BAB II
LANDASAN TEORI
2.1 Citra
2.1.1 Definisi Citra Digital
Citra atau gambar merupakan salah satu bentuk informasi visual yang kaya akan informasi. Citra berasal dari cahaya yang dipantulkan oleh sebuah objek. Cahaya yang dipantulkan tersebut ditangkap oleh alat optik seperti mata,kamera,dan scanner.
Citra secara umum adalah merupakan suatu gambar, foto ataupun berbagai tampilan dua dimensi yang menggambarkan suatu visualisasi objek. Citra dapat diwujudkan dalam bentuk tercetak ataupun digital. Citra digital adalah larik angka-angka secara dua dimensional. Citra digital tersimpan dalam suatu bentuk larik (array) angka digital yang merupakan hasil kuantifikasi dari tingkat kecerahan masing-masing pixel penyusun citra tersebut.
Gambar 2.1Kolom dan baris membentuk pixel data raster Sumber :Liu, J.G., Mason, P.J. 2009
2.1.2Representasi Citra Digital
Citra merupakan fungsi kontinu dari intensitas cahaya pada bidang 2D.
Secara matematis fungsi intensitas cahaya pada bidang 2D disimbolkan dengan f(x,y), Koordinat citra pada bidang 2 dimensi dapat dilihat pada gambar 2.2.
dimana :
(x,y): koordinat pada bidang 2D
f(x,y) : intensitas cahaya (brightness)pada titik (x,y)
Untuk mengkonversi objek yang diindera oleh sensor menjadi citra digital dilakukan dua proses yakni Sampling dan Kuantisasi.
1. Sampling
Sampling adalah transformasi citra kontinu menjadi citra digital dengan cara membagi citra analog(kontinu) menjadi M kolom dan N baris sehingga menjadi citra diskrit. Semakin besar nilai M dan N, semakin halus citra digital yang dihasilkan dan artinya resolusi citra semakin baik .
2. Kuantisasi
Warna sebuah citra digital ditentukan oleh besarnya intensitas piksel-piksel penyusunnya. Warna ini diperoleh dari besar kecilnya intensitas cahaya yang ditangkap oleh sensor. Sedangkan skala intensitas cahaya di alam ini tidak terbatas, yang bisa menghasilkan warna dengan jumlah yang tak terhingga. Belum ada satu sensor pun yang mampu menangkap seluruh gradasi warna tersebut oleh sebab itu kita membuat gradasi warna sesuai dengan kebutuhan. Kuantisasi adalah transformasi intensitas analog yang bersifat kontinu ke daerah intensitas diskrit [12] yang digambarkan pada gambar 2.3.
Gambar 2.3 Penggambaran Kuantisasi Sumber: Sutoyo,T. 2009
2.1.3 Elemen-Elemen Citra Digital
Kecerahan merupakan intensitas cahaya yang dipancarkan piksel dari citra yang dapat ditangkap oleh sistem penglihatan.
2. Kontras (contrast)
Kontras menyatakan sebaran terang dan gelap dalam sebuah citra 3. Kontur (contour)
Kontur adalah keadaan yang ditimbulkan oleh perubahan intensitas pada piksel-piksel yang bertetangga. Karena adanya perubahan intensitas inilah maka mampu mendeteksi tepi-tepi objek di dalam citra.
4. Warna
Warna sebagai persepsi yang ditangkap sistem visual terhadap panjang gelombang cahaya yang dipantulkan oleh objek.
5. Bentuk (shape)
Bentuk adalah property intrinsik dari objek 3 dimensi, dengan pengertian bahwa bentuk merupakan propertyintrinsik utama untuk sistem visual manusia.
6. Tekstur (texture)
Tekstur dicirikan sebagai distribusi spasial dari derajat keabuan di dalam sekumpulan piksel-piksel yang bertetangga.
2.1.4 Jenis-Jenis Citra Digital
Beberapa jenis citra digital yang sering digunakan adalah citra biner, citra grayscale, dan citra warna.
1. Citra Biner (Monokrom)
Banyakna warna: 2, yaitu hitam dan putih
Gradasi warna :
0 1
Contoh citra biner dapat dilihat pada gambar 2.4.
