BAB 2
TINJAUAN PUSTAKA
2.1 Pengertian citra
Secara umum pengertian citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dari suatu objek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa foto, bersifat analog berupa sinyal-sinyal video seperti gambar pada monitor televisi, atau bersifat digital yang dapat langsung disimpan pada suatu media penyimpanan (Sutoyo & Mulyanto, 2009).
Citra secara umum terbagi menjadi dua bagian, yaitu citra analog dan citra digital. Citra analog merupakan citra yang bersifat kontinu, seperti gambar pada monitor televisi, lukisan, dan lain sebagainya. Citra digital merupakan representasi dari sebuah citra dua dimensi sebagai sebuah kumpulan nilai digital yang disebut elemen gambar atau piksel. Piksel adalah satuan terkecil dari citra yang mengandung nilai terkuantisasi yang mewakili kecerahan dari sebuah warna pada sebuah titik tertentu.
2.1.1. Resolusi Citra
1. Resolusi pixel
Resolusi pixel merupakan perhitungan jumlah pixel dalam sebuah citra digital. Sebuah citra dengan tinggi N pixel dan lebar M pixel berarti memiliki resolusi sebesar M x N. Resolusi pixel akan memberikan dua buah angka integer yang secara berurutan akan mewakili jumlah pixel lebar dan jumlah pixel tinggi dari citra tersebut.
Pengertian lainnya dari resolusi pixel adalah merupakan hasil perkalian jumlah pixel lebar dan tingginya dan kemudian dibagi dengan 1 juta untuk mengubah ukuran citra tersebut dalam bentuk mega pixel. Jenis resolusi pixel seperti ini sering kali dijumpai dalam karena digital. Suatu citra yang memiliki lebar 2.048 pixel dan tinggi 1.536 pixel makan akan memiliki total pixel sebanyak 2.048 x 1.536 = 3.145.728 pixel atau 3,1 mega pixel.
2. Resolusi spasial
Resolusi spasial menunjukkan seberapa dekat jarak setiap garis pada citra. Jarak tersebut tergantung dari sistem yang menciptakan citra tersebut. Resolusi spasial menghasilkan jumlah pixel per satuan panjang. Resolusi spasial dari sebuah monitor komputer adalah 72 hingga 100 garis per inchi atau dalam resolusi pixel 72 hingga 100 pixle per inchi (ppi).
3. Resolusi spektrum
4. Resolusi temporal
Resolusi temporal berkaitan dengan video. Suatu video merupakan kumpulan frame statis yang berupa citra yang berurutan dan ditampilkan secara cepat. Resolusi temporal memberikan jumlah frame yang dapat ditampilkan setiap detik dengan satuan frame per second (fps).
5. Resolusi radiometrik
Resolusi ini memberikan nilai atau tingkat kehalusan citra yang dapat ditampilkan dan biasanya ditampilkan dalam satuan bit contoh citra 8 bit dan citra 256 bit. Semakin tinggi resolusi radiometrik ini makan semakin baik perbedaan intensitas yang ditampilkan
2.2 Jenis-jenis Citra Digital
Citra digital memiliki beberapa jenis, yaitu (Sianipar, 2013) :
1. Citra biner : Setiap piksel hitam atau putih. Karena hanya ada dua kemungkinan nilai pada setiap piksel maka yang diperlukan hanya satu bit per piksel. Citra seperti ini sangat efisien untuk penyimpanan. Contoh citra biner dapat dilihat pada gambar 2.1.
2. Citra abu-abu (grayscale) : Setiap piksel merupakan bayangan abu-abu yang memiliki nilai intensital 0 (hitam) sampai 255 (putih). Rentang ini berarti bahwa setiap piksel dapat direpresentasikan oleh delapan bit atau satu byte. Contoh citra abu-abu (grayscale) dapat dilihat di gambar 2.2.
