• Tidak ada hasil yang ditemukan

BAB 2 LANDASAN TEORI

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB 2 LANDASAN TEORI"

Copied!
35
0
0

Teks penuh

(1)

BAB 2

LANDASAN TEORI

2.1. Perangkat Keras

2.1.1. Sistem Minimum Mikrokontroler AT89S52

Perkembangan teknologi telah maju dengan pesat dalam perkembangan dunia elektronika, khususnya dunia mikroelektronika. Penemuan silikon menyebabkan bidang ini mampu memberikan sumbangan yang amat berharga bagi perkembangan teknologi modern. Atmel sebagai salah satu vendor yang mengembangkan dan memasarkan produk mikroelektronika telah menjadi suatu teknologi standar bagi para desainer sistem elektronika masa kini.

Tidak seperti sistem komputer, yang mampu menangani berbagai macam program aplikasi (misalnya pengolah kata, pengolah angka dan lain sebagainya), mikrokontroler hanya bisa digunakan untuk satu aplikasi tertentu saja. Perbedaan lainnya terletak pada perbandingan RAM dan ROM-nya. Pada sistem komputer perbandingan RAM dan ROM-nya besar, artinya program-program pengguna disimpan dalam ruang RAM yang relatif besar dan rutin-rutin antarmuka perangkat keras disimpan dalam ruang ROM yang kecil. Sedangkan pada mikrokontroler,

(2)

perbandingan ROM dan RAM-nya yang besar artinya program kontrol disimpan dalam ROM (bisa Masked ROM atau Flash PEROM) yang ukurannya relatif lebih besar, sedangkan RAM digunakan sebagai tempat penyimpanan sementara, termasuk

(3)

Gambar 2.1. Blok Diagram Fungsional AT89S52

2.1.2. Konstruksi AT89S52

Mikrokontroler AT89S52 hanya memerlukan tambahan 3 buah kapasitor, 1 resistor dan 1 kristal serta catu daya 5 Volt. Kapasitor 10 mikro-Farad dan resistor 8k2 Ohm dipakai untuk membentuk rangkaian reset. Dengan adanya rangkaian reset ini AT89S52 otomatis direset begitu rangkaian menerima catu daya. Kristal dengan frekuensi maksimum 11,0592 MHz dan kapasitor 30 piko-Farad dipakai untuk melengkapi rangkaian oscilator pembentuk clock yang menentukan kecepatan kerja mikrokontroler.

Memori merupakan bagian yang sangat penting pada mikrokontroler. Mikrokontroler memiliki dua macam memori yang sifatnya berbeda yaitu ROM (Read Only Memory) dan RAM (Random Access Memory.

ROM yang isinya tidak berubah meskipun IC kehilangan catu daya. Sesuai dangan keperluannya, dalam susunan MCS-51 memori penyimpanan program ini dinamakan sebagai memori program. Sedangkan RAM (Random Access Memory) isinya akan sirna begitu IC kehilangan catu daya, dipakai untuk menyimpan data pada saat program bekerja. RAM yang dipakai untuk menyimpan data ini disebut sebagai memori data.

(4)

Ada berbagai jenis ROM, untuk mikrokontroler dengan program yang sudah baku dan diproduksi secara massal, program diisikan ke dalam ROM pada saat IC mikrokontroler dicetak di pabrik IC. Untuk keperluan tertentu mikrokontroler mengunakan ROM yang dapat diisi ulang atau Programable-Eraseable ROM yang disingkat menjadi PEROM atau PROM. Dulu banyak dipakai UV-EPROM (Ultra Violet Eraseable Programable ROM) yang kemudian dinilai mahal dan ditinggalkan setelah ada flash PEROM yang harganya jauh lebih murah.

Jenis memori yang dipakai untuk memori program AT89S52 adalah Flash PEROM, program untuk mengendalikan mikrokontroler diisikan ke memori itu lewat bantuan alat yang dinamakan sebagai AT89S52 Flash PEROM Programmer.

Memori data yang disediakan dalam chip AT89S52 sebesar 256 byte, meskipun hanya kecil saja tapi untuk banyak keperluan, memori berkapasitas 256 byte sudah cukup. Sarana Input/Output (I/O) yang disediakan cukup banyak dan bervariasi. AT89S52 mempunyai 32 jalur Input/Output. Jalur Input/Output paralel dikenal sebagai Port 1 (P1.0..P1.7) dan Port 3 (P3.0..P3.5 dan P3.7).

