• Tidak ada hasil yang ditemukan

KEKONVERGENAN PADA RUANG BERNORMA DAN RUANG HASIL KALI DALAM WINA DIANA

N/A
N/A
Protected

Academic year: 2021

Membagikan "KEKONVERGENAN PADA RUANG BERNORMA DAN RUANG HASIL KALI DALAM WINA DIANA"

Copied!
36
0
0

Teks penuh

(1)

xi

KEKONVERGENAN PADA RUANG BERNORMA DAN

RUANG HASIL KALI DALAM

WINA DIANA

10554001597

Tanggal Sidang: 04 Februari 2011 Periode Wisuda: Februari 2011

Jurusan Matematika Fakultas Sains dan Teknologi

Universitas Islam Negeri Sultan Syarif Kasim Riau Jl. HR. Soebrantas No.155 Pekanbaru

ABSTRAK

Diberikan ⋅,⋅ hasil kali dalam,

( )

..,. ruang hasil kali dalam dan diberikan .

norma,

(

X, .

)

ruang bernorma. Tujuan dari tugas akhir ini adalah menunjukkan kekonvergenan pada ruang bernorma dan kekonvergenan pada ruang hasil kali dalam. Diperoleh juga bahwa barisan yang konvergen kuat pada ruang bernorma maka barisan tersebut konvergen lemah pada hasil kali dalam.

(2)

xi

CONVERGENCE ON NORM SPACE AND

INNER PRODUCT SPACE

WINA DIANA

10554001597

Date of Final Exam: February 04, 2011 Graduation Cremony Priod: Februari 2011

Mathematic Departement Faculty of Sciences and Technology

State Islamic University of Sultan Syarif Kasim Riau HR. Soebrantas Street No. 155 Pekanbaru

ABSTRACT

Let ⋅,⋅ is inner product,

( )

..,. be a inner product psace and let . is norm,

(

X, .

)

be a norm space. At the end of this assignment will be shown the konvergence in the norm space and the convergence in the inner product space. It is also produced that the strong convergence squencesin the norm space then weak convergence squences in the inner product.

Keywords : convergence, inner product space, norm space.

(3)

xi

DAFTAR ISI

Halaman

LEMBAR PERSETUJUAN ... ii

LEMBAR PENGESAHAN ... iii

LEMBAR HAK ATAS KEKAYAAN INTELEKTUAL ... iv

LEMBAR PERNYATAAN ... v LEMBAR PERSEMBAHAN ... vi ABSTRAK ... vii ABSTRACT ... viii KATA PENGANTAR ... ix DAFTAR ISI ... xi

DAFTAR LAMBANG ... xiii

DAFTAR GAMBAR ... xiv

BAB I. PENDAHULUAN ... I-1 1.1 Latar Belakang ... I-1 1.2 Rumusan Masalah ... I-2 1.4 Tujuan Penulisan ... I-2 1.5 Sistematika Penulisan ... I-2 BAB II. LANDASAN TEORI ... II-1

2.1 Ruang Vektor ... II-1 2.2 Kekonvergenan pada Barisan Bilangan Riil ... II-2 2.3 Ruang Hasil Kali Dalam ... II-9 2.4 Ruang Bernorma ... II-11

(4)

xi

BAB III. METODOLOGI PENELITIAN ... III-1 BAB IV. PEMBAHASAN KEKONVERGENAN PADA DAN RUANG

BERNORMA RUANG HASIL KALI DALAM ... IV-1 4.1 Kekonvergen pada Ruang Bernorma ... IV-1 4.2 Kekonvergen pada Ruang Hasil Kali Dalam ... IV-3 4.3 Kekonvergen pada Ruang Bernorma dan Ruang Hasil Kali Dalam IV-3 BAB V. KESIMPULAN DAN SARAN ... V-1

5.1 Kesimpulan ... V-1 5.2 Saran ... V-2 DAFTAR PUSTAKA

(5)

I-1

BAB I PENDAHULUAN

1.1 Latar Belakang Masalah

Sejalan dengan perkembangan ilmu matematika, para pemikir matematika terus berusaha untuk mengembangkan teori-teori yang telah ada. Perkembangan ilmu matematika tersebut selalu bertambah maju dari zaman ke zaman. Sebagai contoh perkembangan ilmu matematika adalah perkembangan ilmu aljabar.

