• Tidak ada hasil yang ditemukan

LAMPIRAN. Universitas Sumatera Utara

N/A
N/A
Protected

Academic year: 2021

Membagikan "LAMPIRAN. Universitas Sumatera Utara"

Copied!
20
0
0

Teks penuh

(1)
(2)

Lampiran 1 – Waktu Kerusakan Komponen Mesin Produksi

Paku

No. Tanggal KerusakanBearing Tarik KawatInterval Tanggal KerusakanBearing Pembuatan PakuInterval

1 15/01/2009 - 05/01/09 -2 23/02/2009 39 09/02/09 35 3 01/04/2009 37 17/03/09 36 4 11/05/2009 40 27/04/2009 41 5 19/06/2009 39 04/06/2009 38 6 18/07/2009 29 07/07/2009 33 7 20/08/2009 33 12/08/2009 36 8 26/09/2009 37 14/09/2009 33 9 03/11/2009 38 24/10/2009 40 10 12/12/2009 39 28/11/2009 35 11 20/01/2010 39 04/01/2010 37 12 25/02/2010 36 06/02/2010 33 13 25/03/2010 28 08/03/2010 30 14 28/04/2010 34 19/04/2010 42 15 07/06/2010 40 27/05/2010 38 16 12/07/2010 35 30/06/2010 34 17 20/08/2010 39 05/08/2010 36 18 01/10/2010 42 06/09/2010 32 19 11/11/2010 41 11/10/2010 35 20 19/11/2010 39

Sumber: PT. Intan Suar Kartika

No. TanggalHammer Cutter Dies

Kerusakan Interval KerusakanTanggal Interval KerusakanTanggal Interval

1 10/01/2009 - 10/01/2009 - 02/01/2009 -2 21/01/2009 11 24/01/2009 14 14/01/2009 12 3 11/02/2009 21 09/02/2009 16 27/01/2009 13 4 26/02/2009 15 26/02/2009 17 13/02/2009 17 5 17/03/2009 19 11/03/2009 13 28/02/2009 15 6 04/04/2009 18 24/03/2009 13 16/03/2009 16 7 25/04/2009 21 07/04/2009 14 04/04/2009 19 8 08/05/2009 13 25/04/2009 18 21/04/2009 17 9 23/05/2009 15 15/05/2009 20 08/05/2009 17 10 12/06/2009 20 01/06/2009 17 20/05/2009 12 11 27/06/2009 15 17/06/2009 16 02/06/2009 13 12 15/07/2009 18 29/06/2009 12 19/06/2009 17 13 04/08/2009 20 16/07/2009 17 01/07/2009 12 14 20/08/2009 16 03/08/2009 18 16/07/2009 15 15 04/09/2009 15 19/08/2009 16 01/08/2009 16 16 25/09/2009 21 02/09/2009 14 19/08/2009 18

(3)

No. TanggalHammer Cutter Dies

Kerusakan Interval KerusakanTanggal Interval KerusakanTanggal Interval

20 10/12/2009 19 02/11/2009 19 17/10/2009 15 21 29/12/2009 19 17/11/2009 15 05/11/2009 19 22 15/01/2010 17 02/12/2009 15 19/11/2009 14 23 29/01/2010 14 17/12/2009 15 08/12/2009 19 24 15/02/2010 17 05/01/2010 19 21/12/2009 13 25 01/03/2010 14 19/01/2010 14 04/01/2010 14 26 20/03/2010 19 06/02/2010 18 15/01/2010 11 27 05/04/2010 16 25/02/2010 19 27/01/2010 12 28 20/04/2010 15 08/03/2010 11 08/02/2010 12 29 10/05/2010 20 26/03/2010 18 23/02/2010 15 30 25/05/2010 15 12/04/2010 17 08/03/2010 13 31 11/06/2010 17 27/04/2010 15 22/03/2010 14 32 25/06/2010 14 10/05/2010 13 06/04/2010 15 33 13/07/2010 18 26/05/2010 16 23/04/2010 17 34 31/07/2010 18 09/06/2010 14 07/05/2010 14 35 16/08/2010 16 21/06/2010 12 17/05/2010 10 36 04/09/2010 19 07/07/2010 16 29/05/2010 12 37 21/09/2010 17 24/07/2010 17 16/06/2010 18 38 05/10/2010 14 11/08/2010 18 30/06/2010 14 39 22/10/2010 17 27/08/2010 16 15/07/2010 15 40 09/11/2010 18 08/09/2010 12 27/07/2010 12 41 29/11/2010 20 23/09/2010 15 06/08/2010 10 42 11/10/2010 18 19/08/2010 13 43 30/10/2010 19 31/08/2010 12 44 16/11/2010 17 13/09/2010 13 45 30/11/2010 14 29/09/2010 16 46 12/10/2010 13 47 23/10/2010 11 48 10/11/2010 18 49 26/11/2010 16

