• Tidak ada hasil yang ditemukan

DAFTAR PUSTAKA. [Anonim] Quality Criteria for Water 1986, United States Environmental Protection Agency. EPA 440/ Washington.

N/A
N/A
Protected

Academic year: 2021

Membagikan "DAFTAR PUSTAKA. [Anonim] Quality Criteria for Water 1986, United States Environmental Protection Agency. EPA 440/ Washington."

Copied!
24
0
0

Teks penuh

(1)

DAFTAR PUSTAKA

Allen H.E. 1993. The Significance Of Trace Metal Speciation for Water, Sediment, and Soil Quality Criteria and Standards. The Sci. of Tot. Environ. Supple. 12: 23-45.

Ankley G.T., M.K.Schubauer-Berigan, and J.R. Dierkes. 1991. Predicting The Toxicity of Bulk Sediments to Aquatic Organisms with Aqueous Test Fractions: Pore Water Vs Elutriate. Environmental Toxicology and Chemistry 10: 1359-1366.

[Anonim]. 1986. Quality Criteria for Water 1986, United States Environmental Protection Agency. EPA 440/5-86-001. Washington.

[Anonim]. 1992. Sediment Classification Methods Compendium. EPA 823-R-92-006. Washington.

[Anonim]. 1999. Sediment Quality Guidelines Developed for The National Status and Trends Programs. NOAA.

[Anonim]. 2004. Booklet Indonesia Power Unit Bisnis Pembangkitan Saguling.

[Anonim]. 2004a, Background Information on Mercury Sources and Regulations, US-EPA, Great Lakes Pollution Prevention and Toxics Reduction, http://www.epa.gov/grtlakes/bnsdocs/mercsrce/merc_srce.html#

Producing %20or%20Supplying%20Mercury [14 Juli 2004].

[Anonim]. 2004b. Menkimbangwil Serahkan Instalasi Pengolahan Air Limbah Senilai Rp. 27,48 Milyar. http://www.pu.go.id/humas/mei/kbw 2404005 .htm [14 Juli 2004].

[Anonim]. 2005. Laporan Hasil Pemantauan Kualitas Air Waduk Saguling. Triwulanm II. Pusat Penelitian Sumber Daya Alam dan Lingkungan, Lembaga Penelitian–Universitas padjajaran, Bandung.

Armitage P.D., D. Moss, J.F. Wright, and M.T. Furse. 1983. The Performance of a New Biological Water Quality Score System Based on Macroinvertebrates

(2)

Over a Wide Range of Polluted Running-Water Sites. Water Research 17: 333-347.

Barbour M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. Second Edition. EPA 841-B-99-002. US-EPA. Office of Water Washington. D.C.

Beckvar N., J. Field, S. Salazar, and R. Holf. 1996. Contaminants in Aquatic Habitat at Hazardous Waste Sites: Mercury, NOAA Technical Memorandum NOS ORCA 100. Seattle. Washington.

Benhard T. 2000. Metal Bioavailability in The Navy’s Tiered Ecological Risk Assessment Process. USA.

Berkman H.E., C.F. Rabeni, and T.P. Boyle. 1988. Biomonitors of Stream Quality in Agricultural Areas: Fish Versus Invertebrates. Environmental Management 10(3): 413-419.

Besser J.M., Kubitz J.A., C.G. Ingersoll, W.E. Braselton, and J.P. Giesy. 1995. Influences on Copper Bioaccumulation, Growth, and Survival of The Midge, Chironomus tentans, in Metal-Contaminated Sediments. Journal of Aquatic Ecosystem Health 4: 157-168.

Besser J.M., J.P. Giesy, J.D. Kubitz, D.A. Verbrugge, T.G. Coon, and W. E. Braselton. 1996b. Assessment of Sediment Quality in Dredged and Undredge Areas of The Trenton Channel of The Detroit River, Michigan USA Using The Sediment Quality Triad. J.Great Lakes Res. 22(3): 683-696.

Bisthoven L.J., J.P. Postma, P. Parren, K.R. Timmermans, and F. Ollevier. 1998. Relation Between Heavy Metal in Aquatic Sediments in Chironomus Larvae of Belgian Lowland Rivers and Their Morphological Deformities. Can. J. Fish Aquat. Sci. 55: 688-703.

Blackmore, L.C., P.L. Searle, and B.K. Daly. 1981. Methods for Chemicals Analysis of Soils. N.Z. Soil Bureau Sci. Rep. 10 A. Soil Bureau. Sower Hutt. New Zealand.

(3)

Blaise, C., and K. Takashi. 1997. Acute Toxicity Assessment of Industrial Effluents with A. Microplate Based Hydra attenuata assay. Environ Toxicol Water Qual. 12: 53-60.

Bode, R.W., M.A. Novak, and L.E. Abele. 1996. Quality Assurance Workplan for Biological Stream Monitoring in New York State. NYS Department of Environmental Conservation. Albany. New York.

Boening, D.W. 2000. Ecological Effects, Transport, and Fate of Mercury: a General Review. Chemosphere 40: 1335-1351.