Aljabar telah digunakan matematikawan sejak beberapa ribu tahun yang lalu. Nama aljabar berasal dari kitab yang ditulis pada tahun 830 oleh matematikawan Persia bernama Muhammad Ibnu Musa Al-Kwarizmi dengan judul ‘Al-Kitab Al-Jabr Wal-Muqabala’ (yang berarti "The Compendious Book on

Calculation by Completion and Balancing"), yang menerapkan operasi simbolik

untuk mencari solusi secara sistematik terhadap persamaan linier dan kuadratik. Salah satu muridnya, Omar Khayyam menerjemahkan hasil karya Al-Khwarizmi ke bahasa Eropa. Aljabar bersama-sama dengan geometri, analisis dan teori bilangan adalah cabang-cabang utama dalam matematika. Sekarang ini istilah aljabar mempunyai makna lebih luas daripada sekedar aljabar elementer, yaitu meliputi ajabar abstrak, aljabar linier dan sebagainya.

Para pemikir matematika terus berusaha untuk mengembangkan teori-teori yang telah ada, seperti konsep ruang hasil kali dalam, ruang bernorma dan ketaksamaan Cauchy-Schwarz. Pada penulisan ini akan dibahas tentang konsep kekonvergenan pada barisan riil, kekonvergenan pada ruang bernorma dan kekonvergenan pada ruang hasil kali dalam. Konsep kekonvergenan pada barisan bilangan riil pertama kali dibahas oleh Bartle dan Sherbert (1982). Seiring dengan itu dikemukakan berbagai hasil tentang sifat-sifat ruang bernorma dan ruang hasil kali dalam yang dibahas oleh Anton (1994), dan selanjutnya dikembangkan lagi oleh Gunawan (2002) yang mengemukakan konsep ruang bernorma-2 dan ruang hasil kali dalam-2. Setelah melihat dan membaca hal tersebut di atas maka penulis tertarik untuk menulis sebuah skripsi dengan judul ”Kekonvergenan pada

(6)

I-2

1.2 Rumusan Masalah

Berdasarkan latar belakang di atas maka dapat dirumuskan masalahnya adalah, “bagaimana konsep kekonvergenan pada ruang bernorma dan ruang hasil kali dalam?”.

1.3 Batasan Masalah

Permasalahan yang akan dibahas dalam tulisan ini dibatasi hanya pada menunjukkan kekonvergenan pada ruang bernorma dan ruang hasil kali dalam.

1.4 Tujuan Penulisan

Tujuan dari penulisan ini adalah menunjukkan bahwa konvergen pada barisan bilangan riil dapat diperumum ke ruang bernorma dan ruang hasil kali dalam, kemudian melihat bentuk kekonvergenan pada ruang bernorma dan ruang hasil kali dalam.

1.5 Sistematika Penulisan

Sistematika dalam pembuatan tulisan ini mencakup 5 bab yaitu :

Bab I : Pendahuluan

Bab ini berisi latar belakang masalah, rumusan masalah, tujuan, dan sistematika penulisan.

Bab ll : Landasan Teori

Bab ini berisikan informasi tentang teori-teori yang digunakan dalam penulisan ataupun metode/teorema yang dipakai. Dalam penulisan tugas akhir ini, landasan teori yang dipakai antara lain tentang ruang vektor, barisan bilangan riil, ruang bernorma dan ruang hasil kali dalam.

Bab III : Metode Penelitian

Bab ini berisikan cara-cara atau langkah-langkah dalam menyelesaikan permasalahan keterkaitan kekonvergenan pada ruang bernorma dan ruang hasil kali dalam.

(7)

I-3

Bab IV : Pembahasan dan Analisa

Bab ini berisikan penyelesaian masalah keterkaitan kekonvergenan pada ruang bernorma dan ruang hasil kali dalam.

Bab V : Penutup

(8)

II-1

BAB II

LANDASAN TEORI

Pada bab II ini akan akan dibahas mengenai teori-teori yang menjadi landasan atau acuan untuk bab seterusnya. Teori-teori yang dibahas antara lain mengenai ruang vektor, konvergen pada barisan bilangan riil, ruang hasil kali dalam, dan ruang bernorma.