AT89S52 dilengkapi UART (Universal Asyncronous Receiver / Transmitter)

yang biasa dipakai untuk komunikasi data secara serial. Jalur untuk komunikasi data serial (RXD dan TXD) diletakkan berhimpitan dengan P3.0 dan P3.1 di kaki nomor 10 dan 11, sehingga kalau sarana input/ouput yang bekerja menurut fungsi waktu,

(5)

clock penggerak untaian pencacah ini bisa berasal dari oscillator kristal atau clock

yang diumpan dari luar lewat T0 dan T1. T0 dan T1 berhimpitan dengan P3.4 dan P3.5, sehingga P3.4 dan P3.5 tidak bisa dipakai untuk jalur input/ouput parelel kalau T0 dan T1 terpakai.

AT89S52 mempunyai enam sumber pembangkit interupsi, dua diantaranya adalah sinyal interupsi yang diumpankan ke kaki INT0 dan INT1. Kedua kaki ini berhimpitan dengan P3.2 dan P3.3 sehingga tidak bisa dipakai sebagai jalur input/output paralel kalau INT0 dan INT1 dipakai untuk menerima sinyal interupsi. Port 1 dan Port 2, UART, Timer 0, Timer 1 dan sarana lainnya merupakan register yang secara fisik merupakan RAM khusus, yang ditempatkan di Special Function Register (SFR).

Berikut ini merupakan spesifikasi dari IC AT89S52 : 1. Kompatibel dengan produk MCS-51.

2. 8 Kbyte In-System Reprogammable Flash Memory. 3. Daya tahan 1000 kali baca/tulis.

4. Fully Static Operation : 0 Hz sampai 24 MHz. 5. Tiga level kunci memori program.

6. 256 x 8 bit RAM internal. 7. 32 jalur I/O.

(6)

8. Tiga 16 bit Timer/Counter. 9. Enam sumber interupt. 10.Jalur serial dengan UART.

2.1.2 Gambar IC Mikrokontroler AT89S52

(7)

Deskripsi pin-pin pada mikrokontroler AT89S52 :

1. VCC (Pin 40)

Suplai tegangan 5 Volt.

2. GND (Pin 20)

Ground.

3. Port 0 (Pin 39 – Pin 32)

Port 0 dapat berfungsi sebagai I/O biasa, low order multiplex address/data

ataupun penerima kode byte pada saat flash programming Pada fungsinya sebagai I/O biasa port ini dapat memberikan output sink ke delapan buah TTL input atau dapat diubah sebagai input dengan memberikan logika 1 pada port tersebut. Pada fungsinya sebagai low order multiplex address/data, port ini akan mempunyai internal pull up. Pada saat flash programming diperlukan eksternal pull up, terutama pada saat verifikasi program.

4. Port 1 (Pin 1 – Pin 8)

Port 1 berfungsi sebagai I/O biasa, pada kaki ke 6, ke 7 dan ke 8 terdapat Mosi, Miso dan Sck sebagai masukan dari ISP Programmer yang terhubung ke komputer. Tanpa adanya port ini maka mikrokontroler tidak dapat diprogram oleh ISP Programmer.

5. Port 2 (Pin 21 – pin 28)

Port 2 berfungsi sebagai I/O biasa atau high order address, pada saat mengakses memori secara 16 bit. Pada saat mengakses memori 8 bit, port ini akan mengeluarkan

(8)

isi dari P2 special function register. Port ini mempunyai internal pull up dan berfungsi sebagai input dengan memberikan logika 1. Sebagai output, port ini dapat memberikan output sink keempat buah input TTL.

6. Port 3 (Pin 10 – pin 17)

Port 3 merupakan 8 bit port I/O dua arah dengan internal pull up. Port 3 juga mempunyai fungsi pin masing-masing, yaitu sebagai berikut

Tabel 2.1. Konfigurasi Port 3 Mikrokontroler AT89S52

Nama Pin Fungsi

P3.0 (Pin 10) RXD (Port Input Serial) P3.1 (Pin 11) TXD (Port Output Serial) P3.2 (Pin 12) INTO (Interrupt 0 Eksternal) P3.3 (Pin 13) INT1 (Interrupt 1 Eksternal) P3.4 (Pin 14) T0 (Input Eksternal Timer 0) P3.5 (Pin 15) T1 (Input Eksternal Timer 1)

P3.6 (Pin 16) WR (untuk menulis eksternal data memori) P3.7 (Pin 17) RD (untuk membaca eksternal data memori)

(9)

RST (pin 9)

Reset akan aktif dengan memberikan input high selama 2 cycle.

7. ALE/PROG (pin 30)

Address latch Enable adalah pulsa output untuk me-latch byte bawah dari alamat selama mengakses memori eksternal. Selain itu, sebagai pulsa input program (PROG) selama memprogram Flash.

8. PSEN (pin 29)

Program store enable digunakan untuk mengakses memori program eksternal.