Brahmana, S.S. and A. Firdaus. 1997. Eutrophication in Three Reservoirs at Citarum River, Its Relation to Beneficial Uses. Proceeding Workshop on Ecosystem Approach to Lake and Reservoir Management. hlm 199-211. Bray, RH. and L.T. Kurtz. 1945. Determination of Total Organic and Available Form

of Phosphorus in Soil. Soil Sci. 59: 39-45.

Brezonik, P.L., S.O. King, and C.E. Mach. 1991. The Influence of Water Chemistry on Trace Metal Bioavailability and Toxicity to Aquatic Organism. Di dalam: Newman MC. and Mintosh AW. editor. Metal Ecotoxicology concepts and Application. Lewis Publishers. Michigan. USA. hlm 1-26. Burton, J.A. 2002. Sediment Quality Criteria in Use Around The World. Limnology

3: 65-75.

Burton, J.A., and C.G. Ingersoll. 1994. Evaluating the Toxicity of Sediments. The ARCS Assessment Guidance Document. EPA/905-B94/002. U.S. Environmental Protection Agency. Chicago.

Cairns, Jr.J. and K.L.Dickson 1971. A Simple Method for The Biological Assessment of the Effects of Waste Discharge on Aquatic Bottom Dwelling Organism. Journal Water Pollution Control Federation 43(50): 755-765.

Cairns, Jr.J., A.G. Heath, and B.C. Parker. 1975. The Effects of Temperature Upon The Toxicity of Chemicals to Aquatic Organisms. Hydrobiologia 47 (1): 135-171.

(4)

Calmano, W., W. Ahlf, and U. Fostner. 1997. Sediment Quality Assessment: Chemical and Biological Approach. Springer-verlag. Berlin Heidelberg. Germany. hlm 1-35.

Canfield, T.J., N.E. Kimble, W.G. Grumbaugh, F.J. Dwyer, C.G. Ingersoll, and J.F. Fairchild. 1994. Use of Benthic Macroinvertebrate Community Structure and Sediment Quality Triad to Evaluate Metal Contaminated Sediment in The Upper Clark Fork River. Montana. Environ. Toxic. Chem. 13: 1999-2012.

Chapman, D. 1996. Water Quality Assessment. E & Fn Spon. London. UK.

Chapman, P.M. 1996. Presentation and Intepretation of Sediment Quality Triad Data. Ecotoxicology 5:327-339.

Chapman, P.M., F. Wang, C. Janssen, G. Persoone, and H.E. Allen. 1998. Ecotoxicology of Metals in Aquatic Sediments: Binding and Release, Bioavailability, Risk Assessment, and Remediation. Can. J. Fish Aquat. Sci. 55: 2221-2243.

Chapman, P.M. 2007. Determining When Contamination is Pollution-Weight of Evidence Determination for Sediment and Effluents. Environment International 33: 492-501.

Chapman, P.M., L.M. Churcland, P.A. Thompson, and E. Michnowsky. 1980. Heavy Metal Studies with Oligochaetes. In Proceedings of the First International Symposium on Aquatic Oligochaete Biology. Sydney. British Colombia. Canada. Aquatic Oligochaete Biology. hlm 477-502.

Davies, S.P. and L. Tsomides. 1997. Methods for Biological Sampling and Analysis of Maine’s Inland Water. Maine Department of Environmental Protection. Augusta-Maine.

Ford, J. 1989. The Effects of Chemical Stress on Aquatic Species Composition and Community Structure in Ecotoxicology: Problems and Aproaches. Di dalam: L.M. Harwell, J. Kelly, and K. Kimball, editors. New York. Springer–Verlag. hlm 9-32.

(5)

Fὅrtstner, U. 1983a. Metal pollution assessment from Sediment Analysis. in Metal Pollution In Aquatic Environment. Springer Verlag. Berlin Heidelberg. Germany. hlm 110-196.

Fὅrtstner, U. 1983b. Metal Transfer Between Solids and Aqueous Phases. in Metal Pollution In Aquatic Environment. Springer Verlag. Berlin Heidelberg. Germany. hlm 197-269.

Fὅrtstner, U. and G.T. Whittmann. 1983. Toxic Metal. In Metal Pollution in Aquatic Environment. Springer Verlag. Berlin Heidelberg. Germany. hlm 3-68. Gerhardt, A., L.J. De Bisthoven, and A.M.V.M. Soares. 2004. Macroinvertebrtae

Response to Acid Maine Drainage: Community Structure and On-line behavioral taoxicity bioassay. Environmental Pollution 130: 263-274 Giesy, J.P., and R.A. Hoke. 1989. Freshwater Sediment Toxicity Bioassessment:

Rationale for Species Selection and Test Design. J. Great Lakes Res 15(4): 539-569.