2.1

Ruang Vektor

Definisi 2.1 : (Howard Anton, 1997) Ruang vektor atas lapangan R adalah

himpunan tidak kosong X dengan dua operasi yaitu penambahan dan perkalian dengan skalar atas vektor-vektor x,y,zX dengan skalar k,lR yang memenuhi sifat-sifat sebagai berikut :

1. x+ yX ,

2. x+y = y+x ( sifat komutatif ),

3. x+(y+z)=(x+y)+z ( sifat asosiatif ),

4. Ada sebuah vektor 0∈ X sehingga 0+x=x+0,

5.∀ x di X terdapat vektor balikan dari x atau −x sehingga 0 ) ( ) (− = − + = + x x x x ,

6. Jika k skalar dan x sebarang benda vektor di X maka kx berada di kxX , 7. k(x+y)=kx+ky ( sifat distributif ),

8. (k+l)x=kx+lx, 9. k(lx)=(kl)(x),

10. Untuk sebarang real 1 dan untuk setiap xX berlaku 1x=x.

Definisi 2.2 : (Howard Anton, 1997) Dua vektor u=(u1,u2,...,un) dan )

,..., ,

(v1 v2 vn

v= pada n

(9)

II-2 untuk penjumlahan u+v didefinisikan dengan u+v=(u1+v1,u2+v2,...,un +vn)dan jika k adalah sebarang skalar, maka perkalian skalar ku didefinisikan dengan

) ,..., ,

(ku1 ku2 kun

ku= . Operasi penambahan dan perkalian skalar dalam definisi ini disebut dengan operasi-operasi baku pada R . n

Definisi 2.3 : (Howard Anton, 1997) Jika u=(u1,u2,...,un) dan v=(v1,v2,...,vn) adalah sebarang vektor pada n

R , maka hasil kali dalam Euclidis (Euclidean inner product) u . didefinisikan dengan v u.v=u1v1+u2v2 +...+unvn.

Contoh :

Diberikan hasil kali dalam Euclidis dari vektor u dan v masing-masing adalah

) 6 , 2 , 1 (− =

u dan v=(7,3,1). Tentukan hasil kali dalam Euclidisnya.

Jawab :

Hasil kali dalam Euclidis pada R adalah 3

n nv u v u v u v u. = 1 1+ 2 2 +...+

( )( ) ( )( ) ( )( )

−1 7 + 2 3 + 6 1 =

( ) ( ) ( )

−7 + 6 + 6 = 5 =

maka nilai 5 disebut sebagai hasil kali dalam Euclidis.

2.2

Konvergen pada Barisan Bilangan Riil

Definisi 2.4 : (Robert G. Bartle dan Donald R. Sherbert, 2000) Barisan bilangan riil (barisan di R) adalah fungsi dari himpunan bilangan asli N yang daerah hasilnya

(10)

II-3

Definisi 2.5 : (Robert G. Bartle dan Donald R. Sherbert, 2000) Barisan

( )

x n

dikatakan konvergen ke x atau lim

( )

xn =x, jika untuk setiap ε >0 terdapat bilangan

asli K

( )

ε sehingga untuk setiap nK

( )

ε sehingga |xnx|<ε.

Definisi 2.6 : (Robert G. Bartle dan Donald R. Sherbert, 2000) Barisan

( )

x n

dikatakan terbatas jika terdapat bilangan riil m>0 sehingga |xn |<M untuk semua N

n∈ .

Definisi 2.7 : (Robert G. Bartle dan Donald R. Sherbert, 2000) Misal X adalah

bilangan riil,

1) Untuk setiap ε >0 lingkungan dari x adalah himpunan

{

ε

}

εx= aR:|xa|<

V ,

2) Lingkungan dari x adalah semua unsur yang terdapat pada lingkungan ε dan

x, untuk ε >0.

Definisi 2.8 : (Robert G. Bartle dan Donald R. Sherbert, 2000) Misalkan

( )

x n barisan pada bilangan riil,

( )

x dikatakan mempunyai limit ke x jika untuk setiap n

0

>

ε terdapat bilangan riil K

( )

ε ∈N sahingga nK

( )

ε dan

( )

xnvε

( )

x . Jika

terdapat x limit barisan

( )

x maka n

( )

x konvergen ke x (barisan mempunyai limit). n Jika barisan

( )

x konvergen ke x dapat ditulis : n

( )

xn x

n→∞ =

lim atau bisa juga ditulis xnx.