Gambar 2.2 Citra abu-abu (Grayscale)
Gambar 2.3 Citra warna (RGB)
2.3 Pengolahan Citra
2.4 Operasi Pengolahan Citra
Operasi-operasi yang dilakukan di dalam pengolahan citra banyak ragamnya. Secara umum, operasi pengolahan citra dapat diklasifikasikan dalam beberapa jenis sebagai berikut (Munir, 2007) :
1. Peningkatan kualitas citra (image enhancement)
Jenis operasi ini bertujuan untuk memperbaiki kualitas citra dengan cara memanipulasi parameter-parameter citra. Dengan operasi ini, ciri-ciri khusus yang terdapat di dalam citra lebih ditonjolkan.
Contoh-contoh operasi perbaikan citra : a. Perbaikan kontras gelap/terang
b. Perbaikan tepian objek (edge enhancement) c. Penajaman (sharpening)
d. Pemberian warna semu (pseudocoloring) e. Penapis derau (noise filtering)
2. Perbaikan citra (image restoration)
Operasi ini bertujuan untuk menghilangkan atau meminimumkan cacat pada citra. Tujuan perbaikan citra hampir sama dengan operasi peningkatan kualitas citra. Bedanya, pada perbaikan citra penyebab degradasi gambar diketahui.
3. Pemampatan citra (image compression)
Pemampatan citra atau kompresi citra bertujuan untuk meminimalkan kebutuhan memori dalam merepresentasikan citra digital dengan mengurangi duplikasi data di dalam citra sehingga memori yang dibutuhkan menjadi lebih sedikit daripada representasi citra semula. Hal yang penting dalam jenis operasi ini adalah citra yang dimampatkan harus tetap mempunyai kualitas gambar yang bagus.
4. Segmentasi citra (image segmentation)
Segmentasi citra bertujuan untuk membagi wilayah-wilayah yang homogen. Segmentasi membagi citra ke dalam daerah intensitasnya masing-masing sehingga bisa membedakan antara objek dan background-nya. Tingkat keakurasian segmentasi bergantung pada tingkat keberhasilan prosedur analisis yang dilakukan. Jenis operasi ini berkaitan dengan pengolahan pola.
5. Analisis citra (image analysis)
Jenis operasi ini bertujuan mengitung besaran kuantitif dari citra untuk menghasilkan deskripsinya. Teknik analisis citra mengekstraksi ciri-ciri tertentu yang membantu dalam identifikasi objek.
6. Rekonstuksi citra (image recontruction)
2.5 Format File Citra
Format file citra standar yang digunakan saat ini terdiri dari beberapa jenis. Format-format ini digunakan dalam menyimpan citra dalam sebuah file. Setiap Format-format memiliki karakteristik masing-masing. Berikut beberapa format umum yang sering digunakan, yaitu :
1. Bitmap (.bmp)
Format .bmp adalah format penyimpanan standar tanpa kompresi yang umum dapat digunakan untuk menyimpan citra biner hingga citra warna. Format ini terdiri dari beberapa jenis yang setiap jenisnya ditentukan dengan jumlah bit yang digunakan untuk menyimpan sebuah nilai piksel.
2. Portable Network Graphics (.png)
Format .png adalah format penyimpanan citra terkompresi. Format ini dapat digunakan pada citra grayscale, citra dengan palet warna, dan juga citra fullcolor. Format .png juga mampu menyimpan informasi hingga kanal alpha dengan penyimpanan sebesar 1 hingga 16 bit per kanal.
3. Joint Photografic Group (.jpg)
2.6 Peningkatan Kualitas Citra (Image Enhancement)
Peningkatan kualitas citra adalah suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara. Cara-cara yang bisa dilakukan misalnya dengan fungsi transformasi, operasi matematis, pemfilteran, dan lain-lain. Tujuan utama dari peningkatan kualitas citra adalah untuk memproses citra sehingga citra yang dihasilkan lebih baik daripada citra aslinya untuk aplikasi tertentu. Contoh peningkatan kualitas citra dapat dilihat pada gambar 2.4.