9. EA (pin 31)

Pada kondisi low, pin ini akan berfungsi sebagai EA yaitu mikrokontroler akan menjalankan program yang ada pada memori eksternal setelah sistem di-reset. Jika kondisi high, pin ini akan berfungsi untuk menjalankan program yang ada pada memori internal. Pada saat flash programming, pin ini akan mendapat tegangan 12 Volt.

10.XTAL1 (pin 19)

Input untuk clock internal.

(10)

IN Vcc +(12-24)V 74HC04 74HC04 1K2 BD677 2SC2922 DC MOTOR Max. 3A D1 1N4001 I/O

Output dari osilator.

2.1.2. Interfacing ke DC motor

DC motor yang umum yang menggunakan sikat (brush), yang menggunakan lilitan pada rotor dan menggunakan magnet tetap pada sisi stator, pada dasarnya dapat dianggap sebagai suatu beban yang dapat dihubungkan langsung kerangkaian

swiching arus DC. Oleh karena itu, pemilihan rangkaian yang tepat diperoleh dengan memperhatikan besar kebutuhan arus untuk memutar DC Motor secara nominal.Lilitan pada DC Motor dapat dihentikan dengan lilitan pada kumparan relay sehingga rangkaian drivernya relatif sama.

Berikut ini ditunjukkan sebuah rangakaian driver DC motor yang dapat memutar motor satu arah.

(11)

1K2 IN 74HC04 74HC04 1N4001 D1 +12V Relay112V BD677 IN 74HC04 74HC04 1N4001 D1 +12V BD677 1K2 Relay2 12V DC MOTOR Vcc +(12-24)V + G1 G2

Pada beberapa kasus, seringkali diperluan arah putaran DC Motor yang berubah-ubah.Prinsip dasar untuk mengubah arah putarannya ini adalah dengan membalik polaritas pada catu tegangannya. Hal ini dapat diperoleh dengan memanfaatkan rangkaian seperti pada gambar dibawah ini :

Gambar 2.4 rangkaian DC motor yang dua arah

2.1.3. Operasional Amplifier

Op-amp(LM 741) biasanya dilukiskan dengan simbol seperti gambar dibawah ini. Tampak adanya dua masukkan yaitu masukan inverting (-) dan masukan non-inverting (+).

(12)

Gambar 2.5 Op-Amp.

Dalam alat ini kita hanya menggunakan Op-Amp biasa yaitu dimana tegangan keluaran sebanding dengan beda tegangan antara kedua isyarat masukan, yaitu masukan inverting (INV atau -) dan masukan noninverting (NON INV atau +). Bila isyarat masukan dihubungkan dengan masukan inverting, maka pada daerah frekuensi tengah isyarat keluaran akan berlawanan fasa dengan isyarat masukan. Sebaliknya bila masukan dihubungkan dengan masukan non-inverting, maka isyarat keluaran sefasa dengan isyarat masukan. Ada beberapa jenis op-amp yang biasa digunakan sebagai penguat, yaitu Op-Amp biasa, Op-Amp Norton dan Op-Amp transkonduktansi (OTA). Dalam alat ini anda akan menggunakan op-amp biasa yaitu dimana tegangan keluaran sebanding dengan beda tegangan antara kedua isyarat masukannya.

Untuk memahami kerja op-amp perlu diketahui sifat-sifat op-amp. Beberapa sifat ideal Op-Amp adalah sebagai berikut:

(13)

1. Penguat lingkar terbuka (Av,01) tak berhingga. 2. Hambatan keluaran lingkar terbuka (Ro,ol) adalah nol. 3. Hambatan masukan lingkar terbuka (Ri,ol) tak berhingga. 4. Lebar pita (bandwidth) tak berhingga, atau respon frekuensi flat. 5. common mode rejection (CMMR) tak berhingga.

2.1.4. Penguat inverting dan non-inverting

Rangkaian yang akan dijelaskan dan dianalisa dalam tulisan ini akan menggunakan penguat operasional yang bekerja sebagai komparator dan sekaligus bekerja sebagai penguat. Berikut ini adalah konfigurasi Op-Amp yang bekerja sebagai penguat:

Gambar 2.6. penguat non inverting

Gambar di atas adalah gambar sebuah penguat non-inverting. Penguat tersebut dinamakan penguat non-inverting karena masukan dari penguat tersebut adalah

(14)

masukan non-inverting dari Op-Amp. Sinyal keluaran penguat jenis ini sefasa dengan sinyal keluarannya. Selain penguat non-inverting, terdapat pula konfigurasi penguat inverting. Dari penamaannya, maka dapat diketahui bahwa sinyal masukan dari penguat jenis ini diterapkan pada masukan inverting dari Op-Amp, yaitu masukan dengan tanda (−). Sinyal masukan dari pengaut inverting berbeda fasa sebesar 1800 dengan sinyal keluarannya. Jadi jika ada masukan positif, maka keluarannya adalah negatif.

