• Tidak ada hasil yang ditemukan

Appendix Analisis Diskriminan dalam Memprediksi Financial Distress dengan Menggunakan Metode Altman

N/A
N/A
Protected

Academic year: 2018

Membagikan "Appendix Analisis Diskriminan dalam Memprediksi Financial Distress dengan Menggunakan Metode Altman"

Copied!
21
0
0

Teks penuh

(1)

LAMPIRAN 1

Pengelompokan Sampel Kondisi FD dan NFD Berdasarkan Perhitungan

Z-Score Altman

(Dalam Jutaan Rupiah)

NO PERUSAHAAN TAHUN WC / TA RE / TA EBIT / TA

MVE / BVD

S/TA Z-Score

1 ADES 2012 0.23867 0.19255 0.196947 1.16197 1.224994 3.12807

ADES 2013 0.199574 0.358896 0.134207 0.134207 1.139345 2.40469

2 AISA 2012 0.23471 0.215409 0.232221 1.108679 1.966487 3.98125

AISA 2013 0.208786 0.117104 0.089544 0.884658 0.807983 2.04876

3 ALTO 2012 0.170461 0.000561 0.045638 0.610801 0.558794 1.28121

ALTO 2013 0.320177 0.000333 0.015899 0.35203 0.324255 0.87261

4 CEKA 2012 0.014394 0.005138 0.081459 0.821215 1.09324 1.87925

CEKA 2013 0.306728 0.005404 0.080919 0.493887 2.367069 3.30607

5 DAVO 2012 0.140691 0.010235 1.190266 0.783059 0.482366 2.60661

DAVO 2013 0.174025 1.8106 0.527114 0.286319 0.235288 3.03334

6 DLTA 2012 0.686179 0.006709 0.385754 0.802638 2.307526 4.89490

DLTA 2013 0.679461 0.00692 0.413355 0.780307 2.308263 4.96556

7 DVLA 2012 0.590518 0.010235 0.190266 0.783059 0.837107 2.65777

DVLA 2013 0.586957 0.018487 0.147688 0.768623 0.925743 2.60451

8 GGRM 2012 0.87093 0.004818 0.133239 0.640957 1.181149 3.05727

GGRM 2013 1.073658 0.003939 0.116923 0.5794 1.091918 3.11930

9 HMSP 2012 0.351665 0.003429 0.509886 0.507035 2.538377 4.95202

HMSP 2013 0.332938 0.003284 0.529463 0.516521 2.737687 5.19895

10 ICBF 2012 0.355364 0.000563 0,170512 0.603249 1.778513 2,56710

ICBF 2013 0.311515 0.000705 0.139508 0.623757 1.838238 2,38939

11 INAF 2012 0.343059 0 0.046442 1 0.9726 2.13753

INAF 2013 0.137456 0.000982 -0.04869 0.839632 1.033208 1.54256

12 INDF 2012 0.89546 0.001349 0,123217 0.575527 1.315811 3.14418

(2)