Giesy, J.P., and R.A. Hoke 1990. Freshwater sediment Quality Criteria: Toxicity Bioasessment: Chapter 9, in R. Baudo, J.P. Giesy, H. Muntau: Sediments: Chemistry and Toxicity of In-Place pollutants. Lewis Publishers Inc. Ann Arbor Boca Raton Boston. Michigan. hlm 265-348.

Giesy, J. P., and R. A. Hoke. 1991. Bioassessment of The Toxicity of Freshwater Sediment. Verh. Internat. Verein. Limnol. 24: 2313-2321.

Giesy J.P., J.R. Cornell, and L.G. Robert. 1990. Benthic Invertebrate Bioassay with Toxic Sediment and Pore Water. Environ. Toxic. Chem. 9: 233-248. Gonzales, A.E., M.T. Rodriguez, J.C.J. Sanchez, A.J.F. Espinoza, and F.J.B. De la

Rosa. 2000. Assessment of Metals in Sediments in a Tributary of Guadalquiver River (Spain): Heavy Metal Partitioning and Relation Between Water and Sediment System. Water Air Soil Pollut.121:11–29 Graham, E.R. 1948. Determination of Soil Organic Matter by Means a Photoelectric

Colorimeter. Soil Sci. 65 : 181-187.

Harsono, E., T. Tarigan, S. Sunanisari, F. Sulawesty, H. Wibowo, S. Nomosatrio, Y. Mardiyati, dan E. Mulyana. 2003. Pengelolaan Ekosistem dan

(6)

Produktivitas Das Citarum: Pengembangan Model Kualitas Air Waduk Saguling, Cirata, Jatiluhur. Sari Laporan Penelitian Tahun 2003. http://www.geotek.lipi.go.id/georefs/sari2003/ LapPen2003_PPDAS.htm [13 Agustus 2004]

Hart, B.T., W.V. Dok, and N. Djuangsih. 2002. Nutrient Budget for Saguling Reservoir, West Java, Indonesia. Water Research 36: 2152-2160.

Harkey, G.A., P.F. Landrum, and J.K. Stephen. 1994.Comparison of Whole Sediment, Elutriate and Pore Water Exposure for Use in Assessing Sediment-Associated Organic Contaminant in Bioassay. Environ. Toxic.Chem. 13 (8): 1315-1329.

Hollert H., M. Dürr, H. Olsman, K. Haldin, B.V. Bavel, W. Brack, M. Tysklind, M. Engwall, and T. Braunbeck. 2002a. Biological and Chemical Determination of Dioxin-Like Compound in Sediment by Means of Sediment Triad Approach in the Catchment Area of the River Neckar. Ecotoxicology 11: 323-336.

Hollert H., S. Heise, S. Pudenz, R. Bruggemann, W. Ahlf, and T. Braunbeck. 2002. Application of a Sediment Quality Triad and Different Statistical Approaches (Hasse Diagram and Fuzzy Logic) for the Comparative Evaluation of Small Stram. Ecotoxicology 11: 311-321.

Hornberger, M.I., J.H. Lambing, S.N. Luoma, and E.V. Axtmann. 1997. Spatial and Temporal Trends of Trece Metals in Surface Water, Bed Sediment, and Biota of The Upper Clark Fork Basin. Montana. 1985-95. USGS. Open File Report 97-669. Menlo Park, California.

Keran, B.L., and J.R. Karr. 1994. A Benthic Index of Biotic Integrity (B-IBI) For River of The Tennesse Valley. Ecol. Appl. 4: 768-785.

Krebs, C.J. 1989. Ecological Methodology. HarperCollins Publishers, New York. Landrum, P.F., and Robbins. 1990. Bioavailability of Sediment-Associated

Contaminant to Bnethic Invertebrates: Chemistry and toxicity of in Place Pollutants. Lewis Publishers. Boca Raton. hlm 237-263.

Lang, C. 1985. Eutrophication of Lake Geneva Indicated by the Oligochaete Communities of The Profundal. Hydrobiologia 126: 237-243.

(7)

Legendre, P., and L. Legendre. 2003. Numerical Ecology. Second Edition. Elsevier. Netherland.

Leslie, H.A., T.I. Pavluk, A. Bij de Vaate, and S.M.H. Kraak. 1999. Triad Assessment of the Impact of Chromium Contamination on Benthic Macroinvertebrates in the Chusovaya River (Urals, Russia). Arch. Environ. Contam. Toxicol. 37: 182–189.

Liu, W., Z. Luan, and H. Tang. 1999. Use Of The Sediment Quality Triad to Assess Metal Contamination in Freshwater Superficial Sediments from the Le An River, China. Water, Air, and Soil Pollution 113: 227–239.

Long, E.R., and C.J. Wilson. 1997. On The Identification of Toxic Hot Spot Using Measure of The Sediment Quality Triad. Marine Pollution Bulletin 34(6): 373-374.

Long, E.R., and P.M. Chapman. 1985. A Sediment Quality Triad: Measures of Sediment Contamination, Toxicity, and Infaunal Community Composition in Pudget Sound. Mar. Pollut. Bull. 16: 405-415.