Contoh 2.1:

1. Tentukan apakah barisan

( )

7 3 2 + − = n n

(11)

II-4 Jawab :

( )

7 3 2 lim lim + − = ∞ → ∞ → n n x n n n n n n n n n n 3 / 7/ / 2 / lim + + = ∞ → n n n 3 7/ / 2 1 lim + + = ∞ + ∞ + = / 7 3 / 2 1 3 1 = jadi barisan

( )

7 3 2 + − = n n

xn adalah barisan konvergen kerena barisan tersebut mempunyai limit yaitu

3 1 . 2. Tentukan apakah barisan

( )

7 3 2 + = n n

xn adalah barisan konvergen atau tidak! Penyelesaian :

( )

7 3 lim lim 2 + = ∞ → n n x n n n 2 2 2 2 / 7 / 3 / lim n n n n n n + = 2 / 7 / 3 1 lim n n n + = ∞ → 2 / 7 / 3 1 ∞ + ∞ = 0 1 = ∞ =

(12)

II-5 karena barisan

( )

7 3 2 + = n n

xn tidak mempunyai limit maka barisan tersebut divergen. Selanjutnya akan ditunjukkan barisan terbatas dan ketunggalan limit.

Teorema 2.1 : (Robert G. Bartle dan Donald R. Sherbert, 2000) Jika barisan

( )

x n konvergen maka barisan tersebut terbatas.

Bukti :

Diketahui barisan

( )

x dalah barisan konvergen, katakan n lim

( )

xn =x. Ambil ε =1, dan terdapat nN. Berdasarkan sifat nilai mutlak maka dari |xnx|<ε diperoleh

1 |

|xn < x + , untuk setiap nN.

Pilih M =sup

{

|x1|,|x2|,|x3|,,,,,|x|+1

}

.

karena |xn|<x+1 maka berlaku |xn |<M untuk semua nN. maka terbukti bahwa

( )

x terbatas n

Teorema 2.2 : (Robert G. Bartle dan Donald R. Sherbert, 2000) Jika barisan

( )

x n

konvergen, maka

( )

x paling banyak hanya mempunyai satu limit, dengan kata lain n

limitnya tunggal.

Bukti :

Diketahui

( )

x barisan konvergen, akan dibuktikan bahwa barisan konvergen n mempunyai satu limit.

(13)

II-6 andaikan lim

( )

xn x'

n→∞ = dan nlim→∞

( )

xn =x" dengan x'≠x", akan ditunjukkan x'=x" sehingga untuk sebarang ε >o terdapat K , sedemikian hingga '

2 |'

|xnx <ε dan

terdapat K , sedemikian hingga "

2 | "

|xnx <ε untuk setiap nK".

dipilih K=max

{

K',K"

}

.

dengan menggunakan ketaksamaan segitiga, maka untuk nK diperoleh : | " ' | | " ' |xx = xxn+xnx | " | | ' |xxn + xnx ≤ 2 2 ε ε + < ε =

oleh karena ε >0 sebarang, maka x'−x"=0 yang berarti x'=x". Kontradiksi dengan pengandaian x'≠x". Jadi terbukti bahwa limitnya tunggal.

Definisi 2.10 : Barisan

( )

xn dinamakan barisan Cauchy jika untuk setiap ε >0 terdapat H

( )

ε ∈N sehingga untuk setiap m,nN dengan m,nH

( )

ε berlaku

ε

< − | |xn xm .

Lemma 2.1 : (Robert G. Bartle dan Donald R. Sherbert, 2000) Jika barisan

( )

x n konvergen, maka

( )

x barisan Cauchy. n

Bukti :

Diketahui

( )

x adalah barisan konvergen dan misalkan n

( )

x konvergen ke x, akan n dibuktikan bahwa barisan bilangan riil yang konvergen merupakan barisan Cauchy (untuk sebarang ε >0 maka dipenuhi |xnxm |<ε).

(14)

II-7 Ambil sebarang ε >0, maka terdapat K ∈N

     2 ε sehingga jika       ≥ 2 ε K n , maka 2 |

|xnx <ε , oleh karena itu jika

( )

     = 2 ε ε K

H dan jika n,mH

( )

ε , maka diperoleh: | | | |xnxm < xnx+xxm | | | |xnx + xmx < 2 2 ε ε + < ε <

karena berlaku untuk sebarang ε >0 berlaku |xnxm |<ε, maka terbukti bahwa

( )

xn adalah barisan Cauchy.

Definisi 2.11 : (Robert G. Bartle dan Donald R. Sherbert, 2000) Barisan

( )

xn

pada bilangan riil, dikatakan konvergen lemah ke x jika untuk setiap ε >0 terdapat

( )

N

K ε ∈ , bila nK

( )

ε dan f adalah fungsi pada bilangan riil sehingga

( ) ( )

− |<ε

| f xn f x .