2.1.5. Diferensiator dan integrator

Pada penggunaan tapis pasif (RC) kita hanya memperoleh daerah frekuensi operasi yang kecil. Untuk memperoleh daerah frekuensi operasi yang besar kita

menggunakan tapis aktif. Pada rangkaian diferensiator bentuk isyarat keluaran merupakan diferensial dari isyarat masukan jika tetapan waktu RC<<T/2 dengan T = Perioda isyarat Sebaliknya pada rangkaian integrator,bentuk isyarat keluaran merupakan integral dari bentuk isyarat masukan jika tetapan waktu RC>>T/2. Pada penggunaan op-amp sebagai diferensiator perlu diperhatikan adanya daerah osilasi pada frekuensi tertentu.

(15)

Gambar 2.7. diferensial Op-Amp

Op-Amp dapat digunakan sebagai komparator. Untuk keperluan ini op-amp dipasang dalam keadaan loop terbuka. Pada keadaan ini keluaran op-op-amp tidak berbanding lurus dengan masukannya, tetapi hanya memiliki dua macam harga. High / low atau +Vcc / –Vcc atau nol / satu. Op-amp dapat digunakan sebagai komparator. Untuk keperluan ini op-ampdipasang dalam keadaan loop terbuka. Pada keadaan ini keluaran op-amp tidak berbanding lurus dengan masukannya, tetapi hanya memiliki dua macam harga. High / low atau +Vcc / –Vcc atau nol / satu. Op-amp dapat digunakan sebagai komparator. Untuk keperluan ini op-ampdipasang dalam keadaan loop terbuka. Pada keadaan ini keluaran op-amp tidak berbanding lurus dengan masukannya, tetapi hanya memiliki dua macam harga. High /low atau +Vcc / –Vcc atau nol / satu.

Komparator dengan hysteresis

Bila Vid = Vb-Va > 1 mV,maka Vo = +Vcc Bila Vid = Vb-Va.< 1 mV,maka Vo = - Vcc

(16)

Untuk |Vid| < 1 mV, komparator berada pada daerah linier yang berarti tegangan keluaran berbanding lurus dengan tegangan masukan. Vid adalah tegangan masukan diferensial.

2.2. Komponen-Komponen Pendukung 2.2.1. Resistor

Resistor komponen pasif elektronika yang berfungsi untuk membatasi arus listrik yang mengalir. Berdasarkan kelasnya resistor dibagi menjadi 2 yaitu : Fixed Resistor dan Variable Resistor, umumnya terbuat dari karbon film atau metal film, tetapi tidak menutup kemungkinan untuk dibuat dari material yang lain.

Pada dasarnya semua bahan memiliki sifat resistif namun beberapa bahan tembaga perak emas dan bahan metal umumnya memiliki resistansi yang sangat kecil. Bahan–bahan tersebut menghantar arus listrik dengan baik, sehingga dinamakan konduktor. Kebalikan dari bahan yang konduktif, bahan material seperti karet, gelas, karbon memiliki resistansi yang lebih besar menahan aliran elektron dan disebut sebagai insulator. Berdasarkan kelasnya resistor dibagi menjadi 2 yaitu :

1. Fixed Resistor

Resistor adalah komponen dasar elektronika yang digunakan untuk membatasi jumlah arus yang mengalir dalam satu rangkaian. Sesuai dengan namanya resistor

(17)

bersifat resistif dan umumnya terbuat dari bahan karbon. Tipe resistor yang umum berbentuk tabung porselen kecil dengan dua kaki tembaga dikiri dan kanan. Pada badannya terdapat lingkaran membentuk gelang kode warna untuk memudahkan pemakai mengenali besar resistansi tanpa mengukur besarnya dengan ohm meter. Kode warna tersebut adalah standar menufaktur yang dikeluarkan oleh ELA

(Electronic Industries Association).

Gambar 2.8. Resistor karbon

Tabel 2.2. Gelang Resistor

WARNA GELANG I GELANG II GELANG III GELANG IV

Hitam 0 0 1 -

Coklat 1 1 10 -

(18)

Jingga 3 3 1000 - Kuning 4 4 10000 - Hijau 5 5 100000 - Biru 6 6 1000000 - Violet 7 7 10000000 - Abu-abu 8 8 100000000 - Putih 9 9 1000000000 - Emas - - 0,1 5% Perak - - 0,01 10% Tanpa Warna - - - 20%

Resistansi dibaca dari warna gelang yang paling depan ke arah gelang toleransi berwarna coklat, emas, atau perak. Biasanya warna gelang toleransi ini berada pada bahan resistor yang paling pojok atau juga dengan lebar yang lebih menonjol, sedangkan warna gelang yang keempat agak sedikit ke dalam. Dengan demikian pemakai sudah langsung mengetahui berapa toleransi dari resitor tersebut. Kalau anda telah bisa menentukan mana gelang pertama selanjutnya adalah membaca nilai resistansinya.

