turunan sikimat ( misalnya asam galat) dan tidak dapat terhidrolisis, yang terkadang disebut sebagai tanin terkondensasi, yang berasal dari reaksi polimerisasi (kondensasi) antar flavonoid ( Heinrich M, 2005).

2.4 Teknik Pemisahan

Tujuan dari teknik pemisahan adalah untuk memisahkan komponen yang akan ditentukan berada dalam keadaan murni, tidak tercampur dengan komponen-komponen lainnya.

Ada 2 jenis teknik pemisahan yaitu :

1. Pemisahan kimia adalah suatu teknik pemisahan yang berdasarkan adanya perbedaan yang besar dari sifat-sifat fisika komponen dalam campuran yang akan dipisahkan.

2. Pemisahan fisika adalah suatu teknik pemisahan yang didasarkan pada perbedaan-perbedaan kecil dari sifat-sifat fisik antara senyawa-senyawa yang termasuk dalam suatu golongan (Muldja, 1995).

2.4.1 Ekstraksi

(21)

metoda sokletasi dapat dilakukan secara bertingkat dengan berbagai pelarut berdasarkan kepolarannya, misalnya n-heksana, eter, benzena, kloroform, etil asetat, etanol, metanol, dan air.

Ekstraksi dianggap selesai bila tetesan terakhir memberikan reaksi negatif terhadap senyawa yang diekstraksi. Untuk mendapatkan larutan ekstrak yang pekat biasanya pelarut ekstrak diuapkan dengan menggunakan alat rotari evaporator (Harborne, 1987).

2.4.2 Kromatografi

Kromatografi adalah berbagai cara pemisahan berdasarkan partisi cuplikan antara fase yang bergerak, dapat berupa gas atau zat cair, dan fase diam, dapat berupa zat cair atau zat padat. Pemisahan secara kromatografi yang berhasil baik berkaitan dengan mengkompromikan daya pisah kromatografi, beban cuplikan, dan waktu analisis (Gritter, 1991)

Cara-cara kromatografi dapat digolongkan sesuai dengan sifat – sifat dari fasa diam, yang dapat berupa zat padat atau zat cair.Jika fasa diam berupa zat padat disebut kromatografi serapan, jika berupa zat cair disebut kromatografi partisi. Karena fasa gerak dapat berupa zat cair atau gas maka ada empat macam sistem kromatografi yaitu:

1) Fasa gerak cair–fasa diam padat (kromatografi serapan): a.kromatografi lapis tipis

b.kromatografi penukar ion

2) Fasa gerak gas–fasa diam padat, yakni kromatografi gas padat

(22)

a. kromatografi gas–cair b. kromatografi kolom kapiler

Semua pemisahan dengan kromatografi tergantung pada kenyataan bahwa senyawa – senyawa yang dipisahkan terdistribusi diantara fasa gerak dan fasa diam dalam perbandingan yang sangat berbeda – beda dari satu senyawa terhadap senyawa yang lain (Sastrohamidjojo, 1985).

2.4.2.1 Kromatografi Lapis Tipis

Kromatografi Lapis Tipis pada plat berlapis yang berukuran lebih besar, biasanya 5x20 cm, 10x20 cm, atau 20x20 cm. Biasanya memerlukan waktu pengembangan 30 menit sampai satu jam. Pada hakikatnya KLT melibatkan dua fase yaitu fase diam atau sifat lapisan, dan fase gerak atau campuran pelarut pengembang. Fase diam dapat berupa serbuk halus yang berfungsi sebagai permukaan penyerap atau penyangga untuk lapisan zat cair. Fase gerak dapat berupa hampir segala macam pelarut atau campuran pelarut (Sudjadi, 1986).

(23)

Lempeng lapis penyerap sering menggunanakan indikator flueresensi sehingga bahan alam yang mengabsobsi sinar uv gelombang pendek 245 nm akan tampak sebagai bercak hitam pada latar hijau

2.4.2.2 Kromatografi Kolom

Pemisahan senyawa dengan kromatografi kolom merupakan salah satu teknik pemisahan biokimia yang banyak dipakai. Hal yang perlu diperhatikan adalah penyediaan kolom, operasi kolom, serta pemilihan pelarut yang tepat sebelum melakukan kromatografi. Kolom kromatografi biasanya terbuat dari gelas. Panjang kolom biasanya disesuaikan dengan jumlah komponen yang akan dianalisa dalam suatu senyawa, sedangkan lebar kolom disesuikan dengan jumlah senyawa yang akan dianalisis.