(4)

Lampiran 2 - Pengujian Pola Distribusi Data dengan Sofware

Easyfit 5.2

1. Komponen bearing tarik kawat

Godness of Fit

Fitting Result

Rank Distribution

Statistic

Parameter

1

Weibull

0.17411

2

Normal

0.20222

3

Lognormal

0.20856

4

Gamma

0.21091

5

Exponential

0.53135

2. Komponen bearing pembuatan paku

Godness of Fit

Fitting Result

Rank Distribution

Statistic

Parameter

1

Lognormal

0.10768

2

Gamma

0.11324

3

Weibull

0.1217

4

Normal

0.12496

(5)

3. Komponen dies

Godness of Fit

Fitting Result

Rank Distribution

Statistic

Parameter

1

Lognormal

0.12476

2

Gamma

0.12897

3

Normal

0.14184

4

Weibull

0.14249

5

Exponential

0.50055

4. Komponen hammer

Godness of Fit

Fitting Result

Rank Distribution

Statistic

Parameter

1

Weibull

0.10853

2

2

Normal

0.12158

3

Lognormal

0.12738

4

Gamma

0.12967

5

Exponential

0.50669

5. Komponen cutter

Godness of Fit

Fitting Result

Rank Distribution

Statistic

Parameter

1

Normal

0.10976

2

Weibull

0.11336

3

Gamma

0.12027

4

Lognormal

0.1234

5

Exponential

0.51256

(6)

Lampiran 3- Grafik Konsep Keandalan dengan Sofware Easyfit

5.2

1. Komponen Bearing Pembuatan Paku (Distribusi Lognormal; parameter

Probability Density Function

Histogram Lognormal x 37 38 39 40 41 42 36 35 34 33 32 31 30 f(x ) 0.4 0.36 0.32 0.28 0.24 0.2 0.16 0.12 0.08 0.04 0

Gambar 1. Probability Density Function Komponen Bearing Pembuatan

Paku

(7)

Cumulative Distribution Function Sample Lognormal x 37 38 39 40 41 42 36 35 34 33 32 31 30 F( x) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Gambar 2. Cumulatif Distribusi Function Komponen Bearing Pembuatan

Paku

Survival Function Sample Lognormal x 37 38 39 40 41 42 36 35 34 33 32 31 30 S (x ) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

(8)

Hazard Function Lognormal x 37 38 39 40 41 42 36 35 34 33 32 31 30 h( x) 0.64 0.56 0.48 0.4 0.32 0.24 0.16 0.08 0

Gambar 4. Hazard Function Komponen Bearing Tarik

2. Komponen Dies (Distribusi Lognormal; parameter

Probability Density Function

Histogram Lognormal x 15.2 16 16.8 17.6 18.4 14.4 13.6 12.8 12 11.2 10.4 f(x ) 0.32 0.28 0.24 0.2 0.16 0.12 0.08 0.04 0

(9)

Cumulative Distribution Function Sample Lognormal x 15.2 16 16.8 17.6 18.4 14.4 13.6 12.8 12 11.2 10.4 F( x) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Gambar 6. Cumulatif Distribusi Function Komponen Dies

Survival Function Sample Lognormal x 15.2 16 16.8 17.6 18.4 14.4 13.6 12.8 12 11.2 10.4 S (x ) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

(10)

Hazard Function Lognormal x 15.2 16 16.8 17.6 18.4 14.4 13.6 12.8 12 11.2 10.4 h( x) 0.64 0.56 0.48 0.4 0.32 0.24 0.16 0.08 0

Gambar 8. Hazard Function Komponen Dies

3. Komponen Hammer (Distribusi Weibull; parameter

Probability Density Function

Histogram Weibull x 17 18 19 20 21 16 15 14 13 12 11 f(x ) 0.28 0.26 0.24 0.22 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0

(11)

Cumulative Distribution Function Sample Weibull x 17 18 19 20 21 16 15 14 13 12 11 F( x) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Gambar 10. Cumulatif Distribusi Function Komponen Hammer

Survival Function Sample Weibull x 17 18 19 20 21 16 15 14 13 12 11 S (x ) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

(12)

Hazard Function Weibull x 17 18 19 20 21 16 15 14 13 12 11 h( x) 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Gambar 12. Hazard Function Komponen Hammer