Biasanya resistor dengan toleransi 5%, 10% atau 20% memiliki gelang (tidak termasuk gelang toleransi). Tetapi resistor dengan toleransi 1% atau 2% (toleransi

(19)

kecil) memiliki 4 gelang (tidak termasuk gelang toleransi). Gelang pertama dan seterusnya berturut-turut menunjukkan besar nilai satuan, dan gelang terakhir adalah faktor penggalinya.

2. Variable Resistor

Untuk kelas resistor yang kedua ini terdapat 2 tipe. Untuk tipe pertama dinamakan variable resistor dan nilainya dapat diubah sesuai keinginan dengan mudah dan sering digunakan untuk pengaturan volume, bass, balance, dll. Sedangkan yang kedua adalah semi-fixed resistor. Nilai dari resistor ini biasanya hanya diubah pada kondisi tertentu saja. Contoh penggunaan dari semi-fixed resistor adalah tegangan referensi yang digunakan untuk ADC, fine tune circuit, dll. Ada beberapa model pengaturan nilai

variable resistor, yang sering digunakan adalah dengan cara terbatas sampai 300 derajat putaran. Ada beberapa model variable resistor yang harus diputar berkali – kali untuk mendapatkan semua nilai resistor. Model ini dinamakan “Potentiometres” atau “Trimmer Potentiometres”.

(20)

Pada gambar 2.9. di atas untuk bentuk 3 biasanya digunakan untuk volume kontrol. Bentuk yang ke 2 merupakan semi fixed resistor dan biasanya di pasang pada PCB (Printed Circuit Board). Sedangkan bentuk 1 potentiometres. Ada 3 tipe didalam perubahan nilai dari resistor variabel, perubahan tersebut dapat dilihat pada gambar berikut ini :

Gambar 2.10. Grafik Perubahan nilai pada potensiometer

Pada saat tipe A diputar searah jarum jam, awalnya perubahan nilai resistansi lambat tetapi ketika putarannya mencapai setengah atau lebih nilai perubahannya menjadi sangat cepat. Tipe ini sangat cocok dengan karakteristik telinga manusia. Karena telinga sangat peka ketika membedakan suara dengan volume yang lemah, tetapi tidak terlalu sensitif untuk membedakan perubahan suara yang keras. Biasanya tipe A ini juga disebut sebagai Audio Taper potensiometer. Untuk tipe B perubahan resistansinya adalah linier dan cocok digunakan untuk Aplikasi Balance Control,

(21)

resistance value adjustment in circuit, dll. Sedangkan untuk tipe C perubahan resistansinya kebalikan dati tipe A.

2.2.2. Kapasitor

Kapasitor adalah komponen elektronika yang dapat menyimpan muatan listrik. Struktur sebuah kapasitor terbuat dari 2 buah plat metal yang dipisahkan oleh suatu bahan dielektrik. Bahan-bahan dielektrik yang umum dikenal misalnya udara vakum, keramik, gelas dan lain-lain. Jika kedua ujung plat metal diberi tegangan listrik, maka muatan-muatan positif akan mengumpul pada salah satu kaki elektroda metalnya dan pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang satu lagi. Muatan positif tidak dapat mengalir menuju ujung kutub negatif dan sebaliknya muatan negatif tidak bisa menuju ke ujung kutub positif karena terpisah oleh bahan elektrik yang non-konduktif. Muatan elektrik ini tersimpan selama tidak ada konduktif pada ujung- ujung kakinya. Di alam bebas fenomena kapasitor terjadi pada saat terkumpulnya muatan-muatan positif dan negatif diawan.

dielektrik

Elektroda Elektroda

(22)

Gambar 2.11. Skema kapasitor.

Kapasitor merupakan komponen pasif elektronika yang sering dipakai didalam merancang suatu sistem yang berfungsi untuk memblok arus DC, Filter, dan penyimpan energi listrik. Didalamnya 2 buah pelat elektroda yang saling berhadapan dan dipisahkan oleh sebuah insulator. Sedangkan bahan yang digunakan sebagai

insulator dinamakan dielektrik. Ketika kapasitor diberikan tegangan DC maka energi listrik disimpan pada tiap elektrodanya. Selama kapasitor melakukan pengisian, arus mengalir. Aliran arus tersebut akan berhenti bila kapasitor telah penuh. Yang membedakan tiap - tiap kapasitor adalah dielektriknya. Berikut ini adalah jenis– jenis kapasitor yang dipergunakan dalam perancangan ini.

