• Tidak ada hasil yang ditemukan

Universitas Sumatera Utara

N/A
N/A
Protected

Academic year: 2021

Membagikan "Universitas Sumatera Utara"

Copied!
31
0
0

Teks penuh

(1)

Lampiran 1. Produksi Bawang Merah Kabupaten/Kota di Provinsi Sumatera Utara

No Kabupaten/Kota Tahun Tahun Tahun Tahun Rata-rata/tahun (Ton) 2008 2009 2010 2011 1 Medan - - - - - 2 Langkat - 15 - - 3.75 3 Deli Serdang 62 30 - - 69.5 4 Simalungun 6,488 5,284 4,772 5,071 17811.75 5 Tanah Karo 1,625 691 809 953 3,363 6 Asahan - - - - - 7 Labuhan Batu - - - - - 8 Tapanuli Utara 483 426 308 61 1232.25 9 Tapanuli Tengah - - - - - 10 Tapanuli Selatan 60 65 17 54 155.5 11 Nias - - - - - 12 Dairi 950 2,150 257 2,180 3902 13 Tebing Tinggi - - - - - 14 Tanjung Balai - - - - - 15 Binjai - - - - - 16 P.Siantar - - - - - 17 Tobasa 625 704 554 1,298 2207.5 18 Madina 20 13 - 7 34.75 19 P.Sidempuan 33 74 42 - 117.5 20 Serdang Bedagai - - - - - 21 Batu Bara - - - - -

22 Padang Lawas Utara - 13 147 23 165.75

23 P.Lawas - - - - - 24 Samosir 897 2,070 1,665 1,679 5051.75 25 Humb.Hasundutan 828 1,120 842 1,123 3070.75 26 Pakpak Barat - - - - - 27 Nias Selatan - - - - - Jumlah 12,071 12,655 9,413 12,449 37,186 Sumber : Dinas Pertanian Provinsi Sumatera Utara, 2012

(2)

Lampiran 2. Karateristik Konsumen Bawang Merah

No.Responden Umur Pekerjaan Pendidikan Terakhir Jumlah Tanggungan Pendapatan

Responden (Tahun) (Jiwa) (Rupiah) 1 48 Pedagang SMA 4 5.000.000 2 50 Wiraswasta SMA 3 6.000.000 3 38 Pedagang SMP 3 3.000.000 4 43 IRT D3 3 4.000.000 5 40 Wiraswasta S1 2 4.000.000 6 46 Wiraswasta SMA 2 3.000.000 7 28 IRT SMA 1 1.500.000 8 30 Pedagang SMP 2 1.000.000 9 35 Pedagang SMP 3 1.500.000 10 45 IRT SMA 3 3.000.000 11 33 Pedagang D3 1 3.500.000 12 43 Wiraswasta D3 2 4.000.000 13 37 IRT D1 2 1.500.000 14 40 IRT SMA 3 2.000.000 15 50 Wiraswasta S1 3 5.000.000 16 48 PNS S1 4 5.000.000 17 44 IRT D3 3 3.000.000 18 40 IRT D1 2 2.500.000 19 51 Wiraswasta S1 3 4.000.000 20 52 Dokter S1 3 6.000.000

(3)

No.Responden Umur Pekerjaan Pendidikan Terakhir Jumlah Tanggungan Pendapatan Responden (Tahun) (Jiwa) (Rupiah) 21 30 IRT SMA 2 1.500.000 22 40 Pegawai Swasta D3 2 3.000.000 23 34 Pegawai Swasta D3 1 2.000.000 24 38 Pegawai Swasta D3 3 3.000.000 25 25 IRT SMP 2 2.000.000 26 26 Pedagang SMA 1 4.000.000 27 35 IRT SMA 2 3.500.000 28 55 Wiraswasta SMA 4 6.000.000 29 49 PNS S1 3 5.000.000 30 50 Wiraswasta SMA 4 6.000.000 31 42 Pegawai Swasta S1 3 3.000.000 32 23 IRT SMA 2 1.000.000