Gambar 2.4 Contoh citra biner 2. Citra Grayscale (Skala Keabuan)
Banyaknya warna:tergantung pada jumlah bit yang disediakan di memori untuk menampung warna ini.
Citra 3 bit mewakili 8 warna berikut:
Contoh citra grayscale dapat dilihat pada gambar 2.5.
Gambar 2.5 Contoh citra grayscale
3. Citra Warna (True Color)
8 bit= 1 byte ,yang berarti setiap warna mempunyai gradasi sebanyak 255 warna. Itulah sebabnya format ini dinamakan true color karena mempunyai jumlah warna yang cukup besar.
Penyimpanan citra warna di dalam memori berbeda dengan citra grayscale. Satu piksel citra true color diwakili oleh 3 byte yang masing-masing byte merepresentasikan warna merah (Red), hijau (Green), dan Biru (Blue)[12]. Contoh penyimpanan citra warna dalam memori dapat dilihat pada tabel 2.1.
Tabel 2.1 Contoh penyimpanan citra warna di dalam memori.
Contoh citra berwarna dapat dilihat pada gambar 2.6.
Gambar 2.6 Contoh citra warna
2.1.5 Format Citra Digital
Beberapa format yang umum digunakan dalam pemrograman pengolahan citra diantaranya:
1. JPEG (Joint Photographic Expert Group)
JPG atau JPEG ( Joint Photographic Experts Group), adalah format file yang paling umum digunakan dalam digital fotografi. Format ini mendukung kedalaman warna 24 bit (3 saluran warna masing-masing 8 bit). Hampir setiap kamera digital mampu membaca gambar menggunakan format ini dan secara luas dapat dibaca oleh program penampil gambar lainnya.
Format citra JPG menghasilkan ukuran file kecil menggunakan kompresi lossy. Setiap kali menyimpan gambar dalam format ini, kualitas degradasi menurun karena kompresi lossy tersebut. Kompresi Lossy (Lossy Compression) adalah metode memperkecil ukuran file citra dengan membuang beberapa data, hal ini menyebabkan adanya sedikit penurunan kualitas citra.
Kompressi Lossy menggunakan analisis matematis yang kompleks untuk menghapus bit dari informasi gambar sehingga mata manusia tidak dapat melihat kekurangan`yang mencolok. JPEG merupakan teknik dan standard universal untuk kompresi dan dekompresi citra tidak bergerak yang digunakan pada kamera digital dan system pencitraan dengan menggunakan komputer .
2. BMP (Bitmap)
Ukuran file BMP dapat turun menjadi sepersepuluhnya setelah dikonversi menjadi JPG. Meskipun dengan penurunan kualitas gambar, pada gambar-gambar tertentu (misalnya pemandangan), penurunan kualitas gambar hampir tidak terlihat mata.
3. PNG (Portable Network Graphics)
PNG merupakan singkatan dari Portable Network Graphics. Format ini tersedia untuk umum dan versi ini dikembangkan dari Format GIFF. Format ini dapat menangani kedalaman warna hingga 48 bit (3saluran warna masing-masing 16 bit). Format PNG jauh lebih baik untuk transparansi daripada GIF, yang memungkinkan untuk memiliki berbagai tingkat transparansi untuk setiap pixel (alpha channel). Dukungan untuk format ini dimulai sejak tahun 1995, dan saat ini penggunaannya sudah cukup luas.
Secara keseluruhan, PNG adalah format yang lebih baik daripada GIF, yang menawarkan kompresi yang lebih baik, dapat menyimpan banyak warna, memiliki dukungan transparansi yang lebih baik, dan sebagainya. Satu-satunya kelemahan dari PNG dibandingkan GIFF adalah tidak bisa menyimpan gambar animasi. Karena kedalaman warna yang besar, kompatibilitas browser, dan kompresi yang kecil, format ini disarankan untuk digital fotografi. Dibandingkan dengan JPG, PNG mempunyai kualitas gambar yang lebih baik dengan ukuran file yang lebih besar. 4. GIF (Graphics Interchange Format)
GIFmerupakan singkatan dari Graphics InterchangeFormat. Format ini dapatmenyimpankedalamanwarnahanya 8 bit(256 warna). Format ini mampumenanganitransparansidalam bentuk yang sangatdasar ( setiap pixel apakah transparanatau tidak).