1. Electrolytic Capacitor (ELCO)

(23)

Elektroda dari kapasitor ini terbuat dari alumunium yang menggunakan membrane oksidasi yang tipis. Karakteristik utama dari Electrolytic Capacitor adalah perbedaan polaritas pada kedua kakinya. Dari karakteristik tersebut kita harus berhati – hati di dalam pemasangannya pada rangkaian, jangan sampai terbalik. Bila polaritasnya terbalik maka akan menjadi rusak bahkan meledak. Biasanya jenis kapasitor ini digunakan pada rangkaian power supply. Kapasitor ini tidak bisa digunakan pada rangkaian frekuensi tinggi. Biasanya tegangan kerja dari kapasitor dihitung dengan cara mengalikan tegangan catu daya dengan 2. Misalnya kapasitor akan diberikan catu daya dengan tegangan 5 Volt, berarti kapasitor yang dipilih harus memiliki tegangan kerja minimum 2 x 5 = 10 Volt.

2. Ceramic Capacitor

Kapasitor menggunakan bahan titanium acid barium untuk dielektriknya. Karena tidak dikonstruksi seperti koil maka komponen ini dapat digunakan pada rangkaian frekuensi tinggi. Biasanya digunakan untuk melewatkan sinyal frekuensi tinggi menuju ke ground. Kapasitor ini tidak baik digunakan untuk rangkaian analog, karena dapat mengubah bentuk sinyal. Jenis ini tidak mempunyai polaritas dan hanya tersedia dengan nilai kapasitor yang sangat kecil dibandingkan dengan kedua kapasitor diatas.

(24)

Gambar 2.13. Ceramic Capacitor

Untuk mencari nilai dari kapasitor biasanya dilakukan dengan melihat angka/kode yang tertera pada badan kapasitor tersebut. Untuk kapasitor jenis elektrolit memang mudah, karena nilai kapasitansinya telah tertera dengan jelas pada tubuhnya. Sedangkan untuk kapasitor keramik dan beberapa jenis yang lain nilainya dikodekan. Biasanya kode tersebut terdiri dari 4 digit, dimana 3 digit pertama merupakan angka dan digit terakhir berupa huruf yang menyatakan toleransinya. Untuk 3 digit pertama angka yang terakhir berfungsi untuk menentukan 10n, nilai n dapat dilihat pada tabel dibawah.

Tabel 2.3. Nilai Kapasitor

(25)

Misalnya suatu kapasitor pada badannya tertulis kode 474J, berarti nilai kapasitansinya adalah 47 + 104 = 470.000 pF = 0.47µF sedangkan toleransinya 5%. Yang harus diingat didalam mencari nilai kapasitor adalah satuannya dalam pF (Pico Farad).

2.2.3. Transistor

Transistor adalah komponen elektronika yang mempunyai tiga buah terminal. Terminal itu disebut emitor, basis, dan kolektor. Transistor seakan-akan dibentuk dari penggabungan dua buah dioda. Dioda satu dengan yang lain saling digabungkan dengan cara menyambungkan salah satu sisi dioda yang senama. Dengan cara penggabungan seperti dapat diperoleh dua buah dioda sehingga menghasilkan transistor NPN.

Bahan mentah yang digunakan untuk menghasilkan bahan N dan bahan P adalah silikon dan germanium. Oleh karena itu, dikatakan :

1. Transistor germanium PNP 2. Transistor silikon NPN 3. Transistor silikon PNP 4. Transistor germanium NPN

(26)

Semua komponen di dalam rangkaian transistor dengan simbol anak panah yang terdapat di dalam simbol menunjukkan arah yang melalui transistor.

Gambar 2.14. Simbol tipe transistor Keterangan :

C = kolektor E = emiter B = basis

Didalam pemakaiannya transistor dipakai sebagai komponen saklar (switching) dengan memanfaatkan daerah penjenuhan (saturasi) dan daerah penyumbatan (cut off) yang ada pada karakteristik transistor. Pada daerah penjenuhan nilai resistansi persambungan kolektor emiter secara ideal sama dengan nol atau kolektor dan emiter terhubung langsung (short). Keadaan ini menyebabkan tegangan kolektor emiter (VCE) = 0 Volt pada keadaan ideal, tetapi pada kenyataannya VCE

C B E C B E NPN PNP

(27)

bernilai 0 sampai 0,3 Volt. Dengan menganalogikan transistor sebagai saklar, transistor tersebut dalam keadaan on seperti pada gambar dibawah ini :

Gambar 2.15. Transistor sebagai Saklar ON

Pada daerah penyumbatan, nilai resistansi persambungan kolektor emiter secara ideal sama dengan tak terhitung atau terminal kolektor dan emiter terbuka (open). Keadaan ini menyebabkan tegangan (VCB) sama dengan tegangan sumber (Vcc), tetapi pada

kenyataannya Vcc pada saat ini kurang dari Vcc karena terdapat arus bocor dari kolektor ke emiter. Dengan menganalogikan transistor sebagai saklar, transistor tersebut dalam keadaan off seperti gambar dibawah ini.