Long, E.R., L.J. Field, and D.D. MacDonald. 1998. Predicting Toxicity in Marine Sediments with Numerical Sediment Quality Guidelines. Environmental Toxicology and Chemistry 17(4): 714-727.

Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediment. Environmental Management 19(1):81-97. Ludwig, J.A., and J.F. Reynolds. 1988. Statistical Ecology. John Wiley and Sons.

New York.

Luoma, S.N., 1995. Prediction of Metal Toxicity in Nature from Bioassay: Limitation and Research Needs. Di dalam: A. Tessier and D.R. Tuner, editor: Metal Speciation and Bioavailability in Aquatic System. John Wiley & Sons Ltd. hlm 609-659.

Luoma, SN., and J.L. Carter. 1991. Effect of Trace Metal on Aquatic Benthos. Di dalam M.C. Newman and A.W. McIntosh (eds): Metal Ecotoxicology:

(8)

Concepts and Applications. Lewis Publishers. Chelsea. Michigan. hlm 261-300.

Luoma, S.N., and E.A. Jenne. 1976. Estimating Bioavailaility of Sediment-Bound Trace Metals With Chemicals Extractans. Di dalam: Hemphill DD. Trace Substance in Environmental Health. University of Missouri. Columbia. 343-351.

Luoma, S.N., and K.T. Ho. 1993. Appropriate Uses of Marine and Estuarine Sediment Bioassays, Di dalam: Calow P., editor. Handbook Ecotoxicology. Vol 1. Blackwell Scientific Publications. Oxford. 193-225. Mac Donald, D.D, R.S. Carr, F.D. Calder, E.R. Long, and C.G. Ingersoll. 1996.

Development and Evaluation of Sediment Quality Guidelines for Florida Coastal Water. Ecotoxicology 5 : 253-278.

MacDonald, D.M., R.S. Carr, D. Eckenrod, H. Greening, S. Grabe, C. G. Ingersoll, S. Janicki, T. Janicki, R. A. Lindskong, E. R. Long, R. Pribble, G. Sloane, and D. E, Smorong. 2004. Development, Evaluation, and Application of Sediment Quality Target for Assessing and Managing Contaminated Sediments in Tampa bay, Florida. Arch. Environ. Contam. Toxicol. 46:147-161.

Maher, W., G.E. Batley, and I. Lawrence. 1999. Assessing The Health of Sediment Ecosystem: Use of Chemical Measurements. Freshwater Biology 41:361-372.

Mamboya, F.A. 2007. Heavy Metal Contamination and Toxicity: Studies of Macroalgae From the Tanzanian Coast. Stockholm University. Stockholm. 49 hal.

Manahan, S.E. 2005. Environmental Chemistry. Eight Edition. CRC Press. Florida. 782 hal.

Manolakos, E., H. Virani, and V. Novotny. 2007. Extracting Knowledge on The Links Between The Water Body Stressors and Biotic Integrity. Water Research 41: 4041- 4050.

(9)

Martin, R. 2004. Origin of The Biological Monitoring Working Party System, www. cies.staffs.ac.uk./rscrbmwp.htm.3k [21 Agustus 2005].

Marvin, C., L. Grapentine and S. Painter. 2004. Application of A Sediment Quality Index to The Lower Laurentian Great Lakes. Environmental Monitoring and Assessment 91: 1–16.

Mason, R.P. and K.A. Sullivan. 1998. Mercury and Methyl-Mercury Transport Through an Urban Watershed. Water Res. 32:321–330.

Matthaei, C. D., C. J. Arbukle, and C. R. Townsend. 2000. Stable Surface Stones as Refugia for Invertebrates During Disturbance in a New Zealand Stream. J. N. Am. Benthol Soc.19(1): 82-93.

Milbrink, G.1980. Oligochaete Communities in Pollution Biology : the European Situation with Special Reference to Lakes in Scandinavia. In Proceedings of the First International Symposium on Aquatic Oligochaete Biology. Sydney. British Colombia. Canada.. Aquatic Oligochaete Biology. 433-455.

Minshall, G.W. 1996. Aquatic Insect-Substratum Relationships. Chapter 12. Ecology of Aquatic Insects. 358-400.

Mulyanto, S. 2003. Rekapitulasi Penelitian Kualitas Air Waduk PLTA Saguling Tahun 1994-2003. PT. Indonesia Power Unit Bisnis Pembangkitan Saguling. 32 hal.

Mwamburi, J. 2003. Variations in Trace Elements in Bottom Sediments of Major Rivers in Lake Victoria’s Basin, Kenya. Lakes & Reservoirs: Research and Management 8: 5–13.

Norris, R. H. 1999. Environmental Indicators: Recent Development in Measurement and Application for Assessing Freshwater. in: A. Holt, K. Dickinson, and G.W. Kearsley (eds): Environmental Indicators. Proceeding of The Environmental Indicator Symposium. University of Otago. Dunedin. New Zealand. 1-43.

Norris, R. H., and M. C. Thoms. 1999. What Is River Health ?. Freshwater Biology 41: 197-209.