2.2 Peningkatan Kualitas Citra Digital (Image Enhancement)
Peningkatan kualitas citra adalah suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara. Cara-cara yang bisa dilakukan misalnya dengan fungsi transformasi, operasi matematis, pemfilteran, dan lain-lain. Tujuan utama dari peningkatan kualitas citra adalah memproses citra sehingga citra yang dihasilkan lebih baik daripada citra aslinya untuk aplikasi tertentu. Adapun parameter-parameter citra yang penting dalam proses pengolahan citra adalah:
1. Resolusi
Resolusi citra menyatakan ukuran panjang kali lebar dari sebuah citra. Resolusi citra biasanya dinyatakan dalam satuan piksel-piksel. Semakin tinggi resolusi sebuah citra, semakin baik kualitas citra tersebut. Namun, tingginya resolusi menyebabkan semakin banyaknya jumlah bit yang diperlukan untuk menyimpan dan mentransmisikan data citra tersebut.
2. Kedalaman bit
Kedalaman bit menyatakan jumlah bit yang diperlukan untuk merepresentasikan tiap piksel citra pada sebuah frame. Kedalaman bit biasanya dinyatakan dalam satuan bit/piksel. Semakin banyak jumlah bit yang digunakan untuk merepresentasikan sebuah citra, maka semakin baik kualitas citra tersebut.
2.2.1 Pelembutan Citra (Image Smoothing)
Pelembutan Citra bertujuan untuk menurunkan atau menekan gangguan pada citra. Gangguan ini umumnya berupa variasi intensitas pixel yang tidak berkorelasi dengan pixel tetangganya. Pixel yang terkena gangguan umumnya mempunyai frekuensi tinggi.
Salah satu metode yang digunakan untuk Image Smoothing adalah Lowpass Filtering (Penapis Lolos Rendah) dimana metode ini digunakan pada domain frekuensi. Prinsip Lowpass Filtering dilakukan dengan mengurangi nilai FT (Fourier Transform) pada frekuensi tinggi atau menekan komponen yang berfrekuensi tinggi dan meloloskan komponen yang berfrekuensi rendah seperti semula [3]. Contoh citra tajam dan citra hasil smoothing dapat dilihat pada gambar 2.7.
Gambar 2.7 (a) citra tajam (b) citra hasil smoothing
2.2.2 Penajaman Citra (Image Sharpening)
Gambar 2.8 (a) citra awal (b)citra penajaman tepi 2.3 Pengolahan Citra dalam Domain Frekuensi
2.3.1 Transformasi Fourier Disktrit 2-D
Transformasi Fourier merupakan salah satu dasar penting dalam pengolahan citra, dapat memproses dengan efisien dan lebih cepat. Dibandingkan dengan linear spatial filtering, maka transformasi Fourier lebih cepat (terutama jika ukuran filternya besar). Transformasi Fourier memungkinkan pengolahan dengan cara mengisolasi satu “frekuensi” tertentu pada citra, sehingga dapat digunakan untuk menerapkan LPF dan HPF dengan ketelitian yang cukup tinggi.
Karena citra digital merupakan besaran diskrit dua dimensi (2D) maka untuk analisis citra hanya dibutuhkan transformasi Fourier diskrit 2D. Untuk menganalisis citra pada domain frekuensi, hasil transformasi Fourier dapat ditampilkan sebagai citra, dimana intensitasnya sebanding dengan besarnya F(u,v) atau spectrum Fourier. Formula untuk Transformasi Fourier :
𝐹𝐹(𝑢𝑢,𝑣𝑣) =∑𝑀𝑀−𝑥𝑥=01∑𝑦𝑦𝑁𝑁−=01𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑒𝑒−𝑗𝑗2𝜋𝜋(𝑢𝑢𝑥𝑥𝑀𝑀+𝑢𝑢𝑣𝑣𝑁𝑁)... (2.1)
F(u,v) : Spectrum Fourier M,N : ukuran citra f(x,y) : intensitas pixel u:0,1,2,..,M-1
v :0,1,2,..N-1.