Vcc Vcc IC R Saklar On Vcc Vcc IC R RB VB IB VBE VCE

(28)

Gambar 2.16. Transistor Sebagai Saklar OFF

2.3. Berkebun Stroberi secara komersil dan Mempunyai Nilai Ekonomis Tinggi

Tanaman stroberi merupakan salah satu tanaman buah yang bernilai ekonomis tinggi. Buah stroberi berhasiat bagus untuk kesehatan tubuh. Stroberi dapat menghambat perkembangan kanker payudara dan leher rahim. Dengan kandungan ellagic acid pada buah stroberi, perkembangan kanker dapat dihambat. Stroberi menyukai suhu udara relatif dingin dengan sinar matahari tidak terlalu kuat. Tanaman dari daerah iklim subtropis ini akan tumbuh baik di daerah yang memiliki suhu sekitar 22-28 derajat

celcius.Dengan kelembaban udara yang baik sekitar 80-90%. Hingga saat ini banyak metode yang diterapkan petani agar tanaman stroberi dapat berproduksi optimal. Beberapa cara yang telah dilakukan adalah dengan menerapan teknik budaya yang tepat, penentuan musim tanam, program pemupukan yang tepat dan penyiraman yang terkontrol. Alat penyiraman ini dibuat untuk para petani khususnya para petani stroberi.Alat ini bekerja pada saat tanah kering dan penyiraman berhenti pada saat tanah sudah basah.Sensor kebasahan tanah menggunakan dua buah probe tembaga yang ditanam ditancapan ketanah dan diteruskan kerangkaian penguat. Apabila tanah basah maka akan terjaadi aliran arus antara probe tersebut dan kemudian sinyal listrik tersebut diperkuat oleh Op-Amp dan setelah itu dikirim kemikrokontroler. Kerena menggunakan Op-Amp maka kadar kebasahan air bisa kita tentukan dengan memvariasikan pengutan.

(29)

Gambar 2.17. Penyiraman Stroberi menggunakan Mikrokontroler.

(30)

2.2.1. Bahasa Assembly MCS-52

Bahasa yang digunakan untuk memprogram IC mikrokontroler AT89C4052 adalah bahasa assembly untuk MCS-52. Angka 51 merupakan jumlah instruksi pada bahasa ini hanya ada 51 instruksi, antara lain yaitu :

1. Instruksi MOV

Perintah ini merupakan perintah untuk mengisikan nilai ke alamat atau register tertentu. Pengisian nilai dapat secara langsung atau tidak langsung.

Contoh pengisian nilai secara langsung :

MOV R0,#20h

Perintah di atas berarti : isikan nilai 20 Heksadesimal ke register 0 (R0). Tanda # sebelum bilangan menunjukkan bahwa bilangan tersebut adalah nilai. Contoh pengisian nilai secara tidak langsung

MOV 20h,#80h ...

... MOV R0,20h

Perintah di atas berarti : isikan nilai yang terdapat pada alamat 20 Heksadesimal ke register 0 (R0).

Tanpa tanda # sebelum bilangan menunjukkan bahwa bilangan tersebut adalah alamat.

(31)

2. Instruksi DJNZ

Decreament Jump If Not Zero (DJNZ) ini merupakan perintah untuk mengurangi nilai register tertentu dengan 1 dan lompat jika hasil pengurangannya belum nol. Contoh ,

MOV R0,#80h Loop: ...

...

DJNZ R0,Loop ...

R0 -1, jika belum 0 lompat ke loop, jika R0 = 0 maka program akan meneruskan ke perintah pada baris berikutnya.

3. Instruksi ACALL

Instruksi ini berfungsi untuk memanggil suatu rutin tertentu. Contoh :

... ACALL TUNDA ... TUNDA: ... 4. Instruksi RET

Instruksi RETURN (RET) ini merupakan perintah untuk kembali ke rutin pemanggil setelah instruksi ACALL dilaksanakan. Contoh,

(32)

ACALL TUNDA ... TUNDA: ... RET 5. Instruksi JMP (Jump)

Instruksi ini merupakan perintah untuk lompat ke alamat tertentu. Contoh,

Loop:

... ... JMP Loop

6. Instruksi JB (Jump if bit)

Instruksi ini merupakan perintah untuk lompat ke alamat tertentu, jika pin yang dimaksud berlogika high (1). Contoh,

Loop:

JB P1.0,Loop ...