(10)

Norris, R.H. and K.R. Norris. 1995. The Need for Biological Assessment of Water quality: Australian Perspective. Australian Journal of Ecology 20: 1-6.

Novotny, V., and H. Olem. 1994. Water Quality, Prevention, Identification, and Management of Diffuse Pollution. Van Nostrans Reinhold. New York. 1054 hal.

Paul, M.J. and J.L. Meyer. 2001. Stream in the Urban Landscape, Annu. Rev. Ecol. Syst. 32:333–365

Power, E. A., and P. M. Chapman. 1992. Assessing Sediment Quality. In: A. Burton (Eds): Sediment Toxicity Assessment. Lewis Publishers. 1-16.

Prica, M., B. Dalmajica, S. Roncevic, D. Kremar, and M. Bacelic. 2007. A Comparison of Sediment Quality Results with Acid Volatile Sulfide (AVS) and Simultaneously Extracted Metal (SEM) Ratio in Vojvodina (Serbia) Sediments. Sci.Total Environ. 20: 1-10.

Qu, W., and P. Kelderman. 2001. Heavy Metal Contents in The Delft Canal Sediment and Suspended Solid of The River Rhine: Multivariate Analysis for Source Tracing. Chemosphere 45:919-925.

Reynoldson, T.B. and J.C. Metcalfe-Smith. 1992. An Overview of The Assessment of Aquatic Ecosystem Health Using Benthic Invertebrates. Journal Of Aquatic Ecosystem Health 1: 295-308.

Reynoldson, T.B., R.H. Norris, V.H. Resh, K.E. Day, and D.M. Rosenberg. 1997. The Reference Condition: A Comparison Of Multimetric And Multivariate Approaches To Assess Water Quality Impairment Using Benthic Macroinvertebrates. J. N. Am. Benthol. Soc. 16(4): 833-852. Riba, I., J. M. Forja, A. Go´mez-Parra, and T. A. DelValls. 2004. Sediment Quality in

Littoral Regions of the Gulf of Ca´Diz: A Triad Approach to Address the Influence of Mining Activities. Environmental Pollution 132: 341-353. Salim, H. 2004. Cegah Kasus Buyat Terjadi di Citarum. http://www.pikiran-rakyat.

(11)

Salomons, W. and U. Förstner. 1984. Metals in The Hydrocycle. Springer-Verlag. 349 hal.

Shakla, S.K. and P.R. Srivastava. 1992. Introduction: in Water Pollution and Toxicology. Commonwealth Publishers New Delhi, 1-47.

Smith, S.L., D.D. MacDonald, K.A. Kennleyside, C.G. Ingersoll, and J. Field. 1996. A Premilinary Evaluation of Sediment Quality Asssessment Values for Freshwater Ecosystems. J. Great Lakes Res. 22 : 624-638.

Smoley, C. K. 1992. Methods for The Determination of Metals in Environmental Samples. Method 200.2. US- EPA. Cincinnati. Ohio. 281 hal.

Soewondo, P. 2003. Laporan Hasil Pemeliharaan Lingkungan Hidup (Penelitian Kualitas Air Waduk Saguling) Triwulan IV tahun 2003. Institut Teknologi Bandung. LPPM. Bandung. 57 hal

Soewondo, P. 2005. Laporan Hasil Tes Suspended Load pada Waduk Saguling tahun 2005. Institut Teknologi Bandung. LPPM. Bandung. 39 hal

Sorensen, M. T., J. M. Conder, P. C.Fuchsman, L. B.Martello, and R. J.Wenning. 2007. Using a Sediment Quality Triad Approach to Evaluate Benthic Toxicity in Lower Hackensack River, New Jersey. Arch. Environ.Contam.Toxicol 53: 36-49.

Sriwana, T. 1999. Polusi Vulkanogenik: Akumulasi Unsur Kimia dan Penyebarannya di Sekitar Kawah Putih, G. Patuha Bandung. Makalah Seminar di Puslit Limnologi-LIPI. Cibinong. 5 hal.

Sudarso, Y. , I. M. Fanie, M. Badjoeri, dan S. Aisyah. 2001. Studi Bioavailabilitas Logam Berat pada Ikan Budidaya Jaring Apung di Waduk Saguling. Limnotek 8 (1): 35-53.

Timmermans, K.R., W. Peeters, and M. Tonkes. 1992. Cadmium, Zinc, Lead, and Copper in Chironomus riparius (meigen) Larvae (Diptera, Chironomidae): Uptake and Effects. Hydrobiologia 241: 119-134.

Trotier, S., C. Blaise, T. Kusui, and E. M. Johnson. 1997. Technical Methods Section, Acute Toxicity Assessment of Aqueous Samples Using a Microplate

(12)

Based Hydra attenuata Assay. John Wiley & Sons Inc. CCC 1053-4725/97/030265-07. 256-271.

Ward, J. V. 1992. Aquatic Insect Ecology. 1. Biology and Habitat. John Wiley & Sons Inc. Canada. 438 hal.