Untuk mendapatkan nilai f(x,y) dari persamaan 2.1 di atas, digunakan Invers dari transformasi Fourier diberikan oleh formula:
Untuk x= 0,1,2,…M-1 dan y=0,1,2,…N-1. Jadi dengan F(u,v) bisa mendapatkan f(x,y) kembali dengan merata-rata invers DFT. Nilai F(u,v) dalam formula ini kadang disebut sebagai Fourier Koefficients dari ekspansi[3]. Pada gambar 2.9(a) diperlihatkan citra grayscale kemudian pada gambar 2.9(b) diperlihatkan spektrum transformasi fouriernya yang dipusatkan di tengah.
Gambar 2.9 (a) Citra Grayscale (b)Hasil Transformasi Fourier Sumber :
Nilai transformasi pada origin domain frekuensi [F(0,0)] disebut dengan komponen dc transformasi Fourier. Jika f(x,y) adalah real, transformasinya secara umum kompleks. Metode prinsip analisis secara visual sebuah transformasi adalah menghitung spektrum dan menampilkannya sebagai citra. Jika R(u,v) dan I(u,v) merepresentasikan real dan komponen imaginary F(u,v), spektrum Fourier didefinisikan sebagai:
commons.wikimedia.org
𝐹𝐹(𝑢𝑢,𝑣𝑣) =�𝑅𝑅2(𝑢𝑢,𝑣𝑣) + 𝐼𝐼2(𝑢𝑢,𝑣𝑣) ... (2.3)
2.3.2 DFT Terpusat
Nilai spektrum di (M/2, N/2) dalam gambar 2.10(b) adalah sama dengan nilai di (0, 0) dalam gambar 2.10(a) dan nilai di (0, 0) dalam gambar 2.10(b) sama dengan nilai di (-M/2, -N/2) dalam gambar 2.10(a). Dengan cara yang sama, nilai di (M-1, N-1) dalam gambar 2.10(b) adalah sama dengan nilai di (M/2-1, N/2-N-1) dalam gambar 2.10(a). Proses ini dinamakan dengan proses shifting[8].
Gambar 2.10 Spektrum Fourier 2D, (a) kiri, (b) kanan Sumber : Prasetyo, Eko. 2011
Berdasarkan penjelasan di atas dapat diambil kesimpulan untuk mendapatkan DFT terpusat dapat dihitung dengan menggunakan formula 2.4:
𝐹𝐹(𝑢𝑢′,𝑣𝑣′) ≡ 𝐹𝐹 �𝑢𝑢 −𝑀𝑀
2,𝑣𝑣 −
𝑁𝑁
2�... (2.4)
Gambar 2.11 Proses pemusatan DFT dapat dilakukan dengan menukarkan kuadran 1 dengan 3, dan 2 dengan 4
Sumber: Solomon,Chris. 2011
2.3.3 Konsep Filter dalam Domain Frekuensi
Penapisan (filtering) pada sebuah citra digital dapat dilakukan baik dalam kawasan (domain)spasial (ruang) dan frekuensi. Mirip dengan isyarat 1 dimensi (1-D), penapisan dilakukan baikdalam kawasan waktu maupun frekuensi dengan operasi konvolusi merupakanlandasan/dasarnya. Hal tersebut dimungkinkan karena adanya hubungan dua arah padatransformasi Fourier, yakni:
𝑓𝑓(𝑥𝑥,𝑦𝑦)∗ ℎ(ℎ,𝑦𝑦) ⟺ 𝐻𝐻(𝑢𝑢,𝑣𝑣)𝐹𝐹(𝑢𝑢,𝑣𝑣) ... (2.5) dan sebaliknya :
𝑓𝑓(𝑥𝑥,𝑦𝑦)ℎ(ℎ,𝑦𝑦)⟺ 𝐻𝐻(𝑢𝑢,𝑣𝑣)∗ 𝐺𝐺(𝑢𝑢,𝑣𝑣) ... (2.6) yang artinya, konvolusi dalam kawasan waktu menjadi perkalian biasa dalam kawasan frekuensi dan sebaliknya perkalian biasa dalam kawasan waktu menjadi konvolusi dalam kawasan frekuensi.
