• Tidak ada hasil yang ditemukan

resume04_9. 117KB Jun 04 2011 12:07:02 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "resume04_9. 117KB Jun 04 2011 12:07:02 AM"

Copied!
2
0
0

Teks penuh

(1)

Journal de Th´

eorie des Nombres

de Bordeaux

17

(2005), 749–766

Effective bounds for the zeros of linear

recurrences in function fields

par

Clemens FUCHS

et

Attila PETH ˝

O

R´esum´e. Dans cet article, on utilise la g´en´eralisation de l’in´egalit´e de Mason (due `a Brownawell et Masser [8]) afin d’exhiber des bornes sup´erieures effectives pour les z´eros d’une suite lin´eaire r´ecurrente d´efinie sur un corps de fonctions `a une variable.

De plus, on ´etudie de probl`emes similairs dans ce contexte, comme l’´equation Gn(x) = Gm(P(x)),(m, n) ∈ N

2

, o`u (Gn(x))

est une suite r´ecurrente de polynˆomes etP(x) un polynˆome fix´e. Ce probl`eme a ´et´e ´etudi´e auparavant dans [14,15,16,17,32].

Abstract. In this paper, we use the generalisation of Mason’s inequality due to Brownawell and Masser (cf. [8]) to prove effective upper bounds for the zeros of a linear recurring sequence defined over a field of functions in one variable.

Moreover, we study similar problems in this context as the equation Gn(x) = Gm(P(x)),(m, n) ∈ N

2

, where (Gn(x)) is a

linear recurring sequence of polynomials andP(x) is a fixed poly-nomial. This problem was studied earlier in [14,15,16,17,32].

[8]W. D. Brownawell, D. Masser, Vanishing sums in function fields. Math. Proc. Cambridge Philos. Soc. 100(1986), 427–434.

[14] C. Fuchs, On the equation Gn(x) = Gm(P(x)) for third order linear recurring

sequences. Port. Math. (N.S.)61(2004), 1–24.

[15]C. Fuchs, A. Peth˝o, R. F. Tichy,On the Diophantine equationGn(x) =Gm(P(x)).

Monatsh. Math. 137(2002), 173–196.

[16]C. Fuchs, A. Peth˝o, R. F. Tichy,On the Diophantine equationGn(x) =Gm(P(x)):

Higher-order recurrences. Trans. Amer. Math. Soc. 355(2003), 4657–4681.

[17]C. Fuchs, A. Peth˝o, R. F. Tichy,On the Diophantine equation Gn(x) =Gm(y)

withQ(x, y) = 0. Preprint (http://finanz.math.tu-graz.ac.at/∼fuchs/oegngmad4.ps).

[32] U. Zannier, On the integer solutions of exponential equations in function fields. Ann. Inst. Fourier (Grenoble)54(2004), 849–874.

Manuscrit re¸cu le 1er janvier 2004.

This work was supported by the Austrian Science Foundation FWF, grants S8307-MAT and J2407-N12.

(2)

750 ClemensFuchs, AttilaPeth˝o

ClemensFuchs Institut f¨ur Mathematik Technische Universit¨at Graz Steyrergasse 30

8010 Graz, Austria

Current Address:Mathematisch Instituut, Universiteit Leiden, Niels Bohrweg 1, Postbus 9512, 2300 RA Leiden, The Netherlands

E-mail:[email protected]

URL:http://www.finanz.math.tugraz.at/∼fuchs

AttilaPeth˝o

Institute of Informatics University of Debrecen, Debrecen Pf. 12 4010 Debrecen, Hungary E-mail:[email protected]

Referensi

Dokumen terkait

Probabilistic finite state automata generating strings of let- ters is used to represent the symbolic time series.. A symbolic time series as a model is developed, and a measure of

c/o 8520 Burning Tree Road Bethesda, Maryland, 20817, USA. E-mail

Cette note est un survol des r´esultats r´ecents sur la r´eduction semi-stable des revˆetements de la droite projective ra- mifi´es en trois

We show that, given the Poisson process points, almost surely, the chance of surviving to time t is like e − αlog ( 1 k ) t , as t tends to infinity if k, the jump rate of the

Keywords and phrases: Diffusion Process, Geometric Brownian Motion, Markov Intertwining Kernel, (strict) Local Martingale,

activated random walk (ARW) model is an interacting particle system on G , in which the number of particles initially on each vertex is independently distributed according to law µ..

In section 2 we give some examples of application of the abstract concentration inequality to empirical processes that demonstrate some interesting properties of Talagrand’s

(6) The proof of this result relies heavily on particular properties of the stable driving process of index 1 < α < 2; a result for case 0 < α < 1 under very weak