Warren L.A. and Zimmerman A.P. 1994. Suspended Particulate Oxides and Organic Matter Interactions in Trace Metal Sorption Reactions in A Small Urban River. Biogeochemistry 23:21–34.

Washington, H. G. 1984. Diversity, Biotic, and Similarity Indices: a Review with Special Relevance to Aquatic Ecosystem. Water Res. 18(6): 653-694. Wentsel, R., A. Mc Intosh and V. Anderson. 1977. Sediment Contamination and

Benthic Macroinvertebrtae Distribution in a Metal Impacted Lake. Environ. Pollut. 14: 187-192.

Whittman, G. T. W. 1983. Chapter B. Toxic Metal. in : U. Förstner and G.T.W. Whittman: Metal Pollution in The Aquatic Environment. Springer-Verlag. Germany, 3-68.

Widianarko, B., R. A. Verweij, A. M. Van Gestel, and N. M.Van Straalen. 2000. Spatial Distribution of Trace Metal in Sediments from Urban Streams of Semarang, Central Java, Indonesia. Ecotoxicology and Environmental Safety 46: 95-100.

Williams, D.D. 1979. Aquatic Habitat of Canada and Their insects. Mem. Ent. Soc. Can.108: 211-234.

Winner, R. W., M. W Bossel, and M. P. Farrell. 1980. Insect Community Structure as an Index of Heavy Metal Pollution in Lotic Ecosystems. Can. J. Fish. Aquat. Sci. 37, 647-655.

Zisckhe, J. A. and G. Ericksen. 2003. Analysis of Benthic Macroinvertebrate Communities in The Minnesota River Watershed. Diane Waller. United States fish and Wildlife Service. La Crosse. Wisconsin. 82 hal.

(13)

Lampiran 1: Nilai rata-rata konsentrasi logam berat di sedimen pada setiap stasiun pengamatan yang dibandingkan dengan beberapa guidelines dari beberapa negara.

Stasiun

Konsentrasi rata-rata logam berat total

pada sedimen (mg/kg berat kering) Kriteria

Cd Pb Cu Hg Gunung wayang 0,07 5,733 31,97 0,007 Nanjung 0,263 42,6* 95,97* 1,210 Trashboom 0,107 19,78 51,30* 1,033 Cihaur 0,107 20,2 62,93* 0,499 Cangkorah 0,133 19,7 65,93* 0,566 Cimerang 0,133 12,03 72,03* 0,144 Muara Cihaur 0,157 16,78 79,27* 0,552 Muara Cipatik 0,227 12,967 51,7* 0 Muara Ciminyak 0,093 10,77 43,97* 0,001 Muara Cijere 0,11 8,57 46,2* 0 Muara Cijambu 0,093 8,533 52,2* 0 Intake structure 0,11 9,93 62,37* 0,017 Rajamandala 0,07 8,2 55,5* 0,038 Kementrian Lingkungan Ontario Canadaa

0,6 23 15 0,1 Tidak ada pengaruh

1 31 25 0,12 menunjukkan Pengaruh terrendah

10 250 114 2 Ambang batas dari

kisaran toleransi

SEPA c ≤ 0,2 ≤ 5 ≤ 10 ≤ 0,05 Konsentrasi sangat

rendah

0,2-0,7 5 - 30 10-25 0,05- 0,15 Konsentrasi Rendah 0,7 - 2 30 -100 25-50 0,15-0,3 Konsentrasi sedang

2 - 5 100-400 50-100 0,3 - 1 Konsentrasi tinggi > 5 > 400 >150 > 1 Konsentrasi sangat tinggi

ERLb 5 35 70 0,15 ERM b 9 110 390 1,3 TELb 0,6 35 35,7 0,17 PELb 3,53 91,3 197 0,486 SELb 10 250 86 2 Keterangan:

a Guideline untuk mengklasifikasikan sedimen dari Great lakes dan perairan secara umum di Ontario

Canada (Giesy and Hoke 1990), b Sediment Quality Guidelines (SQG) untuk logam berat (Burton

2002), * nilai konsentrasi di atas dari TEL atau ERL dan SEL. NA merupakan singkatan dari not

(14)

Lampiran 2: Hasil analisis karbon organik dan fraksi butiran dari sedimen di setiap stasiun pengamatan. No Lokasi Karbon Organik [%] pH dasar