Sebuah citra digital bisa mengandung frekuensisehingga kita bisa mengoperasikan penapisan dalam kawasan frekuensi. Singkatnya frekuensi dalam citra mengandung arti:
2. Frekuensi rendah terkait dengan perubahan yang rendah pada nilai intensitas pikselyang bertetangga, juga terkait dengan skala objek yang besar di dalam citra tersebut.
Pemfilteran dalam domain spasial berisi konvolusi citra f(x,y) mask filter h(x,y). seperti halnya teori konvolusi, juga bisa mendapatkan hasil yang sama dalam domain frekuensi dengan perkalian antara F(u,v) dengan H(u,v), transformasi fourier filter. Biasanya H(u,v) disebut sebagai filter transfer function. Fungsi berkebalikan antara pemfilteran dalam domain spasial dan pemfilteran dalam doman frekuensi diperlihatkan pada gambar 2.12.
Gambar 2.12Filter Transfer Function Sumber: Prasetyo, Eko .2011
Berdasarkan uraian konsep filtering domain frekusni maka untuk melakukan pemfilteran dalam domain frekuensi harus mengikuti diagram seperti pada gambar 2.13.
Pre-Processing
Transformasi Fourier
Fungsi Filter H(u,v)
Invers Transformasi
Fourier
Pre-Processing
F(u,v) H(u,v)F(u,v)
f(x,y) Citra Input
g(x,y) Citra ter-enhance
Fungsi filter H(u,v) dalam gambar 2.13 mengalikan bagian real dan citra dari F(u,v). jika H(u,v) real maka fase hasil tidak berubah. Dapat dilihat dalam persamaan fase dengan catatan bahwa jika pengali bagian real dan citra sama, maka dapat dibatalkan dan membiarkan fase sudut tidak berubah [8].
Adapun prosedur untuk menapis citra dalam kawasan frekuensi adalah sebagai berikut:
1. Input citra digital berupa citra *.jpg dengan ukuran lebar = ukuran tinggi. 2. Lakukan proses transformasi fourier dari citra input dengan menggunakan
FFT 2D untuk mendapatkan F(u,v) yang merupakan nilai kompleks dari transformasi fourier.
3. Hitung filter mask H(u,v) dengan ukuran lebar dan tinggi sama dengan ukuran citra input. Filter mask yang dibahas di dalam skripsi ini adalah Low Pass Filtering dan High Pass Filtering.
4. Kalikan F(u,v) dengan H(u,v) untuk mendapatkan G(u,v) yang merupakan hasil perkalian antara transformasi dengan filter mask.
5. Lakukan proses invers transformasi fourier dari G(u,v) menggunakan invers FFT2D sehingga diperolehlah citra hasil g(x,y).
2.4 Peningkatan Kualitas Citra Domain Frekuensi 2.4.1 Filter Penghalusan (Smoothing) Domain Frekuensi
Tepi dan transisi ketajaman intensitas dalam citra berkontribusi secara signifikan terhadap isi frekuensi tinggi dalam transformasi Fourier. Smoothing dicapai dalam domain frekuensi dengan pelemahan frekuensi tinggi yang disebut dengan Lowpass Filter [8].
2.4.1.1Ideal Lowpass Filter
𝐻𝐻(𝑢𝑢,𝑣𝑣) =�1 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝐷𝐷(𝑢𝑢,𝑣𝑣) ≤ 𝐷𝐷0 0 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝐷𝐷(𝑢𝑢,𝑣𝑣) >𝐷𝐷0
... (2.7)
Dimana:
H(u,v) : fungsi filter
D0 : konstanta positif (cutoff frekuensi)/titik pusat transformasi D(u,v): jarak antara titik (u,v) dalam domain frekuensi dan pusat persegi panjang frekuensi ,maka:
𝐷𝐷(𝑢𝑢,𝑣𝑣) = [(𝑢𝑢 − 𝑃𝑃/2)2+ (𝑄𝑄/2)2]1/2 ... (2.8)
P dan Q adalah ukuran pad citra yang diproses.