NO PERUSAHAAN TAHUN WC /

KDSI 2013 0.177517 0.024699 0.055486 0.414014 1.63051 2.30961

15 KICI 2012 0.517614 -0.06047 0.032426 2.343721 0.998231 3.04794

KICI 2013 0.562419 0.017051 0.101195 3.041901 1.007467 3.86532

16 KLBF 2012 0.483129 0.00819 0.245066 0.782722 1.447915 3.31748

KLBF 2013 0.429227 0.008349 0.227354 0.751207 1.414233 3.14198

17 LMPI 2012 0.102438 0.618606 0.006233 0.49944 0.616065 1.92527

LMPI 2013 0.088656 0.613312 -0.01705 0.483368 1 2.19877

18 MBTO 2012 0.611474 0.001641 0.097711 2.484191 1.177679 3.72670

MBTO 2013 0.55589 0.002452 0.037606 2.812809 1.048245 3.53053

19 MERK 2012 0.604209 0.661679 0.256247 0.731857 1.632993 4.56912

MERK 2013 0.631927 0.677609 0.336766 0.734947 1.713119 4.97238

20 MLBI 2012 -0.29009 7.8106 0.527114 0.286319 1.438294 3.00145

MLBI 2013 -0.00914 5.6106 0.884856 0.554125 1.998705 5.24024

21 MRAT 2012 0.645998 0.023433 0.093424 5.545455 1.005983 5.44955

MRAT 2013 0.595687 0.031275 0.022788 6.113914 0.814697 5.31685

22 MYOR 2012 0.90821 0.003734 0.215605 0.669509 1.265958 3.06301

MYOR 2013 1.386518 0.003398 0.139654 0.501001 1.107648 3.13821

23 PSDN 2012 0.210339 0.019669 0.074411 0.755546 1.911947 2.89077

PSDN 2013 0.225369 0.031266 0.063413 1.580426 1.87664 3.34837

24 PYFA 2012 0.29568 0.007361 0.058682 0.645608 1.300932 2.24707

PYFA 2013 0.149543 0.00571 0.048538 0.536214 1 1.66935

25 RMBA 2012 0.252292 0.000577 -0.06176 0.2774 1.42021 1.68638

RMBA 2013 0.090899 0.000433 -0.14243 0.09522 1,329462 1.02642

26 ROTI 2012 0.020219 0.325633 0.16581 1.238271 1.988282 2.99371

ROTI 2013 0.023967 0.281507 0.115655 1.462536 0.825988 2.50804

27 SCPI 2012 0.377384 0.111631 1.59505 0.043038 0.686024 1.32104

SCPI 2013 0.431914 0.071573 -0.02333 0.014118 0.545401 1.09539

28 SIDO 2012 - - - -

SIDO 2013 0.691905 0.146395 0.19741 8.052286 0.803781 7.32184

29 SKBM 2012 0.113538 0.065708 0.057312 7.84269 2.608342 7.73132

SKBM 2013 0.135293 0.156155 0.157349 0.678037 2.605471 3.91251

30 SKLT 2012 0.147517 0.055315 0.046703 0.518456 1.608528 2.32818

(3)

Sumber : Hasil Pengolahan Data NO PERUSAHAAN TAHUN WC /

TA

RE / TA EBIT / TA

MVE / BVD

S/TA Z-Score

31 STTP 2012 -.00117 0.346572 0.074502 0.865018 1.02712 2.27579

STTP 2013 -.0.01983 0.294654 0.097138 0.894576 1.152971 2.39899

32 SQBB 2012 0.614598 0.002593 0.455496 0.819264 0.975805 3.71163

SQBB 2013 0.623975 0.002972 0.473618 0.823984 1.012461 3.82272

33 TCID 2012 0.5304 0.015938 0.161119 0.869408 1.467337 3.17946

TCID 2013 0.356891 0.013716 0.148912 0.806978 1,383332 2,80639

34 TSPC 2012 0.50694 0.005342 0.175347 0.723757 0.431218 3.05992

TSPC 2013 0.488844 0.004993 0.153466 0.714309 1.267556 2.79618

35 ULTJ 2012 0.249341 0.01611 0.189182 0.692549 1.160715 2.52230

ULTJ 2013 0.5304 0.015938 0.161119 0.869408 1.467337 3.17946

36 UNVR 2012 -0.12229 0.001273 0.539572 0.331112 2.278122 4.11240

UNVR 2013 -0.19152 0.001143 0.536313 0.318745 2.30424 4.03709

37 WIIM 2012 0.447755 0.117762 0.087452 2.191233 0.926951 3.23245

(4)

LAMPIRAN 2

Daftar Perusahaan Manufaktur Sektor Industri Barang Konsumsi yang Terdaftar di Bursa Efek Indonesia

NO

KRITERIA 1

KRITERIA 2

(FD)

KRITERIA 1

KRITERIA

3 (NFD)

2011 2012 2013

2012

2013

2011 2012 2013

A

MAKANAN DAN MINUMAN

1

PT. Akasha Wira

5

PT.Multi Bintang

Indonesia,Tbk

7

PT.Nippon Indosari

Corporindo,Tbk

(5)