Fraksi Butiran Sedimen Dalam Satuan %

Clay & Silt

Pasir Sangat

Halus Halus Sedang Kasar

Sangat Kasar <63µm 63 – 125µm 250µm125 – 500µm250 – 500µm – 1mm 1 – 2mm 1 Gunung Wayang 0.820 7.278 4.63 37.16 40.00 11.31 6.91 -2 Nanjung 4.547 6.594 38.50 28.24 20.65 12.20 0.41 -3 Batujajar 1.087 6.598 19.37 22.04 34.01 22.85 1.73 -4 Cihaur 1.833 8.52 19.07 22.12 35.03 21.89 1.89 -5 Cangkorah 2.147 9.116 19.07 22.12 35.03 2189 1.89 -6 Cimerang 1.187 8.304 18.58 24.30 31.03 24.02 2.08 -7 Maroko 2.61 7.78 6.58 32.83 35.86 23.11 1.63 -8 Cipatik 3.19 7.48 16.94 30.56 29.26 22.10 1.14 -9 Ciminyak 2.2 7.62 4.47 27.07 43.54 23.91 1.01 -10 Cijere 2.40 8.268 23.37 34.23 32.17 9.96 0.28 -11 Cijambu 1.487 7.776 4.08 31.19 39.16 24.17 1.40 -12 Intake 1.47 7.74 16.58 28.14 25.01 26.57 3.71 -13 Rajamandala 0.983 7.43 24.79 69.94 4.03 1.08 0.16

(15)

-Lampiran 3: Hasil pengukuran kualitas air di dasar secara langsung di lapangan

Nama lokasi Kedalaman ph

Cond

(µS/cm) (mg/l)DO Temp (0 C) (%) Sal (NTU)Turb St 1. Gunung Wayang 1.5 6.58 0.114 6.53 19.8 0 2 6.59 0.115 6.33 19.8 0 3 6.59 0.113 6.36 19.8 0 4 6.61 0.118 6.47 19.8 0 3 6.6 0.12 6.58 19.8 0 4 St 2. Nanjung 5 7.27 0.352 2.34 13.5 0.01 260 7.28 0.352 2.33 13.5 0.01 240 7.28 0.351 2.31 13.5 0.01 249 7.28 0.351 2.3 13.5 0.01 258 7.28 0.351 2.29 13.5 0.01 263 St 3. Batujajar 0 7.12 0.419 3.15 17.8 0.01 26 7.13 0.419 3.17 17.8 0.01 27 7.13 0.418 3.16 17.8 0.01 26 7.13 0.418 3.15 17.8 0.01 27 7.13 0.418 3.1 17.8 0.01 29 5 6.57 0.568 2.38 22.9 0.02 52 6.58 0.568 2.56 22.9 0.02 55 6.6 0.567 2.55 22.9 0.02 54 6.6 0.567 2.51 22.9 0.02 51 6.64 0.567 2.49 22.9 0.02 51 St 4.Cihaur 0 8.31 0.458 1.47 27.3 0.01 38 8.31 0.458 1.44 27.3 0.01 36 8.31 0.458 1.42 27.3 0.01 38 8.31 0.458 1.43 27.3 0.01 47 8.31 0.458 1.44 27.3 0.01 46 5 8.49 0.586 0.27 26.1 0.02 128 8.5 0.586 0.27 26.1 0.02 122 8.52 0.586 0.25 26.1 0.02 127 8.54 0.586 0.25 26.1 0.02 130 8.55 0.586 0.18 26.1 0.02 127 St 5. Cangkorah 0 8.74 0.592 0.26 27.3 0.02 42 8.71 0.59 0.3 27.3 0.02 45 8.8 0.59 0.11 27.3 0.02 39 8.7 0.59 0.21 27.3 0.02 41 8.66 0.59 0.24 27.3 0.02 39 5 9.06 1.02 2.3 27.2 0.04 40 9.09 0.9 0.26 27.2 0.04 38 9.1 1.02 0.22 27.2 0.04 37 9.14 0.902 0.33 27.2 0.04 38 9.19 1.02 0.46 27.2 0.04 38 St 6. Cimerang 0 8.13 0.362 3.1 27.1 0.01 8 8.11 0.361 3.39 26.9 0.01 8

(16)

8.11 0.361 3.54 26.8 0.01 9 8.09 0.361 3.53 26.8 0.01 11 8.07 0.362 3.81 26.8 0.01 9 5 8.29 0.581 0.24 25.8 0.02 20 8.3 0.581 2.21 25.8 0.02 24 8.3 0.581 0.2 25.8 0.02 22 8.31 0.581 0.19 25.8 0.02 23 8.32 0.581 0.16 25.8 0.02 24 St 7. Maroko 0 8.11 0.329 6.51 27 0.01 7 8.11 0.329 6.54 27 0.01 6 8.11 0.329 6.61 27 0.01 7 8.11 0.329 6.58 27 0.01 8 8.11 0.329 0.54 27 0.01 7 5 7.8 0.431 0.41 25.2 0.01 28 7.76 0.431 0.34 25.2 0.01 27 7.73 0.431 0.37 25.2 0.01 24 7.71 0.431 0.31 25.2 0.01 23 7.9 0.431 0.38 25.2 0.01 26 St 8. Cipatik 0 7.94 0.19 5.51 26.8 0 32 7.96 0.19 5.9 26.8 0 31 7.99 0.19 5.888 26.8 0 34 7.99 0.19 5.96 26.8 0 27 7.99 0.19 5.96 26.8 0 31 5 7.56 0.207 0.71 25.4 0 37 7.51 0.207 0.7 25.4 0 36 7.53 0.207 0.7 25.4 0 33 7.5 0.207 0.7 25.4 0 34 7.3 0.207 0.7 25.4 0 35 St 9.Ciminyak 0 8.46 0.197 9.1 27.2 0 22 8.26 0.197 9.04 27.2 0 27 8.33 0.197 9.05 27.2 0 22 8.35 0.197 9.16 27.2 0 22 8.42 0.197 9.31 27.2 0 21 5 7.67 0.227 0.26 24.7 0 52 7.63 0.227 0.26 24.7 0 35 7.67 0.227 0.26 24.7 0 43 7.63 0.227 0.26 24.7 0 37 7.52 0.227 0.26 24.7 0 40 St 10. Cijere 0 8.59 0.205 10.56 27.5 0 29 8.59 0.205 10.66 27.5 0 27 8.56 0.205 10.65 27.5 0 32 8.4 0.205 10.57 27.5 0 27 8.5 0.205 10.54 27.5 0 32 5 8.32 0.253 0.46 24.9 0 25 8.26 0.253 0.45 25 0 27 8.2 0.253 0.44 24.9 0 28