33 35 Pegawai Swasta SMA 2 1.000.000

34 37 IRT SMA 2 2.000.000 35 24 Pedagang SMA 2 1.500.000 36 25 IRT D1 4 1.500.000 37 31 IRT SMA 3 1.000.000 38 45 IRT SMA 3 3.000.000 39 50 Wiraswasta D3 3 5.000.000 40 52 Wiraswasta S1 2 5.500.000

(4)

No.Responden Umur Pekerjaan Pendidikan Terakhir Jumlah Tanggungan Pendapatan

Responden (Tahun) (Jiwa) (Rupiah) 41 38 IRT SMA 4 1.000.000 42 23 IRT SMP 2 1.000.000 43 25 IRT D3 3 5.000.000 44 47 PNS S1 4 5.000.000 45 30 Pedagang SMP 3 3.000.000

46 30 Pegawai Swasta SMA 2 2.500.000

47 42 Wiraswasta SMA 2 4.000.000 48 28 IRT SMA 3 900.000 49 23 IRT S1 2 1.500.000 50 24 Pedagang SMA 2 1.000.000 51 27 Pegawai Swasta D1 1 2.000.000 52 25 Pedagang SMA 3 1.500.000

53 33 Pegawai Swasta SMA 1 1.000.000

54 37 Pedagang SMA 1 2.000.000

55 23 Pegawai Swasta SMA 2 1.500.000

56 42 Pedagang D3 1 2.000.000

57 44 Guru S1 4 4.000.000

58 50 Guru S1 3 5.000.000

(5)

No.Responden Umur Pekerjaan Pendidikan Terakhir Jumlah Tanggungan Pendapatan Responden (Tahun) (Jiwa) (Rupiah) 60 31 Pegawai Swasta S1 1 2.500.000 62 51 Guru S1 3 5.500.000 63 44 Pegawai Swasta D3 1 3.000.000 64 29 IRT D3 2 1.000.000 65 26 IRT SMP 3 900.000 66 30 Wiraswasta SMA 2 3.000.000 67 28 Pedagang SMA 2 1.500.000 68 32 IRT SMA 3 1.500.000 69 25 Pedagang SMA 1 1.000.000 70 27 IRT SMA 2 1.000.000 71 31 IRT SMA 2 1.500.000 72 30 Pedagang D3 2 3.000.000 73 40 Pedagang SMA 3 2.000.000 74 44 Pedagang SMA 3 1.500.000 75 45 Pegawai Swasta D1 2 2.000.000 76 37 Pengasuh D1 3 2.500.000

77 35 Pegawai Swasta SMA 2 1.000.000

78 33 Pegawai Swasta SMA 1 1.500.000

(6)

80 40 Bidan D4 3 3.000.000

No.Responden Umur Pekerjaan Pendidikan Terakhir Jumlah Tanggungan Pendapatan

Responden (Tahun)

(Jiwa) (Rupiah)

83 24 Pegawai Swasta SMA 1 1.000.000

84 25 Pedagang D3 2 1.500.000

85 40 Pegawai Swasta SMP 2 2.000.000

86 48 Pegawai Swasta SMA 2 2.000.000

87 30 IRT SMA 1 1.500.000 88 50 Guru S1 3 4.000.000 89 50 IRT D3 4 3.800.000 90 50 Guru S1 2 5.000.000 91 52 IRT SMA 2 2.000.000 92 33 Pedagang SMA 3 1.000.000 93 34 IRT SMA 2 1.500.000 94 45 IRT SMP 4 1.000.000 95 39 IRT SMP 2 1.500.000 96 28 Pedagang SMA 2 1.000.000 97 33 Pedagang SMA 3 1.500.000 98 40 IRT SMA 3 1.000.000 99 38 PNS S1 2 5.000.000 100 53 Wiraswasta S1 3 6.000.000

(7)

No.Responden Umur Pekerjaan Pendidikan Terakhir Jumlah Tanggungan Pendapatan Responden

(Tahun)

(Jiwa) (Rupiah)

(8)
(9)

No.Responden Jumlah Dibeli (Kilogram)