Contoh 2.2:

Selidiki apakah barisan bilangan riil

( )

n

xn =π dengan f

( )

x =sinx merupakan barisan yang konvergen lemah atau tidak!

Jawab :

Diketahui

( )

n

xn =π dan f

( )

x =sinx , akan ditentukan

( )

n x

(15)

II-8 Berdasarkan definisi maka akan dibuktikan :

( ) ( )

− |<ε =|sinπ −sin |<ε | x n x f x f n 0 > ε , maka 1 >0

ε . Misalkan K

( )

ε adalah bilangan asli dengan menggunakan sifat

Archimedes maka didapat

( )

ε ε + > x K sin 1

, untuk setiap nN dengan

( )

ε π K n ≥ sin 1

maka akan didapat :

( )

ε ε π ≥K > x+ n sin 1 sin 1 ε π > x+ n sin 1 sin 1 ε π < + x n sin sin maka π − xn sin sin

karena terbukti |

( ) ( )

− |<ε =|sinπ −sinx|<ε

n x

f x

f n , maka barisan bilangan riil

( )

n

xn =π dengan f

( )

x =sinx adalah konvergen lemah.

Definisi 2.12 : (Robert G. Bartle dan Donald R. Sherbert, 2000) Barisan

( )

xn

pada bilangan riil, dikatakan konvergen kuat jika terdapat x

( )

xn sehingga berlaku : 0 | | lim − → ∞ → xn x n .

(16)

II-9

Contoh 2.3:

Selidiki apakah barisan lim1 =0

∞ → n

n adalah konvergen kuat.

Jawab :

Untuk ε >0, maka 1 >0

ε .

Misalkan K

( )

ε adalah bilangan asli dengan

( )

ε ε >1

K , untuk setiap nN maka

( )

ε K n≥ ,

maka akan didapat

( )

ε ε > 1 ≥K n , sehingga ε 1 > n dan <ε n 1 , dengan demikian 1−0 <ε n , sehingga n<ε 1 , jadi barisan tersebut konvergen kuat.

2.3

Ruang Hasil Kali Dalam

Telah dibahas sebelumnya mengenai hasil kali dalam Euclidis pada ruang vektor R . Selanjutnya akan dibahas mengenai notasi hasil kali dalam dari sebarang n

vektor riil.

Definisi 2.13 : (Anton Howard, 1994) Misalkan X ruang linier atas lapangan R suatu

pemetaan dari X×X ke R yang ditulis .,. disebut hasil kali dalam bila memenuhi sifat-sifat berikut :

1. x,x ≥0; x,x =0 jika dan hanya jika x=0, 2. x,y = y,x untuk setiap x,yX ,

3. αx,yx,y untuk setiap x,yX dan α∈R, 4. x+y,z = x,z + y,z untuk setiap x,y,zX .

(17)

II-10

Contoh 2.4 :

Tunjukkan bahwa operasi perkalian titik-titik standar di R merupakan hasil kali 3

dalam !

Jawab :

Akan ditunjukkan bahwa perkalian titik standar memenuhi keempat aksioma hasil kali dalam, yaitu :

misalkan x=

(

x1,x2,x3

)

, y=

(

y1,y2,y3

)

, z=

(

z1,z2,z3

)

, x,y,zR3. 1. x,y = y,x

( )

xy y x, = .

(

x1y1 +x2y2 +x3y3

)

=

(

y1x1 +y2x2 +y3x3

)

= x y, = 2. x,x ≥0

( )

xx x x, = .

(

12 + 22 + 32

)

≥0 = x x x 0 ,x = x

(

x12+x22 +x32

)

=0,↔x=

(

0,0,0

)

=0 3. αx,yx,y

( )

xy y x, α . α =

(

αx1y1 +αx2y2 +αx3y3

)

=

( )

x.y α =

(18)

II-11 y x, α = 4. x+y,z =

(

(

x+y

)

.z

)

(

)(

)

(

x1+y1,x2 +y2,x3 +y3 . z1,z2,z3

)

=

(

) (

) (

)

(

x1z1+y1z1 + x2z2 +y2z2 + x3z3+y3z3

)

=

(

x1z1+x2z2 +x3z3

) (

+ y1z1+y2z2 +y3z3

)

=

( ) ( )

x.z + y.z = z y z x, , =

karena keempat aksioma terpenuhi maka operasi perkalian titik-titik standar di R 3

merupakan hasil kali dalam.