Bahan yang dapat dipakai untuk sediaan kromatografi sebagai pengisi kolom cukup banyak jenisnya. Sebagai contoh adalah beberapa jenis gel yang dapat menyerap air (hidrofi); suatu matriks (isi kolom) yang dapat aktif dengan pemanasan atau perlakuan dengan asam; dan untuk pertukaran ion resin, yang diperlakukan adalah bentuk ionik yang dapat dicuci. Selama proses kesetimbangan dengan pelarut, bahan pengisi kolom dibiarkan mengendap, dan partiket-partikel halus yang tertinggal dalam suspensi dibuang dengan cara dekantasi.

(24)

Penjerap dapat dikemas kedalam tabung, dengan cara basah maupun dengan cara kering. Pada cara kering, adsorbent diletakkan didalam kolom, penjerap dituangkan kedalam tabung sedikit demi sedikit. Setelah siap penambahan permukaan diratakan dan dimampatkan sedikit menggunakan alat pemampat. Alat pemampat ini dapat berupa sumbat karet atau silinder kayu yang dipasang pada ujung batang kaca atau gagang. Setelah semua penjerap dimasukkan, diatasnya diletakkan kertas saring. Kemudian pengelusi dibiarkan mengalir kebawah melalui penjerap dengan kran terbuka sampai permukaan pelarut tepat sedikit diatas bagian kolom. Cara basah , adsorben dimasukkan kedalam kolom, dan tabung diisi dengan sepertiganya dengan pelarut. Pelarut yang dipakai untuk proses pengemasan sesuai dengan pelarut yang akan digunakan dalam kromatografi kolom atau mungkin pelarut yang kepolarannya lebih rendah.

Kromatografi cair yang dilakukan dalam kolom besar merupakan metode kromatografi terbaik untuk pemisahan dalam jumlah besar (lebih dari 1 g). Pada kromatografi kolom, campuran yang akan dipisahkan diletakkan berupa pita pada bagian atas kolom penyerap yang berada dalam tabung kaca, tabung logam, dan tabung plastik. Pelarut atau fasa gerak dibiarkan mengalir melalui kolom karena aliran yang disebabkan oleh gaya berat atau didorong dengan tekanan. Pita senyawa linarut bergerak melalui kolom dengan laju yang berbeda, memisah, dan dikumpulkan berupa fraksi ketika keluar dari atas kolom (Gritter, 1991).

(25)

2.4.2.3 Harga Rf (Reterdation Factor)

Mengidentifikasi noda-noda dalam lapisan tipis lazim menggunakan harga Rf yang diidentifikasikan sebagai perbandingan antara jarak perambatan suatu zat dengan jarak perambatan pelarut yang dihitung dari titik penotolan pelarut zat. Jarak yang ditempuh oleh tiap bercak dari titik penotolan diukur dari pusat bercak. Untuk mengidentifikasi suatu senyawa, maka harga Rf senyawa tersebut dapat dibandingkan dengan harga Rf senyawa pembanding.

Jarak perambatan bercak dari titik penotolan Rf =

Jarak perambatan pelarut dari titik penotolan (Sastrohamidjojo, 1985).

2.4.3 Pemurnian

Amorf yang diperoleh dari hasil isolasi dilarutkan kembali dengan EtOAc, diaduk hingga semua amorf larut sempurna. Kemudian ditambahkan n – heksana secara perlahan – lahan hingga pembentukan kembali senyawa yang lebih murni dari sebelumnya dan jatuh di dasar wadah. Didekantasi larutan bagian atas wadah. Lalu diuapkan sisa pelarut dari amorf hingga diperoleh kristal yang benar – benar bebas dari pelarut (Jacobs, 1974).