Pendapatan (Rupiah)

Harga Rata-Rata Bawang Merah (Rupiah) Jumlah Tanggungan (Jiwa) 1 4 5.000.000 30.000 4 2 5 6.000.000 30.000 3 3 4 3.000.000 30.000 3 4 4 4.000.000 30.000 3 5 4 4.000.000 30.000 2 6 4 3.000.000 30.000 2 7 2 1.500.000 20.000 1 8 2 1.000.000 20.000 2 9 2 1.500.000 28.000 3 10 5 3.000.000 20.000 3 11 4 3.500.000 20.000 1 12 4 4.000.000 28.000 2 13 3 1.500.000 28.000 2 14 4 2.000.000 20.000 3 15 5 5.000.000 25.000 3 16 5 5.000.000 20.000 4 17 5 3.000.000 25.000 3 18 4 2.500.000 20.000 2 19 5 4.000.000 25.000 3

(10)

20 5 6.000.000 35.000 3

No.Responden Jumlah Dibeli (Kilogram)

Pendapatan (Rupiah)

Harga Rata-Rata Bawang Merah (Rupiah) Jumlah Tanggungan (Jiwa) 21 3 1.500.000 28.000 2 22 4 3.000.000 28.000 2 23 2 2.000.000 30.000 1 24 4 3.000.000 20.000 3 25 2 2.000.000 30.000 2 26 2 4.000.000 30.000 1 27 4 3.500.000 20.000 2 28 6 6.000.000 30.000 4 29 4 5.000.000 28.000 3 30 6 6.000.000 30.000 4 31 4 3.000.000 25.000 3 32 2 1.000.000 30.000 2 33 3 1.000.000 20.000 2 34 4 2.000.000 20.000 2 35 2 1.500.000 25.000 2 36 3 1.500.000 20.000 4 37 4 1.000.000 20.000 3 38 5 3.000.000 25.000 3 39 5 5.000.000 20.000 3

(11)

40 6 5.500.000 20.000 2

No.Responden Jumlah Dibeli (Kilogram)

Pendapatan (Rupiah)

Harga Rata-Rata Bawang Merah (Rupiah) Jumlah Tanggungan (Jiwa) 41 2 1.000.000 20.000 4 42 2 1.000.000 20.000 2 43 5 5.000.000 30.000 3 44 6 5.000.000 30.000 4 45 3 3.000.000 28.000 3 46 3 2.500.000 28.000 2 47 4 4.000.000 20.000 2 48 2 900.000 30.000 3 49 2 1.500.000 20.000 2 50 2 1.000.000 20.000 2 51 4 2.000.000 20.000 1 52 2 1.500.000 30.000 3 53 2 1.000.000 20.000 1 54 3 2.000.000 28.000 1 55 2 1.500.000 20.000 2 56 4 2.000.000 30.000 1 57 4 4.000.000 30.000 4 58 6 5.000.000 30.000 3 59 3 3.000.000 30.000 2

(12)

60 2 2.500.000 20.000 1

No.Responden Jumlah Dibeli (Kilogram)

Pendapatan (Rupiah)

Harga Rata-Rata Bawang Merah (Rupiah) Jumlah Tanggungan (Jiwa) 61 5 4.000.000 30.000 2 62 6 5.500.000 28.000 3 63 2 3.000.000 30.000 1 64 2 1.000.000 20.000 2 65 2 900.000 20.000 3 66 5 3.000.000 20.000 2 67 2 1.500.000 30.000 2 68 3 1.500.000 20.000 3 69 2 1.000.000 20.000 1 70 2 1.000.000 20.000 2 71 2 1.500.000 25.000 2 72 3 3.000.000 30.000 2 73 4 2.000.000 20.000 3 74 4 1.500.000 20.000 3 75 4 2.000.000 20.000 2 76 2 2.500.000 28.000 3 77 2 1.000.000 20.000 2 78 2 1.500.000 28.000 1 79 3 1.500.000 28.000 2

(13)

80 4 3.000.000 28.000 3

No.Responden Jumlah Dibeli (Kilogram)