NO

KRITERIA 1

KRITERIA

2 (FD)

KRITERIA 1

KRITERIA

3 (NFD)

2011 2012 2013 2012 2013

2011 2012 2013

8

PT.Ultrajaya Milk

Industry and

2

PT.Indofarma

(Persero),Tbk

2

PT.Kimia Farma

(Persero),Tbk

Sampel

5

3

PT.Industri Jamu

(6)

NO

KRITERIA 1

KRITERIA

2 (FD)

KRITERIA 1

D

KOSMETIK DAN KEPERLUAN RUMAH TANGGA

1

PT.Kedawung Setia

Industrial,Tbk

Sumber : Bursa Efek Indonesia (Data Diolah)

Keterangan :

*Kriteria 1 : Perusahaan yang terdaftar di Bursa Efek Indonesia pada tahun 2011-2013 secara berturut-turut.

*Kriteria 2 : Perusahaan yang memiliki Z-score < 2,99 pada tahun 2012-2013 secara berturut-turut,

*Kriteria 3 : Perusahaan yang memiliki Z-score > 2,99 pada tahun 2012-2013 secara berturut-turut, perusahaan sejenis dan asset yang mendekati dengan perusahaan yang

(7)

LAMPIRAN 3

Total Asset Sampel Kondisi FD dan NFD

(Dalam Jutaan Rupiah)

NO

FD

TOTAL ASSET

NO

NFD

TOTAL

ASSET

1

PYFA

118.033

1

SQBB

361.756

2

SCPI

441.000

2

MERK

584.388

3

LMPI

685.895

3

KICI

874.191

4

DVLA

922.945

4

KLBF

8.274.554

5

STTP

934.765

5

MYOR

6.599.845

6

INAF

1.114.901

6

KAEF

1.794.399

7

RMBA

6.333.957

7

HMSP

19.329.758

8

ICBP

15.222.857

8

INDF

53.585.933

(8)

LAMPIRAN 4

Rasio-Rasio Keuangan Perusahaan Kondisi Financial Distress dan

Nonfinancial Distress

Sumber : Hasil Pengolahan Data

No

Kode

Perusahaan

Y

WC/TA

RE/TA

EBIT/TA MVE/BVD

S/TA

1

DVLA

0

-0.14022

0.00975

0.18021

0.064976

0.074741

2

HMSP

1

0.335392

0.38465

0.56447

0.532995

2.734473

3

ICBP

0

0.367327

0.29328

0.18031

0.413532

1.272242

4

INDF

1

0.89546

0.27134

0.12321

0.575527

1.315811

5

INAF

0

0.221683

0.25208

0.04951

0.937073

0.583103

6

KAEF

1

0.44769

0.37478

0.12929

0.698096

1.900018

7

KICI

1

0.553244

0.64377

0.01488

0.41091

1.001121

8

KLBF

1

0.527314

0.41075

0.24016

0.78746

1.318725

9

LMPI

0

0.152153

0.73518

0.01129

0.153559

0.732162

10

MERK

1

0.729472

0.77725

0.48465

0.624563

1.571784

11

MYOR

1

0.340842

0.25439

0.09491

0.367383

1.432438

12

PYFA

0

0.317896

0.39340

0.06002

0.10069

1.280097

13

RMBA

0

0.07232

0.08237

0.07660

0.154799

1.589871

14

SCPI

0

0.431914

0.57157

-0.02333

0.014118

0.545401

15

STTP

0

-0.0168

0.18353

0.064596

0.102013

1.099403

(9)

LAMPIRAN 5

Statistik Deskriptif Variabel Penelitian

LAMPIRAN 6

Uji Normalitas

WC/TA RE/TA EBIT/TA MVE/BVD S/TA

N 16 16 16 16 16

Mean 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 Normal

Parametersab Std.Deviation .35613572 .48983714 43587624 40556518 .43747717 Absolute .091 .179 .184 .174 .161 Most

Extreme Differences

Positive .091 .177 .184 .086 .161

Negative -.091 -.179 -.150 -.174 -.155

Kolmogorov-Smirnov Z

.365 .716 .735 .696 .644

Asymp.Sig (2-Tailed)

.999 .685 .652 .718 .801

a. Test distribution is Normal.

b. Calculated from data.

Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

WC/TA 16 -.14 .90 .3669 .27366

RE/TA 16 .01 .78 .3813 .22021

EBIT/TA 16 -.02 .56 .1675 .17816

MVE/TA 16 .01 .94 .4225 .30449

S/TA 16 .07 2.73 1.2088 .61231

(10)

LAMPIRAN 7

Independent Sample T Test

Group Statistics

Financi

al

Distress N Mean Std. Deviation Std. Error Mean

WC/TA 0 8 .18 .198 .070

1 8 .56 .192 .068

RE/TA 0 8 .31 .246 .087

1 8 .45 .182 .064

EBIT/TA 0 8 .07 .072 .025

1 8 .26 .208 .074

MVE/TA 0 8 .24 .307 .109

1 8 .61 .168 .059

S/TA 0 8 .89 .496 .175

(11)

Independent Samples Test

Levene's Test for Equality of

Variances t-test for Equality of Means

95% Confidence Interval of the Difference

F Sig. t Df Sig. (2-tailed) Mean Difference

Std. Error

Difference Lower Upper

WC/TA Equal variances assumed .070 .796 -3.929 14 .002 -.384 .098 -.593 -.174

Equal variances not assumed

-3.929 13.988 .002 -.384 .098 -.593 -.174

RE/TA Equal variances assumed .641 .437 -1.249 14 .232 -.135 .108 -.367 .097

Equal variances not assumed

-1.249 12.904 .234 -.135 .108 -.369 .099

EBIT/TA Equal variances assumed 13.392 .003 -2.377 14 .032 -.185 .078 -.352 -.018

Equal variances not assumed

-2.377 8.659 .042 -.185 .078 -.362 -.008

MVE/TA Equal variances assumed 1.194 .293 -2.949 14 .011 -.365 .124 -.630 -.100

Equal variances not assumed

-2.949 10.858 .013 -.365 .124 -.638 -.092

S/TA Equal variances assumed .001 .980 -2.347 14 .034 -.630 .268 -1.206 -.054

Equal variances not assumed

(12)

LAMPIRAN 8

Uji Homogenitas

Test Results

Box's M 14.607

F Approx. .996

df1 10

df2 937.052

Sig. .445

Tests null hypothesis of equal

(13)

LAMPIRAN 9

Hasil Analisis Diskriminan

Analysis Case Processing Summary

Unweighted Cases N Percent

Valid 16 100.0

Excluded Missing or out-of-range group

codes

0 .0

At least one missing

discriminating variable

0 .0

Both missing or out-of-range

group codes and at least one

missing discriminating

variable

0 .0

Total 0 .0

Total 16 100.0

Group Statistics

Financial Distress Mean Std. Deviation

Valid N (listwise)

Unweighted Weighted

.00 WC/TA .1750 .19821 8 8.000

EBIT/TA .0750 .07211 8 8.000

MVE/TA .2400 .30697 8 8.000

S/TA .8937 .49601 8 8.000

1.00 WC/TA .5588 .19246 8 8.000

EBIT/TA .2600 .20798 8 8.000

MVE/TA .6050 .16827 8 8.000

S/TA 1.5238 .57495 8 8.000

Total WC/TA .3669 .27366 16 16.000

EBIT/TA .1675 .17816 16 16.000

MVE/TA .4225 .30449 16 16.000

(14)

Pooled Within-Groups Matricesa

WC/TA EBIT/TA MVE/TA S/TA

Covariance WC/TA .038 -.003 .010 -.014

EBIT/TA -.003 .024 .008 .028

MVE/TA .010 .008 .061 -.011

S/TA -.014 .028 -.011 .288

Correlation WC/TA 1.000 -.104 .216 -.136

EBIT/TA -.104 1.000 .212 .335

MVE/TA .216 .212 1.000 -.085

S/TA -.136 .335 -.085 1.000

a. The covariance matrix has 14 degrees of freedom.