2.4.1.2Butterworth Lowpass Filter
Fungsi dari Butterworth Lowpass Filter dengan order n dan dengan cutoff frequency pada jarak D0 dari titik asal adalah :
𝐻𝐻(𝑢𝑢,𝑣𝑣) = 1
1+[𝐷𝐷(𝑢𝑢,𝑣𝑣)/𝐷𝐷0]2𝑛𝑛
...(2.9)
H(u,v) : fungsi filter
D0 : konstanta positif (cutoff frekuensi)/titik pusat transformasi
D(u,v): jarak antara titik (u,v) dalam domain frekuensi dan pusat persegi panjang frekuensi
n : order
2.4.1.3Gaussian Lowpass Filter
Fungsi Gaussian Lowpass Filter dinyatakan oleh persamaan berikut :
𝐻𝐻
(
𝑢𝑢
,
𝑣𝑣
) =
𝑒𝑒
−𝐷𝐷2(𝑈𝑈,𝑉𝑉)/2𝜎𝜎2 ... (2.10)H(u,v) : fungsi filter
D(u,v): jarak antara titik (u,v) dalam domain frekuensi dan pusat persegi panjang frekuensi.
Nilai e : 2,718281828459 (logaritma natural)
Bila σ = DO maka persamaan akan menjadi :
𝐻𝐻
(
𝑢𝑢
,
𝑣𝑣
) =
𝑒𝑒
−𝐷𝐷2(𝑢𝑢,𝑣𝑣)/2𝐷𝐷02... (2.11)
Dimana D0 adalah konstanta positif (cutoff frekuensi)/titik pusat transformasi Sebagai contoh, sebuah citra input dengan ukuran dimensi citra 3 x 3. Maka untuk filter mask dari Lowpass Filterakan menghasilkan filter mask dengan ukuran yang sama yaitu 3 x 3. Banyaknya elemen dari filtermask diketahui dengan mengalikan jumlah lebar dan tinggi citra input. Pada contoh ini akan menghasilkan 9 elemen filter mask.
Dengan D0 =60, maka sebelum dilakukan pemfilteran terlebih dahulu dihitung jarak D(u,v).
Perhitungan jarak dari D
D(0,0)=√02+ 02 = 0
D(0,1)=√02+ 12 = 1
D(0,2)=√02+ 22 = 2
D(1,0)=√12+ 02 = 1
D(1,1)=√12+ 12 = 1.414214
D(1,2)=√12+ 22 = 2.236068
D(2,0)=√22+ 02 = 2
D(2,1)=√22+ 12 = 2.236068
D(2,2)=√22+ 2 = 2.828427
H(0,0) →D(0,0)=0 0<60, maka H(0,0)=1 H(0,1) →D(0,1)=1 1<60, maka H(0,1)=1 H(0,2) →D(0,2)=2 2<60, maka H(0,2)=1 H(1,0) →D(1,0)=1 1<60, maka H(1,0)=1 H(1,1) →D(1,1)=1.41 1.41<60, maka H(1,1)=1 H(1,2) →D(1,2)=2.23 2.23<60, maka H(1,2)=1 H(2,0) →D(2,0)=2 2<60, maka H(2,0)=1 H(2,1) →D(2,1)=2.23 2.23<60, maka H(2,1)=1 H(2,2) →D(2,2)=2.82 2.82<60, maka H(2,2)=1
Maka diperoleh mask filter dari ideal lowpass filter sebagai berikut: 1 1 1
1 1 1 1 1 1
H(0,0) = 1
Maka diperoleh mask filter dari butterworth lowpass filter sebagai berikut:
Perhitungan mask filter untuk gaussian lowpass filter untuk formula 2.11 dengan nilai D0=60
1 0.99 0.99
0.99 0.99 0.99
H(0,0) =
𝑒𝑒
−𝐷𝐷2(0.0)/2𝐷𝐷02=
𝑒𝑒
−0/7200=
1Maka diperoleh mask filter dari gaussian lowpass filter sebagai berikut: 1 1 1
1 1 1 1 1 1
2.4.2 Filter Penajaman (Sharpening) Domain Frekuensi
Penajaman citra bisa didapat dengan menggunakan proses Highpass Filtering dengan mengurangi komponen low frequency tanpa mengganggu informasi high frequency pada transformasi Fouriernya [10]. Highpass filtering merupakan kebalikan dari lowpass filtering ,persamaannya dapat dilihat pada persamaan 2.12.