Pendapatan (Rupiah)

Harga Rata-Rata Bawang Merah (Rupiah) Jumlah Tanggungan (Jiwa) 81 4 3.000.000 30.000 2 82 2 1.000.000 20.000 3 83 2 1.000.000 20.000 1 84 2 1.500.000 30.000 2 85 2 2.000.000 30.000 2 86 2 2.000.000 28.000 2 87 3 1.500.000 20.000 1 88 5 4.000.000 20.000 3 89 5 3.800.000 20.000 4 90 5 5.000.000 30.000 2 91 2 2.000.000 30.000 2 92 2 1.000.000 20.000 3 93 3 1.500.000 20.000 2 94 2 1.000.000 20.000 4 95 3 1.500.000 20.000 2 96 2 1.000.000 20.000 2 97 2 1.500.000 20.000 3 98 4 1.000.000 20.000 3 99 5 5.000.000 30.000 2

(14)

100 6 6.000.000 28.000 3

No.Responden Jumlah Dibeli (Kilogram)

Pendapatan (Rupiah)

Harga Rata-Rata Bawang Merah (Rupiah)

Jumlah Tanggungan (Jiwa)

(15)

Lampiran. 4 Hasil Output Analisis Regresi Berganda Faktor-Faktor Yang Mempengaruhi Permintaan Bawang Merah Descriptive Statistics Mean Std. Deviation N permintaabbawangmerah 3.4356 1.32224 101 pendapatan_penerimaan_bulan an 2.6990E6 1.56943E6 101 jumlah_tanggungan 2.4158 .86333 101 harga_bawang 2.4812E4 4636.18997 101 Correlations permintaabbawang merah pendapatan_pener imaan_bulanan jumlah_tanggunga n harga_bawang

Pearson Correlation permintaabbawangmerah 1.000 .822 .435 .175

pendapatan_penerimaan_bulan

an .822 1.000 .377 .444

jumlah_tanggungan .435 .377 1.000 .060

harga_bawang .175 .444 .060 1.000

(16)

pendapatan_penerimaan_bulan an .000 . .000 .000 jumlah_tanggungan .000 .000 . .277 harga_bawang .040 .000 .277 . N permintaabbawangmerah 101 101 101 101 pendapatan_penerimaan_bulan an 101 101 101 101 jumlah_tanggungan 101 101 101 101 harga_bawang 101 101 101 101 Variables Entered/Removedb

Model Variables Entered

Variables Removed Method 1 harga_bawang, jumlah_tanggunga n, pendapatan_pener imaan_bulanana . Enter

a. All requested variables entered.

(17)

Model Summaryb

Model R R Square Adjusted R Square

Std. Error of the Estimate

Change Statistics

Durbin-Watson R Square Change F Change df1 df2 Sig. F Change

1 .856a .732 .724 .69451 .732 88.487 3 97 .000 2.048

a. Predictors: (Constant), harga_bawang, jumlah_tanggungan, pendapatan_penerimaan_bulanan b. Dependent Variable: permintaabbawangmerah

ANOVAb

Model Sum of Squares df Mean Square F Sig.

1 Regression 128.044 3 42.681 88.487 .000a

Residual 46.788 97 .482

Total 174.832 100

a. Predictors: (Constant), harga_bawang, jumlah_tanggungan, pendapatan_penerimaan_bulanan

(18)

Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig.

95% Confidence Interval for B Correlations Collinearity Statistics

B Std. Error Beta Lower Bound Upper Bound Zero-order Partial Part Tolerance VIF

1 (Constant) 2.569 .435 5.905 .000 1.706 3.433

pendapatan_penerimaan_bulan

an 7.374E-7 .000 .875 13.736 .000 .000 .000 .822 .813 .721 .680 1.472

jumlah_tanggungan .182 .088 .119 2.079 .040 .008 .356 .435 .207 .109 .844 1.185

harga_bawang -6.302E-5 .000 -.221 -3.737 .000 .000 .000 .175 -.355 -.196 .789 1.267

a. Dependent Variable: permintaabbawangmerah

Coefficient Correlationsa Model harga_bawang jumlah_tanggunga n pendapatan_pener imaan_bulanan 1 Correlations harga_bawang 1.000 .130 -.456 jumlah_tanggungan .130 1.000 -.392 pendapatan_penerimaan_bulan an -.456 -.392 1.000