Tests of Equality of Group Means

Wilks' Lambda F df1 df2 Sig.

WC/TA .476 15.435 1 14 .002

EBIT/TA .712 5.650 1 14 .032

MVE/TA .617 8.697 1 14 .011

(15)

Covariance Matricesa

Financial Distress WC/TA EBIT/TA MVE/TA S/TA

.00 WC/TA .039 -.005 .012 .026

EBIT/TA -.005 .005 .002 .000

MVE/TA .012 .002 .094 -.008

S/TA .026 .000 -.008 .246

1.00 WC/TA .037 -.001 .009 -.054

EBIT/TA -.001 .043 .015 .056

MVE/TA .009 .015 .028 -.014

S/TA -.054 .056 -.014 .331

Total WC/TA .075 .016 .047 .051

EBIT/TA .016 .032 .026 .057

MVE/TA .047 .026 .093 .051

S/TA .051 .057 .051 .375

a. The total covariance matrix has 15 degrees of freedom.

Log Determinants

Financial Distress Rank Log Determinant

.00 4 -12.563

1.00 4 -12.111

Pooled within-groups 4 -11.294

The ranks and natural logarithms of determinants

(16)

Eigenvalues

Function Eigenvalue % of Variance Cumulative % Canonical Correlation

1 2.226a 100.0 100.0 .831

a. First 1 canonical discriminant functions were used in the analysis.

Wilks' Lambda

Test of

Function(s) Wilks' Lambda Chi-square df Sig.

1 .310 14.055 4 .007

Standardized Canonical

Discriminant Function

Coefficients

Function

1

WC/TA .717

EBIT/TA .272

MVE/TA .355

S/TA .457

Structure Matrix

Function

1

WC/TA .704

MVE/TA .528

(17)

Structure Matrix

Function

1

WC/TA .704

MVE/TA .528

EBIT/TA .426

S/TA .420

Pooled within-groups

correlations between

discriminating variables

and standardized

canonical discriminant

functions

Variables ordered by

absolute size of correlation

within function.

Canonical Discriminant

Function Coefficients

Function

1

WC/TA 3.673

EBIT/TA 1.747

MVE/TA 1.432

S/TA .851

(Constant) -3.273

(18)

Functions at Group

Centroids

Financi

al

Distress

Function

1

.00 -1.396

1.00 1.396

Unstandardized

canonical discriminant

functions evaluated at

group means

Classification Processing Summary

Processed 16

Excluded Missing or out-of-range group

codes

0

At least one missing

discriminating variable

0

Used in Output 16

Prior Probabilities for Groups

Financi

al

Distress Prior

Cases Used in Analysis

Unweighted Weighted

.00 .500 8 8.000

1.00 .500 8 8.000

(19)

Classification Function Coefficients

Financial Distress

.00 1.00

WC/TA 4.691 14.943

EBIT/TA -1.911 2.966

MVE/TA 4.051 8.049

S/TA 3.676 6.050

(Constant) -3.161 -12.298

Fisher's linear discriminant functions

Classification Resultsb,c

Financi

al

Distress

Predicted Group Membership

Total

.00 1.00

Original Count .00 7 1 8

1.00 1 7 8

% .00 87.5 12.5 100.0

1.00 12.5 87.5 100.0

Cross-validateda Count .00 6 2 8

1.00 2 6 8

% .00 75.0 25.0 100.0

1.00 25.0 75.0 100.0

a. Cross validation is done only for those cases in the analysis. In cross validation,

each case is classified by the functions derived from all cases other than that case.

b. 87.5% of original grouped cases correctly classified.