(17)

8.3 0.253 0.42 24.9 0 29 8.26 0.253 0.41 24.9 0 30 St 11. Cijambu 0 8.15 0.227 8.23 26.7 0 14 8.15 0.227 8.28 26.7 0 13 8.15 0.227 8.25 26.7 0 14 8.15 0.227 8.38 26.7 0 15 8.15 0.227 8.39 26.7 0 19 5 7.78 0.252 1.05 25.4 0 30 7.79 0.252 1.02 25.4 0 25 7.78 0.252 1 25.4 0 33 7.77 0.252 0.98 25.4 0 26 7.76 0.252 0.95 25.4 0 25 St 12. Intake 0 8.15 0.238 7.67 26.4 0 19 8.15 0.238 7.69 26.4 0 16 8.15 0.238 7.62 26.4 0 18 8.15 0.238 7.6 26.4 0 15 8.15 0.238 7.5 26.4 0 18 5 7.85 0.253 0.6 24.3 0 20 7.77 0.253 0.59 24.3 0 33 7.73 0.253 0.58 24.3 0 35 7.7 0.253 0.59 24.3 0 23 7.65 0.253 0.6 24.3 0 26 St 13. Rajamandala 0 7.57 0.323 4.9 26 0.01 10 7.56 0.323 4.9 26 0.01 11 7.56 0.323 4.9 26 0.01 10 7.55 0.323 4.9 26 0.01 10 7.55 0.323 4.9 26 0.01 10 5 7.43 0.323 3.32 26.3 0.01 23 7.43 0.323 3.26 26.3 0.01 22 7.43 0.323 3.25 26.3 0.01 22 7.43 0.323 3.25 26.3 0.01 21 7.43 0.323 3.26 26.3 0.01 22

(18)

Lampiran 4. Lokasi sampling Stasiun Gunung Wayang

Lampiran 5. Lokasi sampling Stasiun Nanjung

(19)

Lampiran 7. Lokasi sampling Stasiun Cihaur

Lampiran 8. Lokasi sampling Stasiun Cangkorah

(20)

Lampiran 10. Lokasi sampling Stasiun Muara Cihaur / Maroko

Lampiran 11. Lokasi sampling Stasiun Muara Cipatik

(21)

Lampiran 13. Lokasi sampling Stasiun Cijere

Lampiran 14. Lokasi sampling Stasiun Cijambu

(22)
(23)
(24)

Referensi

Dokumen terkait

Potential Acute Health Effects: Slightly hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation.. Potential Chronic

Hipotesis yang diajukan adalah (1) seluruh perlakuan matrixpriming mampu meningkatkan persentase daya berkecambah, kecepatan tumbuh, keserempakan tumbuh, tinggi

Sehubungan dengan telah ditetapkannya pemenang seleksi untuk pekerjaan Supervisi Penyelesaian Pembangunan Pasar Tradisional Randik Sekayu kami bermaksud melakukan klarifikasi,

unsur runtuyan (struktur) jeung unsur semiotik anu aya dina upacara adat nikah Sunda.. Hasil ulikan anu ngagunakeun Format Tabel 1 jeung 2 aya dina

Tugas-tugas pustakawan dan petugas keinformasian muncul dan berkembang berawal dari dilakukan sebagai pilihan minat orang untuk bekerja menjadi sekarang pustakawan dan

1) Jumlah kewajiban biaya tahunan berdasarkan hasil perhitungan diketahui sebesar Rp12.159.245.254,46 (dua belas miliar seratus lima puluh sembilan juta dua ratus empat puluh

Berilah tugas kepada siswa yang belum menguasai materi untuk mempelajari materi tentang ketentuan pinjam meminjam, utang piutang, gadai, dan upah, kepada teman atau kepada guru

Keterbatasan dalam penelitian ini adalah (1) penelitian ini memiliki R 2 yang masih tergolong rendah yaitu 16,1%, sehingga diharapkan penelitian yang akan datang