(19)

Covariances harga_bawang 2.844E-10 1.916E-7 -4.130E-13

jumlah_tanggungan 1.916E-7 .008 -1.841E-9

pendapatan_penerimaan_bulan

an -4.130E-13 -1.841E-9 2.882E-15

a. Dependent Variable: permintaabbawangmerah

Collinearity Diagnosticsa

Model

Dimensi

on Eigenvalue Condition Index

Variance Proportions (Constant) pendapatan_pener imaan_bulanan jumlah_tanggunga n harga_bawang 1 1 3.747 1.000 .00 .01 .01 .00 2 .160 4.833 .03 .79 .02 .01 3 .079 6.872 .02 .02 .83 .07 4 .013 16.750 .95 .18 .14 .92

a. Dependent Variable: permintaabbawangmerah

(20)

Minimum Maximum Mean Std. Deviation N

Predicted Value 1.7802 5.9573 3.4356 1.13157 101

Residual -1.81019 1.66455 .00000 .68401 101

Std. Predicted Value -1.463 2.228 .000 1.000 101

Std. Residual -2.606 2.397 .000 .985 101

a. Dependent Variable: permintaabbawangmerah

(21)

Lampiran.5 Faktor-Faktor Yang Mempengaruhi Permintaan Bawang Merah Logaritma Natural No. Responden Y X1 X2 X3 LNY LNX1 LNX2 LNX3 1 4.0 5000000.0 30000.0 4.0 1.386294361 15.42494847 10.30895266 1.386294361 2 5.0 6000000.0 30000.0 3.0 1.609437912 15.60727003 10.30895266 1.098612289 3 4.0 3000000.0 30000.0 3.0 1.386294361 14.91412285 10.30895266 1.098612289 4 4.0 4000000.0 30000.0 3.0 1.386294361 15.20180492 10.30895266 1.098612289 5 4.0 4000000.0 30000.0 2.0 1.386294361 15.20180492 10.30895266 0.693147181 6 4.0 3000000.0 30000.0 2.0 1.386294361 14.91412285 10.30895266 0.693147181 7 2.0 1500000.0 20000.0 1.0 0.693147181 14.22097567 9.903487553 0 8 2.0 1000000.0 20000.0 2.0 0.693147181 13.81551056 9.903487553 0.693147181 9 2.0 1500000.0 28000.0 3.0 0.693147181 14.22097567 10.23995979 1.098612289 10 5.0 3000000.0 20000.0 3.0 1.609437912 14.91412285 9.903487553 1.098612289 11 4.0 3500000.0 20000.0 1.0 1.386294361 15.06827353 9.903487553 0 12 4.0 4000000.0 28000.0 2.0 1.386294361 15.20180492 10.23995979 0.693147181 13 3.0 1500000.0 28000.0 2.0 1.098612289 14.22097567 10.23995979 0.693147181 14 4.0 2000000.0 20000.0 3.0 1.386294361 14.50865774 9.903487553 1.098612289

(22)