2.5Spektroskopi

(26)

elektromagnetik akan diubah menjadi besaran listrik dan melalui amplifier akan diubah menjadi besaran yang dapat diamati. Radiasi elektromagnetik adalah energi yang digunakan untuk penyerapan dan emisi radiasi magnetik yang diteruskan melalui ruang dengan kecepatan luar biasa. Dikenal dua kelompok utama spektroskopi, yaitu spektroskopi atom dan spektroskopi molekul. Dasar dari spektroskopi atom adalah tingkat energi elektron terluar suatu atom atau unsur, sedangkan dasar dari spektroskopi molekul adalah tingkat energi molekul yang melibatkan energi elektronik, energi vibrasi, dan energi rotasi. Energi elektronik yaitu energi yang melibatkan tingkat energi yang ditempati orbit elektron suatu atom dari molekul- molekul. Energi vibrasi yaitu energi yang melibatkan vibrasional antar atom dalam molekul. Energi rotasi yaitu energi yang melibatkan rotasi dari molekul (Bintang, 2011).

2.5.1 Spektrofotometri Ultra Violet

Serapan molekul di dalam derah ultra violet dan terlihat dari spektrum bergantung pada struktur ultra elektronik dari molekul. Penyerapan sejumlah energi, menghasilkan percepatan dari elektron dalam orbital tingkat dasar ke orbital yang berenergi lebih tinggi di dalam keadaan tereskitasi (Silverstein, 1986).

(27)

2.5.2 Spektrofotometri Infra Merah (FT-IR)

Spektrum inframerah terletak pada daerah dengan panjang gelombang berkisar 0,78-1000 µm atau bilangan gelombang 12.800 sampai 10-7. Penggunaan paling banyak spektroskopi inframerah adalah untuk identifikasi senyawa organik, karena spektrumnya sangat kompleks, yaitu terdiri dari banyak puncak-puncak. Spektrum inframerah dari senyawa organik mempunyai sifat fisik yang khas, artinya kemungkinannya kecil sekali dua senyawa mempunyai spektrum yang sama (Bintang, 2011) .

Pancaran inframerah yang kerapatannya kurang dari 100 cm -1 (panjang gelombang lebih daripada 100 µm) diserap oleh sebuah molekul organik dan diubah menjadi putaran energi molekul maka spektrum rotasi molekul terdiri dari garis-garis yang tersendiri. Pancaran inframerah antara 10.000 - 10 cm-1 (Panjang gelombang 1-100 µm), diserap oleh sebuah molekul organik dan diubah menjadi energi getaran molekul (Silverstein, 1986).

Dalam molekul sederhana beratom dua atau beratom tiga tidak sukar untuk menentukan jumlah dan jenis vibrasinya dan menghubungkan vibrasi-vibrasi tersebut dengan energi serapan. Tetapi untuk molekul-molekul beratom banyak, analisis jumlah dan jenis vibrasi itu menjadi sukar sekali atau tidak mungkin sama sekali, karena bukan saja disebabkan besarnya jumlah pusat – pusat vibrasi, melainkan karena juga harus diperhitungkan terjadinya saling mempengaruhi (inter-aksi) beberapa pusat vibrasi.

Vibrasi molekul dapat dibagi dalam dua golongan , yaitu vibrasi regang dan vibrasi lentur.

1. Vibrasi regang

(28)

2.Vibrasi lentur

Di sini terjadi perubahan sudut antara dua ikatan kimia. Ada empat macam vibrasi lentur yaitu vibrasi lentur dalam bidang yang dapat berupa vibrasi scissoring atau vibrasi rocking dan vibrasi keluar bidang yang dapat berupa waging atau berupa twisting (Noerdin, 1985).

2.5.3 Spektrometri Resonansi Magnetik Inti Proton (1-H-NMR)

Resonansi magnet inti (nuclear magnetic resonance, NMR) merupakan spektroskopi absorbsi yang didasarkan pada pengukuran adsorbsi radiasi elektromagnetik pada daerah frekuensi radio 0,1 – 100 MHz (1MHz = 106 putaran per detik) atau panjang gelombang 3-3000m, oleh partikel ( inti atom) yang berputar didalam medan magnet. Inti atom hidrogen atau proton mempunyai sifat-sifat magnet. Bila suatu senyawa yang mengandung hidrogen diletakkan pada bidang magnet yang sangat kuat dan diradiasi dengan dengan radiasi elektromagnetik, maka inti atom hidrogen dari senyawa tersebut akan menyerap energi melalui suatu proses adsorbsi yang dikenal dengan resonansi magnetik. Adsorbsi radiasi terjadi bila kekuatan medan magnet sesuai dengan frekuensi radiasi elektomagnet.