Gambar 2.4 Peningkatan kualitas citra
2.6.1 Filter spasial (Spatial Filtering)
Pentapisan pada pengolahan citra biasa disebut dengan pentapisan spasial (spatial filtering). Filter spasial adalah operasi yang dilakukan terhadap intensitas piksel dari
Proses penapisan spasial tidak dapat dilepaskan dari teori kernel (mask). Untuk itu sebelum membahas proses penapisan akan diawali pembahasan tentang konsep kernel. Jenis metode yang digunakan untuk peningkatan kualitas citra (image enhacement) pada bagian spatial filtering adalah low pass filter dan high pass filter. Sedangkan bagian-bagian dari low pass filter dan high pass filter akan membentuk suatu metode yaitu high boost filter.
2.6.2 Kernel
Kernel adalah matrik yang pada umumnya berukuran kecil dengan elemen-elemennya adalah berupa bilangan. Kernel digunakan pada proses konvolusi. Oleh karena itu kernel juga disebut dengan convolution window (jendela konvolusi). Ukuran kernel dapat berbeda-beda, seperti 2 x 2, 3 x 3, 5 x 5, dan sebagainya. Elemen-elemen kernel yang juga disebut bobot (weight) merupakan bilangan-bilangan yang membentuk pola-pola tertentu. Kernel biasa juga disebut dengan tapis (filter), template, mask, serta sliding window.
(a) (b)
Gambar 2.5 Kernel (2x2) pada bagian (a) dan kernel (3x3) pada bagian (b)
1 -1 1
-1 4 -1
1 -1 1
1 0
2.6.3 Filter Pelolos Rendah (Low Pass Filter)
Low pass filter adalah proses filter yang mengambil citra dengan gradiasi intensitas
yang halus dan perbedaan intensitas yang tinggi akan dikurangi atau di buang, sehingga filter sangat cocok untuk proses penghalusan citra. Ciri-ciri dari fungsi low pass filter adalah sebagai berikut :
1. Untuk menghaluskan citra
2. Didasarkan pada perata-rataan nilai piksel dengan tetangga 3. Bobot filter selalu positif yang totalnya bernilai 1
4. Contoh beberapa filternya adalah :
1
High pass filter adalah proses filter yang mengambil citra dengan gradiasi intensitas
yang tinggi dan perbedaan intensitas yang rendah akan dikurangi atau dibuang. Nilai koefisien filter ini pada koordinat pusat bernilai positif dan koefisie kelilingnya bernilai negatif. Bila proses pentapisan dilakukan di atas area yang nilai intensitasnya konstan atau mengalami perubahan yang lama maka nilai piksel keluaran adalah nol atau sangat kecil. Agar itu terjadi, maka digunakan filter pelolos rendah dan filter pelolos semua (allpass filter) Ciri-ciri fungsi high pass filter adalah :
1. Disebut sebagai sharpening mask, karena mempercepat pergantian batas gelap dan terang
2. Filter memiliki nilai positif di tengah, negatif di pinggir, dan total keseluruhan bobot harus 0
3. I adalah image
W = [
0 0 0 0 1 0 0 0 0]
Matriks diatas disebut sebagai matriks pelolos semua (allpass filter), Artinya :