No. Responden Y X1 X2 X3 LNY LNX1 LNX2 LNX3 15 5.0 5000000.0 25000.0 3.0 1.609437912 15.42494847 10.1266311 1.098612289 16 5.0 5000000.0 20000.0 4.0 1.609437912 15.42494847 9.903487553 1.386294361 17 5.0 3000000.0 25000.0 3.0 1.609437912 14.91412285 10.1266311 1.098612289 18 4.0 2500000.0 20000.0 2.0 1.386294361 14.73180129 9.903487553 0.693147181 19 5.0 4000000.0 25000.0 3.0 1.609437912 15.20180492 10.1266311 1.098612289 20 5.0 6000000.0 35000.0 3.0 1.609437912 15.60727003 10.46310334 1.098612289 21 3.0 1500000.0 28000.0 2.0 1.098612289 14.22097567 10.23995979 0.693147181 22 4.0 3000000.0 28000.0 2.0 1.386294361 14.91412285 10.23995979 0.693147181 23 2.0 2000000.0 30000.0 1.0 0.693147181 14.50865774 10.30895266 0 24 4.0 3000000.0 20000.0 3.0 1.386294361 14.91412285 9.903487553 1.098612289 25 2.0 2000000.0 30000.0 2.0 0.693147181 14.50865774 10.30895266 0.693147181 26 2.0 4000000.0 30000.0 1.0 0.693147181 15.20180492 10.30895266 0 27 4.0 3500000.0 20000.0 2.0 1.386294361 15.06827353 9.903487553 0.693147181 28 6.0 6000000.0 30000.0 4.0 1.791759469 15.60727003 10.30895266 1.386294361 29 4.0 5000000.0 28000.0 3.0 1.386294361 15.42494847 10.23995979 1.098612289

(23)

No. Responden Y X1 X2 X3 LNY LNX1 LNX2 LNX3 30 6.0 6000000.0 30000.0 4.0 1.791759469 15.60727003 10.30895266 1.386294361 31 4.0 3000000.0 25000.0 3.0 1.386294361 14.91412285 10.1266311 1.098612289 32 2.0 1000000.0 30000.0 2.0 0.693147181 13.81551056 10.30895266 0.693147181 33 3.0 1000000.0 20000.0 2.0 1.098612289 13.81551056 9.903487553 0.693147181 34 4.0 2000000.0 20000.0 2.0 1.386294361 14.50865774 9.903487553 0.693147181 35 2.0 1500000.0 25000.0 2.0 0.693147181 14.22097567 10.1266311 0.693147181 36 3.0 1500000.0 20000.0 4.0 1.098612289 14.22097567 9.903487553 1.386294361 37 4.0 1000000.0 20000.0 3.0 1.386294361 13.81551056 9.903487553 1.098612289 38 5.0 3000000.0 25000.0 3.0 1.609437912 14.91412285 10.1266311 1.098612289 39 5.0 5000000.0 20000.0 3.0 1.609437912 15.42494847 9.903487553 1.098612289 40 6.0 5500000.0 20000.0 2.0 1.791759469 15.52025865 9.903487553 0.693147181 41 2.0 1000000.0 20000.0 4.0 0.693147181 13.81551056 9.903487553 1.386294361 42 2.0 1000000.0 20000.0 2.0 0.693147181 13.81551056 9.903487553 0.693147181 43 5.0 5000000.0 30000.0 3.0 1.609437912 15.42494847 10.30895266 1.098612289 44 6.0 5000000.0 30000.0 4.0 1.791759469 15.42494847 10.30895266 1.386294361

(24)

No. Responden Y X1 X2 X3 LNY LNX1 LNX2 LNX3 45 3.0 3000000.0 28000.0 3.0 1.098612289 14.91412285 10.23995979 1.098612289 46 3.0 2500000.0 28000.0 2.0 1.098612289 14.73180129 10.23995979 0.693147181 47 4.0 4000000.0 20000.0 2.0 1.386294361 15.20180492 9.903487553 0.693147181 48 2.0 900000.0 30000.0 3.0 0.693147181 13.71015004 10.30895266 1.098612289 49 2.0 1500000.0 20000.0 2.0 0.693147181 14.22097567 9.903487553 0.693147181 50 2.0 1000000.0 20000.0 2.0 0.693147181 13.81551056 9.903487553 0.693147181 51 4.0 2000000.0 20000.0 1.0 1.386294361 14.50865774 9.903487553 0 52 2.0 1500000.0 30000.0 3.0 0.693147181 14.22097567 10.30895266 1.098612289 53 2.0 1000000.0 20000.0 1.0 0.693147181 13.81551056 9.903487553 0 54 3.0 2000000.0 28000.0 1.0 1.098612289 14.50865774 10.23995979 0 55 2.0 1500000.0 20000.0 2.0 0.693147181 14.22097567 9.903487553 0.693147181 56 4.0 2000000.0 30000.0 1.0 1.386294361 14.50865774 10.30895266 0 57 4.0 4000000.0 30000.0 4.0 1.386294361 15.20180492 10.30895266 1.386294361 58 6.0 5000000.0 30000.0 3.0 1.791759469 15.42494847 10.30895266 1.098612289 59 3.0 3000000.0 30000.0 2.0 1.098612289 14.91412285 10.30895266 0.693147181