4. Komponen Cutter (Distribusi Normal; parameter

Probability Density Function

Histogram Normal x 16 16.8 17.6 18.4 19.2 20 15.2 14.4 13.6 12.8 12 11.2 f(x ) 0.32 0.28 0.24 0.2 0.16 0.12 0.08 0.04 0

(13)

Cumulative Distribution Function Sample Normal x 16 16.8 17.6 18.4 19.2 20 15.2 14.4 13.6 12.8 12 11.2 F( x) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Gambar 14. Cumulatif Distribusi Function Komponen Cutter

Survival Function Sample Normal x 16 16.8 17.6 18.4 19.2 20 15.2 14.4 13.6 12.8 12 11.2 S (x ) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

(14)

Hazard Function Normal x 16 16.8 17.6 18.4 19.2 20 15.2 14.4 13.6 12.8 12 11.2 h( x) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Gambar 16. Hazard Function Komponen Cutter

Lampiran 4. Perhitungan Total Minimum Downtime (TMD) 1. Bearing Tarik Kawat

t Fcum H(t) D(tp) 1 1.55431E-15 1.55431E-15 0.094339623 2 1.00897E-12 1.00897E-12 0.04950495 3 4.44771E-11 4.44771E-11 0.033557047 4 6.52777E-10 6.52777E-10 0.025380711 5 5.24411E-09 5.24411E-09 0.020408163 6 2.87763E-08 2.87763E-08 0.017064847 7 1.21383E-07 1.21383E-07 0.014662759 8 4.2234E-07 4.2234E-07 0.012853477 9 1.26854E-06 1.26854E-06 0.011441665 10 3.39288E-06 3.39289E-06 0.01030932 11 8.26183E-06 8.26185E-06 0.009380956 12 1.86178E-05 1.86179E-05 0.008606044 13 3.93114E-05 3.93121E-05 0.007949501

(15)

16 0.000273213 0.000273254 0.006470426 17 0.000481177 0.000481308 0.006093651 18 0.000820396 0.000820791 0.005759407 19 0.001358826 0.001359941 0.005461461 20 0.002192757 0.002195739 0.005194999 21 0.003455993 0.003463581 0.004956349 22 0.005331081 0.005349546 0.004742787 23 0.008062739 0.008105871 0.004552421 24 0.011973384 0.012070438 0.004384116 25 0.017480358 0.017691354 0.004237467 26 0.025113847 0.025558145 0.004112808 27 0.035533581 0.036441754 0.004011261 28 0.049541103 0.051346468 0.003934825 29 0.068082531 0.071578328 0.003886521 30 0.09223445 0.09883644 0.003870601 31 0.123163037 0.135336033 0.003892844 32 0.162044331 0.183974767 0.003960966 33 0.209933328 0.248555763 0.00408517 34 0.26757305 0.334079874 0.004278851 35 0.335145497 0.447110862 0.004559445 36 0.411987055 0.596190942 0.004949305 37 0.496322739 0.79222586 0.005476336 38 0.585111272 1.048651553 0.006173816 39 0.674120964 1.381038959 0.007078441 40 0.75834643 1.805652394 0.00822541 41 0.832796812 2.336538371 0.009639752 42 0.893527225 2.981287871 0.011324952 43 0.938594688 3.736815646 0.013253211 t Fcum H(t) D(tp) 44 0.968519395 4.587697824 0.015364283 45 0.985960216 5.509247753 0.017577592 46 0.994687306 6.474666109 0.019813826 47 0.998342612 7.462277684 0.022014005

(16)

51 0.999998907 11.45791327 0.030064199 52 0.999999929 12.45791238 0.031886235 53 0.999999997 13.45791234 0.033639652 54 1 14.45791234 0.035328253