𝐼
𝑎𝑙𝑙𝑝𝑎𝑠𝑠=
𝑊
𝑎𝑙𝑙𝑝𝑎𝑠𝑠 𝑓𝑖𝑙𝑡𝑒𝑟*
𝐼
𝑎𝑠𝑙𝑖Maka high pass filter adalah :
𝐼
ℎ𝑖𝑔ℎ𝑝𝑎𝑠𝑠=
𝐼
𝑎𝑙𝑙𝑝𝑎𝑠𝑠−
𝐼
𝑙𝑜𝑤𝑝𝑎𝑠𝑠=
𝑊
𝑎𝑙𝑙𝑝𝑎𝑠𝑠*
𝐼
𝑎𝑠𝑙𝑖− 𝑊
𝑙𝑜𝑤𝑝𝑎𝑠𝑠*
𝐼
𝑎𝑠𝑙𝑖=
(𝑊
𝑎𝑙𝑙𝑝𝑎𝑠𝑠− 𝑊
𝑙𝑜𝑤𝑝𝑎𝑠𝑠)*
𝐼
𝑎𝑠𝑙𝑖Sehingga dapat mengidentikkan bahwa :
𝑊
ℎ𝑖𝑔ℎ𝑝𝑎𝑠𝑠=
𝑊
𝑎𝑙𝑙𝑝𝑎𝑠𝑠− 𝑊
𝑙𝑜𝑤𝑝𝑎𝑠𝑠Beberapa contoh matiks high pass filter yang berasa dari low pass filter adalah
2.6.5 High Boost Filter
High boost filter adalah proses filter yang berasal dari citra dengan dasar
pemrosesannya menggunakan metode low pass filter dan high pass filter. Metode ini memiliki ciri-ciri sebagai berikut :
1. Jika A = 1, maka high boost filter akan menjadi high pass filter biasa. 2. Hasilnya adalah citra yang lebih tajam pada bagian pinggirnya 3. Memiliki rumus :
High boost = A(asli) – (lowpass)
= A(asli) – ((asli) – (highpass)) = (A-1)(asli) + (highpass) Atau
High boost filter = (A – 1) allpass filter + high pass filter... (Najarian, Splinter. 2012)
2.7 Perbaikan Citra (Image Restoration)
Restorasi citra digital adalah suatu teknik yang memperhatikan bagaimana mengurangi perubahan bentuk dan penurunan kualitas citra yang diawali selama pembentukan citra tersebut. Restorasi citra berfokus pada penghilangan atau penekanan degradasi yang terjadi selama proses pengembalian bentuk citra sebernarnya. Degradasi semacam itu termasuk derau (noise), yang meliputi error pada nilai-nilai piksel, dan pengaruh optik seperti pengaburan fokus atau karena gerakan kamera.
Gambar 2.6 Perbaikan citra
2.8 Derau (Noise)
Noise merupakan gangguan yang disebabkan oleh menyimpangnya data digital yang
diterima oleh alat penerima data gambar yang mana dapat menurunkan kualitas citra. Derau dapat disebabkan oleh gangguan fisis (optik) pada alat penangkap citra misalnya kotoran debu yang menempel pada lensa foto maupun akibat proses pengolahan yang tidak sesuai.
2.8.1 Gaussian noise
Gaussian noise merupakan model noise yang mengikuti distribusi normal standar dengan rata-rata nol dan standar deviasi 1. Efek dari noise ini pada gambar adalah munculnya titik-titik berwarna yang jumlahnya sama dengan persentase noise. Noise ini dapat dirumuskan sebagai berikut beserta contoh gambar noise tersebut (Prihatini, 2010).
𝑓(𝑖, 𝑗) = 𝑔(𝑖, 𝑗) + 𝑝. 𝑎 ......……..(1)
Dimana : a = nilai bilangan acak berdistribusi gaussian p = persentase noise
f(i,j) = nilai citra terkena noise
g(i,j) = nilai citra sebelum terkena noise
2.8.2 Salt and Pepper noise
Salt and pepper noise disebut juga dengan derau impuls, derau shot atau derau biner.
Bentuk noise yang biasanya terlihat titik-titik hitam dan putih pada citra seperti tebaran garam dan merica. Noise ini disebabkan karena terjadinya error bit dalam pengiriman data, piksel-piksel yang tidak berfungsi dan kerusakan pada lokasi memori.