(25)

No. Responden Y X1 X2 X3 LNY LNX1 LNX2 LNX3 60 2.0 2500000.0 20000.0 1.0 0.693147181 14.73180129 9.903487553 0 61 5.0 4000000.0 30000.0 2.0 1.609437912 15.20180492 10.30895266 0.693147181 62 6.0 5500000.0 28000.0 3.0 1.791759469 15.52025865 10.23995979 1.098612289 63 2.0 3000000.0 30000.0 1.0 0.693147181 14.91412285 10.30895266 0 64 2.0 1000000.0 20000.0 2.0 0.693147181 13.81551056 9.903487553 0.693147181 65 2.0 900000.0 20000.0 3.0 0.693147181 13.71015004 9.903487553 1.098612289 66 5.0 3000000.0 20000.0 2.0 1.609437912 14.91412285 9.903487553 0.693147181 67 2.0 1500000.0 30000.0 2.0 0.693147181 14.22097567 10.30895266 0.693147181 68 3.0 1500000.0 20000.0 3.0 1.098612289 14.22097567 9.903487553 1.098612289 69 2.0 1000000.0 20000.0 1.0 0.693147181 13.81551056 9.903487553 0 70 2.0 1000000.0 20000.0 2.0 0.693147181 13.81551056 9.903487553 0.693147181 71 2.0 1500000.0 25000.0 2.0 0.693147181 14.22097567 10.1266311 0.693147181 72 3.0 3000000.0 30000.0 2.0 1.098612289 14.91412285 10.30895266 0.693147181 73 4.0 2000000.0 20000.0 3.0 1.386294361 14.50865774 9.903487553 1.098612289 74 4.0 1500000.0 20000.0 3.0 1.386294361 14.22097567 9.903487553 1.098612289

(26)

No. Responden Y X1 X2 X3 LNY LNX1 LNX2 LNX3 75 4.0 2000000.0 20000.0 2.0 1.386294361 14.50865774 9.903487553 0.693147181 76 2.0 2500000.0 28000.0 3.0 0.693147181 14.73180129 10.23995979 1.098612289 77 2.0 1000000.0 20000.0 2.0 0.693147181 13.81551056 9.903487553 0.693147181 78 2.0 1500000.0 28000.0 1.0 0.693147181 14.22097567 10.23995979 0 79 3.0 1500000.0 28000.0 2.0 1.098612289 14.22097567 10.23995979 0.693147181 80 4.0 3000000.0 28000.0 3.0 1.386294361 14.91412285 10.23995979 1.098612289 81 4.0 3000000.0 30000.0 2.0 1.386294361 14.91412285 10.30895266 0.693147181 82 2.0 1000000.0 20000.0 3.0 0.693147181 13.81551056 9.903487553 1.098612289 83 2.0 1000000.0 20000.0 1.0 0.693147181 13.81551056 9.903487553 0 84 2.0 1500000.0 30000.0 2.0 0.693147181 14.22097567 10.30895266 0.693147181 85 2.0 2000000.0 30000.0 2.0 0.693147181 14.50865774 10.30895266 0.693147181 86 2.0 2000000.0 28000.0 2.0 0.693147181 14.50865774 10.23995979 0.693147181 87 3.0 1500000.0 20000.0 1.0 1.098612289 14.22097567 9.903487553 0 88 5.0 4000000.0 20000.0 3.0 1.609437912 15.20180492 9.903487553 1.098612289 89 5.0 3800000.0 20000.0 4.0 1.609437912 15.15051162 9.903487553 1.386294361