2. Bearing Pembuatan Paku

t Fcum H(t) D(tp) 1 0 0 0.058823529 2 2E-248 2E-248 0.03030303 3 3.8E-184 3.8E-184 0.020408163 4 2.1E-144 2.1E-144 0.015384615 5 6E-117 6E-117 0.012345679 6 1.09E-96 1.09E-96 0.010309278 7 4.33E-81 4.33E-81 0.008849558 8 1.04E-68 1.04E-68 0.007751938 9 1.17E-58 1.17E-58 0.006896552 10 2.34E-50 2.34E-50 0.00621118 11 2.06E-43 2.06E-43 0.005649718 12 1.55E-37 1.55E-37 0.005181347 13 1.59E-32 1.59E-32 0.004784689 14 3.21E-28 3.21E-28 0.004444444 15 1.68E-24 1.68E-24 0.004149378 16 2.83E-21 2.83E-21 0.003891051 17 1.82E-18 1.82E-18 0.003663004 18 5.17E-16 5.17E-16 0.003460208 19 7.22E-14 7.22E-14 0.003278689 20 5.45E-12 5.45E-12 0.003115265 21 2.4E-10 2.4E-10 0.002967359 22 6.63E-09 6.63E-09 0.002832861 23 1.21E-07 1.21E-07 0.002710028 24 1.52E-06 1.52E-06 0.002597408 25 1.38E-05 1.38E-05 0.002493812 26 9.39E-05 9.39E-05 0.002398382 27 0.000492 0.000492 0.002310985

(17)

30 0.019402 0.019536 0.002133157 31 0.046099 0.046999 0.002138161 32 0.094471 0.098911 0.002206397 t Fcum H(t) D(tp) 33 0.169814 0.18661 0.002360706 34 0.271991 0.322747 0.002624457 35 0.394043 0.52122 0.003021318 36 0.523798 0.796812 0.003574379 37 0.64772 1.163832 0.004303164 38 0.754946 1.633576 0.005218558 39 0.839651 2.211284 0.006317406 40 0.901169 2.893909 0.007579634 41 0.942506 3.670034 0.008970134 42 0.968355 4.522253 0.010445275 43 0.983477 5.43101 0.011961316 44 0.991793 6.378234 0.013481293 45 0.996112 7.349547 0.014978358 46 0.998238 8.334837 0.016435706 47 0.999234 9.32769 0.017844515 48 0.99968 10.32439 0.019201364 49 0.999871 11.32293 0.020506035 50 0.99995 12.32231 0.021759985 51 0.999981 13.32206 0.022965418 52 0.999993 14.32196 0.024124788 53 0.999998 15.32192 0.025240555 54 0.999999 16.32191 0.026315083 55 1 17.3219 0.027350594 3. Dies t Fcum H(t) D(tp) 1 9.417E-56 9.417E-56 0.0588235

(18)

5 3.38822E-10 3.388E-10 0.0123457 6 1.75894E-07 1.759E-07 0.0103093 7 1.44461E-05 1.445E-05 0.0088497 8 0.000346162 0.0003462 0.0077555 9 0.003505956 0.0035072 0.0069288 10 0.019067728 0.0191346 0.0063696 11 0.0655306 0.066784 0.006153 12 0.15974007 0.1704082 0.0063586 13 0.300723332 0.3519691 0.0070301 14 0.466448144 0.6306235 0.0081815 15 0.626909237 1.0222529 0.009805 16 0.759664728 1.5362342 0.0118611 17 0.856252268 2.1716563 0.0142694 18 0.919474792 2.916258 0.0169147 19 0.957391658 3.7493927 0.0196695 20 0.978537018 4.6474566 0.0224193 t Fcum H(t) D(tp) 21 0.989635184 5.5889218 0.0250798 22 0.995171781 6.557109 0.0276 23 0.997818776 7.5406253 0.0299571 24 0.99903988 8.5324252 0.0321469 25 0.999586557 9.5284841 0.0341762 26 0.999825223 10.526644 0.0360564 27 0.999927249 11.525805 0.0378008 28 0.999970103 12.525431 0.0394222 29 0.999987843 13.525267 0.0409327 30 0.999995099 14.525195 0.0423429 31 0.999998038 15.525165 0.0436624 32 0.999999219 16.525152 0.0448997 33 0.99999969 17.525147 0.0460621 34 0.999999877 18.525144 0.0471563 35 0.999999952 19.525143 0.0481881 36 0.999999981 20.525143 0.0491627 37 0.999999992 21.525143 0.0500846

(19)

40 1 24.525143 0.0525744 4. Hammer t Fcum H(t) D(tp) 1 2.50483E-10 2.50483E-10 0.04 2 4.9006E-08 4.9006E-08 0.020408165 3 1.07318E-06 1.07318E-06 0.013698652 4 9.58777E-06 9.58778E-06 0.010309427 5 5.24079E-05 5.24084E-05 0.008265113 6 0.000209941 0.000209952 0.006898724 7 0.000678582 0.000678724 0.005923184 8 0.001874056 0.001875328 0.005195922 9 0.004587436 0.004596039 0.004640065 10 0.010201264 0.01024815 0.004213163 11 0.020959091 0.021173883 0.003893437 12 0.04024618 0.041098348 0.003673521 13 0.072765402 0.075755939 0.003557936 14 0.124365632 0.133787068 0.00356285 15 0.20112018 0.228027459 0.003717566 16 0.307187019 0.377234095 0.004067146 17 0.441337059 0.607824445 0.004674173 18 0.593258443 0.953855426 0.005613818 19 0.74272821 1.451183543 0.006951368 20 0.865485574 2.121463995 0.008694794 21 0.945433387 2.951136276 0.010745949 22 0.98414292 3.888482793 0.012916303 23 0.99701102 4.873871216 0.015028584 t Fcum H(t) D(tp) 24 0.999676667 5.871971999 0.016998194 25 0.999982716 6.871853225 0.018814941 26 0.999999619 7.871850226 0.020492441