……….(2)
Dimana p(z) adalah fungsi probabilitas kepadatan noise, Pa adalah probabilitas noise jenis a (pepper) dan Pb adalah probabilitas noise b(salt) . Jika b>a , intensitas b akan tampak sebagai titik terang pada citra. Sebaliknya, level a akan tampak seperti titik gelap. Jika selain Pa atau Pb nol, impulse noise disebut juga unipolar. Jika Probabilitas selain nol , dan khususnya diperkirakan sama, nilai impulse noise akan mirip butiran salt and pepper secara acak yang terdistribusi pada citra. Dengan alasan inilah noise
bipolar impulse disebut juga salt-and-pepper noise (Sutoyo & Mulyanto, 2009). Seperti diberikan pada Gambar 2.7
2.9 Mean Filter
Mean Filter adalah filter yang digunakan untuk menghaluskan gambar yang terlalu
kasar. Jika filter ini dilakukan pada gambar yang halus, maka hasil gambar tersebut akan semakin kabur. Contoh yang termasuk metode ini adalah Arithmetic Mean Filter.
Arithmetic Mean Filter adalah metode yang paling mudah dari Mean Filter. Pada algoritma ini proses yang dilakukan adalah menghitung rata-rata dari citra yang rusak g(s,t) pada sebuah blok area citra yang didefinisikan oleh 𝑆𝑥𝑦. Nilai dari citra f(x,y) yang diperbaiki pada tiap titik (x,y) hanya dihitung dengan menggunakan piksel dalam daerah yang didefinisikan oleh 𝑆𝑥𝑦 dengan rumus:
𝑓(𝑥, 𝑦) =𝑚𝑛1 ∑(𝑠,𝑡)∈𝑆𝑥𝑦 𝑔(𝑠, 𝑡)……….…….(3)
Dimana :
m = baris dari sebuah matriks n = kolom dari sebuah matriks
𝑓(x,y) = koordinat citra pada titik tengah matriks yang akan dirubah
𝑔(s,t) = koordinat citra rusak yang berada pada seluruh 𝑆𝑥𝑦
𝑆𝑥𝑦 = blok area citra yang berada pada matriks
Biasanya matriks ini berukuran [ganjil x ganjil] agar ada poros tengah karena hasil perhitungan rerata akan diberikan pada titik tengah dari matriks. Perhatikan contoh berikut untuk memperjelas operasi ini.
Gambar 2.9 Citra dengan nilai piksel
230 229 232
237 236 236
255 255 255
𝑆𝑥𝑦 Maka hasil filter-nya :
𝑓(𝑥, 𝑦) = 1
𝑚𝑛∑(𝑠,𝑡)∈𝑆𝑥𝑦 𝑔(𝑠, 𝑡)
= 1
(3)(3) (230+229+232+237+236+236+255+255+255)
= 1
(9) (2165)
= 240.555
≅ 241
Maka matriks 𝑆𝑥𝑦 hasil filter adalah
230 229 232
237 241 236
3.0 Mean Square Error (MSE)dan Peak Signal to Noise Ratio (PNSR)
Ada beberapa parameter pengukuran kesalahan atau error dalam pemrosesan citra. Dua parameter yang paling umum digunakan adalah Mean Square Error (MSE) dan Peak Signal to Noise Ratio (PNSR).
Walaupun tidak selalu berkorelasi dengan persepsi visual manusia, MSE merupakan ukuran yang baik untuk mengukur kesamaan dua buah citra yang
𝑓𝑏(i,j) = intensitas citra di titik (i,j) setelah noise dihilangkan
Semakin kecil nilai MSE, semakin bagus perbaikan citra yang digunakan.
PSNR merupakan nilai perbandingan antara harga maksimum warna pada citra hasil filtering dengan kuantitas gangguan (noise) yang dinyatakan dalam satuan decibel (db), noise yang dimaksud adalah akar rata-rata kuadrat nilai kesalahan (
MSE). Secara Matematis, nilai PSNR dapat dinyatakan dengan persamaan berikut :
...(5)