Hlp(u,v) merupakan fungsi dari lowpass filter yang berkaitan.
2.4.2.1Ideal Highpass Filter
Ideal Highpass Filter merupakan kebalikan dari Ideal Lowpass Filtering .IHPF memberikan nilai 0 untuk semua frekuensi di dalam lingkaran radius D0 ketika dilewati,tanpa melemahkan semua frekuensi di luar lingkaran diset menjadi 1.
𝐻𝐻(𝑢𝑢,𝑣𝑣) =�0 𝑗𝑗𝑓𝑓 𝐷𝐷(𝑢𝑢,𝑣𝑣) ≤ 𝐷𝐷0 1 𝑗𝑗𝑓𝑓 𝐷𝐷(𝑢𝑢,𝑣𝑣) >𝐷𝐷0
... (2.13)
H(u,v) : fungsi filter
D0 : konstanta positif (cutoff frekuensi)/titik pusat transformasi
D(u,v): jarak antara titik (u,v) dalam domain frekuensi dan pusat persegi panjang frekuensi.
2.4.2.2Butterworth Highpass Filter
Butterworth Highpass Filter merupakan kebalikan dari BLPF,memberikan nilai 0 untuk semua frekuensi di dalam lingkaran radius D0.
𝐻𝐻(𝑢𝑢,𝑣𝑣) = 1− 1
1+� 𝐷𝐷0
𝐷𝐷(𝑢𝑢,𝑣𝑣)�
2𝑛𝑛 ... (2.14)
H(u,v) : fungsi filter
D0 : konstanta positif (cutoff frekuensi)/titik pusat transformasi
D(u,v): jarak antara titik (u,v) dalam domain frekuensi dan pusat persegi panjang frekuensi.
n : order
2.4.2.3Gaussian Highpass Filter
Fungsi GHPF dengan cutoff frequency terletak pada jarak DO dari origin.
𝐻𝐻(𝑢𝑢,𝑣𝑣) = 1− 𝑒𝑒−𝐷𝐷2(𝑢𝑢,𝑣𝑣)/2𝐷𝐷02
... (2.15)
D0 : konstanta positif (cutoff frekuensi)/titik pusat transformasi Nilai e : 2,718281828459 (logaritma natural)
2.5 MSE (Mean Squared Error) dan PSNR (Peak Signal to Noise Ratio)
2.5.1 MSE
Perbaikan citra pada dasarnya merupakan proses yang bersifat subjektif sehingga parameter keberhasilannya bersifat subjektif pula. Untuk itu perlu adanya alat ukur kuantitatif yang bisa digunakan untuk mengukur kinerja prosedur perbaikan citra. Salah satu alat ukur yang digunakan adalah MSE (Mean Squared Error) [12]. Persamaannya:
𝑀𝑀𝑀𝑀𝑀𝑀= 1
𝑀𝑀𝑁𝑁∑ ∑ (𝑓𝑓𝑗𝑗(𝑗𝑗,𝑗𝑗)− 𝑓𝑓𝑏𝑏(𝑗𝑗,𝑗𝑗))
2
𝑁𝑁 𝑗𝑗=1
𝑀𝑀
𝑗𝑗=1 ... (2.16)
M dan N adalah ukuran panjang dan lebar citra fa(i,j) : intensitas citra di titik(i,j) pada citra asal.
fb(i,j) : intensitas citra di titik(i,j) pada citra hasil.
2.5.2 PSNR
PSNR merupakan nilai perbandingan antara harga maksimum warna pada citra hasil filtering dengan kuantitas gangguan (noise) yang dinyatakan dalam satuan decibel(dB), noise yang dimaksud adalah akar rata-rata kuadrat nilai kesalahan
(√𝑀𝑀𝑀𝑀𝑀𝑀) [6]. Secara matematis, nilai PSNR dapat dirumuskan sebagai berikut:
𝑃𝑃𝑀𝑀𝑁𝑁𝑅𝑅 = 20 . log 10 ( 255