Spektrometri Resonansi Magnetik Inti Proton (1-H-NMR) merupakan alat yang berguna pada penentuan struktur molekul organik. Teknik ini memberikan informasi mengenai berbagai jenis atom hidrogen dalam molekul. Spektrum 1-HNMR memberikan informasi mengenai lingkungan kimia atom hidrogen, jumlah atom hidrogen dalam setiap lingkungan dan struktur gugusan yang berdekatan dengan setiap atom hidrogen (Cresswell, 1982).

(29)

1. Menentukan jumlah proton yang memiliki lingkungan kimia yang sama pada suatu senyawa organik.

2. Mengetahui informasi mengenai struktur suatu senyawa organik (Dachriyanus, 2004).

Pergeseran kimia adalah pengukuran medan magnet dalam keadaan bebas. Semua proton-proton dalam satu molekul yang ada dalam lingkungan kimia yang serupa kadang-kadang menunjukkan pergeseran kimia yang sama. Setiap senyawa memberikan penaikan menjadi puncak absorbsi tunggal dalam spektrum 1-H-NMR. Di dalam medan magnet, perputaran elektron-elektron valensi dari proton menghasilkan medan magnet yang melawan medan magnet yang digunakan. Hingga setiap proton dalam molekul dilindungi dari medan magnet yang digunakan dan bahwa besarnya perlindungan ini tergantung pada kerapatan elektron yang mengelilinginya. Makin besar kerapatan elektron yang mengelilingi inti, maka makin besar pula medan magnet yang dihasilkan yang melawan medan magnet yang digunakan (Bernasconi,1995).

Senyawa yang paling lazim dan paling berguna dipakai sebagai acuan adalah tetrametilsilana (TMS). Beberapa keuntungan dari pemakaian standar internal TMS yaitu:

1. TMS mempunyai 12 proton yang setara sehingga akan memberikan spektrum puncak tunggal yang kuat.

Si

CH3

CH3

CH3

H3C

(30)

Pada spektrometri RMI integrasi sangat penting. Harga integrasi menunjukkan daerah atau luas puncak dari tiap – tiap proton . Sedangkan luas daerah atau luas puncak tersebut sesuai dengan jumlah proton. Dengan demikian perbandingan tiap integrasi proton sama dengan perbandingan jumlah proton dalam molekul (Muldja, 1995).

Gambar

Gambar 1 Biosintesa hubungan antara jenis monomer flavonoida dari alur
Tabel 1 Sifat golongan flavonoida

Referensi

Dokumen terkait

Puji syukur kepada Tuhan Yesus Kristus yang telah melimpahkan karunia rahmat-Nya, sehingga penulis dapat menyelesaikan skripsi dengan judul “ Pengembangan Media Interaktif

Hal ini disebabkan oleh: (1) masih terbatasnya peran pengurus kelompok tani, (2) anggota kelompok tidak jelas, (3) struktur organisasi tidak lengkap dan tidak berfungsi,

penguatan kelembagaan agribisnis di tingkat petani, kelembagaan usaha, dan pemerintah sesuai peran masing-masing, dan (5) pembiayaan dalam pengembangan produksi jagung, melalui

mengatakan bahwa salah satu fungsi nilai adalah sebagai faktor pendorong, hal ini berkaitan dengan nilai-nilai yang berhubungan dengan cita-cita atau harapan. Jadi

Pola sambungan pada perkerasan beton semen harus mengikuti batasan-batasan sebagai berikut. 1) Hindari bentuk panel yang tidak teratur. Usahakan bentuk panel spersegi

Menurut Indriana (2011:27) dasar pertimbangan dalam memilih media adalah terpenuhinya kebutuhan dan tercapainya tujuan pembelajaran. Jika tidak sesuai dengan

Sehubungan dengan situasi pandemi Corona di mana kita masih harus membatasi diri untuk berjumpa satu dengan yang lain, Bidang Pengembangan Wilayah melalui Komisi Perlawatan

Berdasarkan latar belakang masalah yang telah dikemukakan sebelumnya, maka yang menjadi permasalahan utama dalam pengerjaan tugas akhir ini adalah dengan kemampuan penglihatan