(27)

No. Responden Y X1 X2 X3 LNY LNX1 LNX2 LNX3 90 5.0 5000000.0 30000.0 2.0 1.609437912 15.42494847 10.30895266 0.693147181 91 2.0 2000000.0 30000.0 2.0 0.693147181 14.50865774 10.30895266 0.693147181 92 2.0 1000000.0 20000.0 3.0 0.693147181 13.81551056 9.903487553 1.098612289 93 3.0 1500000.0 20000.0 2.0 1.098612289 14.22097567 9.903487553 0.693147181 94 2.0 1000000.0 20000.0 4.0 0.693147181 13.81551056 9.903487553 1.386294361 95 3.0 1500000.0 20000.0 2.0 1.098612289 14.22097567 9.903487553 0.693147181 96 2.0 1000000.0 20000.0 2.0 0.693147181 13.81551056 9.903487553 0.693147181 97 2.0 1500000.0 20000.0 3.0 0.693147181 14.22097567 9.903487553 1.098612289 98 4.0 1000000.0 20000.0 3.0 1.386294361 13.81551056 9.903487553 1.098612289 99 5.0 5000000.0 30000.0 2.0 1.609437912 15.42494847 10.30895266 0.693147181 100 6.0 6000000.0 28000.0 3.0 1.791759469 15.60727003 10.23995979 1.098612289 101 5.0 6000000.0 28000.0 4.0 1.609437912 15.60727003 10.23995979 1.386294361

(28)

Variables Entered/Removedb

Model Variables Entered Variables Removed Method

d i m e n s i o n 0 1 tanggungan, harga, pendapatana . Enter

a. All requested variables entered. b. Dependent Variable: Permintaan

(29)

Model Summaryb Model

R R Square Adjusted R Square

Std. Error of the Estimate Durbin-Watson d i m e n s i o n 0 1 .843a .710 .701 .21652 2.106

a. Predictors: (Constant), tanggungan, harga, pendapatan b. Dependent Variable: Permintaan

ANOVAb

Model Sum of Squares df Mean Square F Sig.

(30)

Residual 4.548 97 .047

Total 15.676 100

a. Predictors: (Constant), tanggungan, harga, pendapatan b. Dependent Variable: Permintaan

Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig. B Std. Error Beta 1 (Constant) -1.961 1.161 -1.689 .094 pendapatan .568 .043 .856 13.292 .000 harga -.528 .130 -.252 -4.058 .000 tanggungan .180 .056 .184 3.216 .002

a. Dependent Variable: Permintaan Coefficientsa

Model Collinearity Statistics Tolerance VIF 1 (Constant)

pendapatan .721 1.387

(31)

tanggungan .918 1.090 a. Dependent Variable: Permintaan

Referensi

Dokumen terkait

 Hasil Analisis Korelasi Hara C dengan K-tukar Tanah Descriptive Statistics.. Mean

Hasil Ouput SPSS Faktor-Faktor Yang Mempengaruhi Keputusan Pembelian Dan Preferensi Konsumen Gula Pasir Curah Descriptive Statistics.. Mean

Analisis regresi linier berganda digunakan untuk memberikan informasi tentang faktor-faktor yang mempengaruhi jumlah permintaan daging ayam broiler di Sumatera Utara, yaitu

Statistik Deskriptif Sebelum Transformasi dengan Logaritma Natural.

13 Hasil Regresi Fungsi Permintaan Bawang Merah di Indonesia 68 14 Faktor-Faktor yang Berpengaruh terhadap Penawaran Bawang Merah di Indonesia Tahun 2009-2019………. 69 15

Descriptive Statistics N Minimum Maximum Sum Mean

Uji Paired Sample T Test Tingkat Pengetahuan Paired Samples Statistics Mean N Std... Uji Wilcoxon Signed Park Tingkat Sikap Descriptive Statistics N Mean

Hasil Analisis Statistik Deskriptif 1 Nilai Analisis Deskriptif Sharpe Descriptive Statistics N Minimum Maximum Mean Std... N Minimum Maximum Mean