(20)

Casewise Statistics

Case Number

Highest Group Second Highest Group

Discriminant Scores

P(D>d | G=g)

Actual Group Predicted Group p df P(G=g | D=d)

Squared Mahalanobis

Distance to

Centroid Group P(G=g | D=d)

Squared Mahalanobis

Distance to

Centroid Function 1

Original 1 0 0 .053 1 1.000 3.733 1 .000 22.310 -3.328

2 1 1 .523 1 .997 .409 0 .003 11.770 2.035

3 0 1** .184 1 .547 1.764 0 .453 2.141 .068

4 1 1 .429 1 .998 .626 0 .002 12.834 2.187

5 0 0 .391 1 .818 .735 1 .182 3.740 -.538

6 1 1 .865 1 .968 .029 0 .032 6.869 1.225

7 1 1 .233 1 .637 1.425 0 .363 2.552 .202

8 1 1 .954 1 .977 .003 0 .023 7.475 1.338

9 0 0 .636 1 .995 .224 1 .005 10.660 -1.869

10 1 1 .283 1 .999 1.154 0 .001 14.942 2.470

11 1 0** .202 1 .584 1.624 1 .416 2.301 -.121

12 0 0 .526 1 .893 .402 1 .107 4.653 -.761

13 0 0 .938 1 .975 .006 1 .025 7.363 -1.318

14 0 0 .882 1 .970 .022 1 .030 6.984 -1.247

15 0 0 .438 1 .998 .602 1 .002 12.726 -2.172

16 1 1 .664 1 .994 .188 0 .006 10.401 1.829

Cross-validateda 1 0 0 .000 4 1.000 25.662 1 .000 60.208

(21)

3 0 1** .737 4 .643 1.994 0 .357 3.174

4 1 1 .173 4 .998 6.377 0 .002 18.506

5 0 1** .000 4 1.000 22.644 0 .000 39.179

6 1 1 .330 4 .925 4.607 0 .075 9.627

7 1 0** .414 4 .636 3.940 1 .364 5.057

8 1 1 .892 4 .965 1.112 0 .035 7.769

9 0 0 .983 4 .993 .398 1 .007 10.197

10 1 1 .210 4 .999 5.860 0 .001 20.437

11 1 0** .688 4 .769 2.261 1 .231 4.666

12 0 0 .653 4 .825 2.452 1 .175 5.558

13 0 0 .584 4 .955 2.847 1 .045 8.938

14 0 0 .198 4 .915 6.021 1 .085 10.780

15 0 0 .803 4 .997 1.631 1 .003 13.343

16 1 1 .094 4 .989 7.925 0 .011 16.920

For the original data, squared Mahalanobis distance is based on canonical functions. For the cross-validated data, squared Mahalanobis distance is based on observations. **. Misclassified case

Referensi

Dokumen terkait

Untuk mengetahui model Altman ( Z-Score ) merupakan model yang dapat digunakan untuk memprediksi kondisi financial distress dan memberikan hasil yang berbeda-beda pada

Berdasarkan kriteria Z-Score &lt; 1,81 dikategorikan sebagai perusahaan yang memiliki kesulitan keuangan yang sangat besar dan beresiko tinggi sehingga kemungkinan

Dengan metode Altman Z-Score ketiga dapat diketahui nilai dari masing-masing rasio Z-Score yang mempunyai nilai negatif dan hasil nilai Z-Score yang dapat menunjukan kondisi

Analisis prediksi kebangkrutan dari perusahaan rokok batubara yang terdaftar di BEI dengan menggunakan tiga metode prediksi kebangkrutan yaitu metode Altman

Hasil perhitungan Z-Score pada tahun 2012 adalah sebesar 1,237722724 dan berada diantara angka standar yang telah ditetapkan oleh Altman, yaitu diantara 1,23 sampai dengan

Keywords: Altman Z-Score, Zmijewski X-Score, financial distress ABSTRAK Penelitian ini bertujuan untuk mengetahui dan memprediksi terjadinya financial distress dengan menggunakan

Apabila angka Z < 1,81, artinya perusahaan dapat diklasifikasikan dinyatakan bangkrut DZ = daerah krisis Menurut informasi tersebut dinyatakan bahwa perusahaan dengan Z-Score di atas

HUBUNGAN FINANCIAL DISTRESS METODE ALTMAN Z-CORE DAN SPRINGATE S-SCORE TERHADAP HARGA SAHAM PADA PERUSAHAAN SUB SEKTOR PROPERTI DAN REAL ESTATE YANG TERDAFTAR PADA BURSA EFEK