(20)

5. Cutter t Fcum H(t) D(tp) 1 4.50913E-11 4.50913E-11 0.04 2 7.68993E-10 7.68993E-10 0.020408163 3 1.08352E-08 1.08352E-08 0.01369863 4 1.26219E-07 1.26219E-07 0.01030928 5 1.21653E-06 1.21653E-06 0.008264478 6 9.71088E-06 9.71089E-06 0.006896652 7 6.42768E-05 6.42774E-05 0.00591773 8 0.00035332 0.000353343 0.005184093 9 0.001615993 0.001616564 0.004619469 10 0.006165236 0.006175203 0.004187812 11 0.019684014 0.019805566 0.003885692 12 0.052820978 0.053867128 0.003739795 13 0.119822958 0.126277476 0.003800052 14 0.23158141 0.260824926 0.004128301 15 0.385363039 0.485875325 0.004788956 16 0.559932552 0.831989963 0.005838922 17 0.723416689 1.325292114 0.007305472 18 0.849722796 1.975853716 0.009154228 19 0.93022498 2.768213465 0.011274224 20 0.972551606 3.664782056 0.013507636 21 0.990909612 4.622377379 0.015710032 22 0.997477444 5.608194618 0.017792612 23 0.999415551 6.604332465 0.019722421 24 0.999887248 7.603475063 0.021499502 25 0.999981926 8.60331956 0.023136405 26 0.999997596 9.603296478 0.024647912 27 0.999999735 10.60329367 0.026047674 28 0.999999976 11.60329339 0.027347608 29 0.999999998 12.60329337 0.02855802 30 1 13.60329337 0.02968785

Gambar

Gambar 1. Probability Density Function Komponen Bearing Pembuatan Paku
Gambar 2. Cumulatif Distribusi Function Komponen Bearing Pembuatan Paku Survival Function Sample Lognormalx 37 38 39 40 41 4236353433323130S(x)10.90.80.70.60.50.40.30.20.10
Gambar 4. Hazard Function Komponen Bearing Tarik 2. Komponen Dies (Distribusi Lognormal; parameter
Gambar 6. Cumulatif Distribusi Function Komponen Dies
+6

Referensi

Dokumen terkait

Sepengetahuan penulis tentang judul “Penyelesaian Sengketa Medik Antara Pasien Dengan Dokter Dan/Atau Dokter Gigi Serta Rumah.. Sakit Demi Mewujudkan Hak Pasien” belum

Studi kelayakan yang tidak jelas pelaksanaannya dan tidak kelengkapan informasinya (keuntungan berbanding sumber daya dalam hal operasional, keuangan, ekonomi,

Meningkatnya akses penduduk terhadap sanitasi layak (air limbah domestik, sampah dan drainase lingkungan) menjadi 100 persen pada tingkat kebutuhan dasar yaitu (i) untuk

(1) Penyelenggaraan jaringan telekomunikasi dan atau penyelenggaraan jasa telekomunikasi sebagaimana dimaksud dalam Pasal 7 ayat (1) huruf a dan huruf b dapat dilakukan oleh

Statistik Kelapa Sawit Indonesia 2006.. Badan Pusat Statistik

Bidang dan Kegiatan Usaha Bergerak dalam bidang usaha Perbankan dan Jasa Keuangan Jumlah Saham yang ditawarkan 2.051.366.765 Saham Biasa Kelas B baru dengan nilai nominal.

STRATEGI KOLEJ UNIVERSITI INSANIAH PEMBANGUNA N FIZIKAL PEMBANGUNA N FIZIKAL • Pembinaan kampus tetap oleh Kerajaan Negeri • Penswastaan pengurusan asrama • Perkongsian

I hereby state that this research paper entitled “ Teacher – Students Interaction Patterns in EFL Classroom (A Case Study of English Classroom Interaction in