7. Instruksi JNB (Jump if Not bit)

Instruksi ini merupakan perintah untuk lompat ke alamat tertentu, jika pin yang dimaksud berlogika Low (0). Contoh,

(33)

JNB P1.0,Loop ...

8. Instruksi CJNZ (Compare Jump If Not Equal)

Instruksi ini berfungsi untuk membandingkan nilai dalam suatu register dengan suatu nilai tertentu. Contoh,

Loop:

...

CJNE R0,#20h,Loop ...

Jika nilai R0 tidak sama dengan 20h, maka program akan lompat ke rutin Loop. Jika nilai R0 sama dengan 20h, maka program akan melanjutkan instruksi selanjutnya..

9. Instruksi DEC (Decreament)

Instruksi ini merupakan perintah untuk mengurangi nilai register yang dimaksud dengan 1. Contoh,

MOV R0,#20h R0 = 20h

...

DEC R0 R0 = R0 – 1

...

(34)

Instruksi ini merupakan perintah untuk menambahkan nilai register yang dimaksud dengan 1. Contoh,

MOV R0,#20h R0 = 20h

...

INC R0 R0 = R0 + 1

...

11.Dan lain sebagainya

2.2.2 Software 8051 Editor, Assembler, Simulator

Instruksi-instruksi yang merupakan bahasa assembly tersebut dituliskan pada sebuah editor, yaitu 8051 Editor, Assembler, Simulator. Tampilannya seperti di bawah ini.

(35)

Gambar 2.18. 8051 Editor, Assembler, Simulator

Setelah program selesai ditulis, kemudian di-save dan kemudian di-Assemble

(di-compile). Pada saat di-assemble akan tampil pesan peringatan dan kesalahan. Jika masih ada kesalahan atau peringatan, itu berarti ada kesalahan dalam penulisan perintah atau ada nama subrutin yang sama, sehingga harus diperbaiki terlebih dahulu sampai tidak ada pesan kesalahan lagi.

Software 8051IDE ini berfungsi untuk merubah program yang kita tuliskan ke dalam bilangan heksadesimal, proses perubahan ini terjadi pada saat peng-compile-an. Bilangan heksadesimal inilah yang akan dikirimkan ke mikrokontroler.

2.2.3. Software Downloader

Untuk mengirimkan bilangan-bilangan heksadesimal ini ke mikrokontroler digunakan

software ISP- Flash Programmer 3.0a yang dapat di-download dari internet. Tampilannya seperti gambar di bawah ini

Gambar

Gambar 2.2. Konfigurasi Pin Mikrokontroler AT89S52
Tabel 2.1. Konfigurasi Port 3 Mikrokontroler AT89S52
Gambar 2.3  rangkaian DC motor yang memutar satu arah
Gambar 2.4 rangkaian DC motor yang dua arah
+7

Referensi

Dokumen terkait

Sehingga dengan arsitektur seperti ini memori program mikrokontroler menjadi lebih terlindungi dari spike tegangan dan faktor lingkungan lain yang dapat merusak

Sehingga dengan arsitektur seperti ini memori program mikrokontroler menjadi lebih terlindungi dari spike tegangan dan faktor lingkungan lain yang dapat merusak kode

Mikrokontroler merupakan sebuah single chip yang didalamnya telah dilengkapi dengan CPU (Central Processing Unit), RAM (Random Access Memori), ROM (Read Only Memori), Input dan

Pertama adalah menyimpan data pada memori program, kemudian kita menggunakan fungsi khusus, yang juga didefinisikan di library pgmspace.h, untuk membaca data tersebut dari

Modul LCD M1632 memiliki beberapa jenis memori yang digunakan untuk menyimpan atau memproses data-data yang akan ditampilkan pada layar LCD.. Setiap jenis memori

Fuzokugo adalah kelompok kelas kata yang tidak bisa berdiri sendiri tanpa bantuan kata lain untuk membentuk kalimat, dipakai setelah suatu kata yang menunjukkan

Saat pengambilan data dari program memori eksternal atau selama pengaksesan data memori eksternal yang menggunakan alamat 16 bit (MOVX@DPTR), port 2 berfungsi sebagai saluran

Untuk meningkatkan efektivitas dalam memantau dan mengendalikan kegiatan proyek, perlu dipakai suatu metode pengendalian kinerja proyek yang lebih progresif