2.4

Ruang Bernorma

Definisi 2.14 : (Anton Howard, 1994) Jika X adalah ruang linier atas lapangan R adalah fungsi bernilai riil dan . dikatakan norma pada X jika memenuhi 4 aksioma berikut :

1. x ≥0 untuk semua xX , 2. x =0 jika dan hanya jika x=0,

3. α xx untuk semua xX dan α∈R, 4. x+yx + y ( ketaksamaan segitiga ).

pasangan

( )

X;⋅ disebut dengan ruang linier bernorma dengan norma ⋅ .

Contoh 2.5 :

Misalkan X ruang linier atas lapangan R dengan mendefinisikan x = x1 + x2 + x3 , akan dibuktikan bahwa x = x1 + x2 + x3 adalah norma dengan x=

(

x1,x2,x3

)

dimana xX.

(19)

II-12

Jawab :

1. x ≥0

Misalkan X ruang linier atas lapangan R, ambil sebarang xXdan 3

2

1 x x

x

x = + + dimana x1 + x2 + x3 ≥0 dengan kata lain x ≥0. 2. x =0 jika dan hanya jika x=0

Terlebih dahulu kita harus membuktikan bahwa x =0 maka haruslah x=0. Misalkan X ruang linier atas lapangan R dengan diketahui bahwa x =0 sehingga x = x1 + x2 + x3 =0, untuk setiap xX dimana x1,x2,x3 ≥0 sehingga untuk x1 + x2 + x3 =0, haruslah nilai x1 = x2 =x3 =0 dengan kata lain nilai dari x=0. Selanjutnya akan ditunjukkan bahwa x =0 jika

0 = x . 0 = x 0 , 0 0 0 3 2 1 + + = + + ↔ = = x x x x x 3. αxx 3 2 1 x x x x α α α α = + + 3 2 1 x x x α α α + + =

(

x1 + x2 + x3

)

= α x α = 4. x+yx + y

Ambil sebarang nilai yX dengan y=

(

y1,y2,y3

)

sehingga 3 3 2 2 1 1 y x y x y x y x+ = + + + + +

(20)

II-13 3 3 2 2 1 1 y x y x y x + + + + + = 3 2 1 3 2 1 x x y y y x + + + + + = y x + = sehingga diperoleh x+yx + y

karena keempat aksioma terpenuhi maka x = x1 + x2 + x3 merupakan norma pada ruang linier X atas lapangan R.

Teorema 2.3 : (Ketaksamaan Cauchy-Schwarz) Jika x dan y adalah vektor pada

ruang hasil kali dalam maka : x,y 2 ≤ x,x y,y .

Bukti :

Diketahui x dan y adalah vektor pada ruang hasil kali dalam, akan ditunjukkan bahwa

y y x x y x, 2 ≤ , , .

Misalkan x=0, maka x,y = x,x =0, sehingga ketaksamaan Cauchy-Schwarz akan terpenuhi jika x≠0. Misalkan a= x,x , b=2 x,y dan c= y,y dan misalkan t sebarang bilangan riil, sehingga:

y y tx y y tx x x t y tx y tx , , , , , 0≤ + + = 2 + + + y y t y x t x x, 2+2 , + , = c bt at + + = 2

Ketaksamaan ini menyatakan bahwa polinom kuadrat at2 +bt+c tidak mempunyai akar, baik akar riil maupun akar iterasi, sehinggga diskriminannya harus memenuhi

0 4 2 − <

ac

b dengan menggantikan pemisalan keofisien a ,,b c memberikan 0 , , 4 , 4 x y 2− x x y y < , sehingga diperoleh x,y 2 < x,x y,y . Maka ketaksamaan Cauchy-Schwarz terpenuhi

(21)

II-14

Lemma 2.2 : Ketaksamaan pada teorema dapat ditulis dalam bentuk determinan

matrik sebagai berikut : 0

, , , , ≥ y y x y y x x x . Bukti :

Diketahui persamaan Cauchy-Schwarz.

Akan ditunjukkan bahwa persamaan tersebut dapat ditulis dalam determinan matrik,

yaitu 0 , , , , ≥ y y x y y x x x

dari hubungan x,y 2 < x,x y,y , maka 0 , , ,x y yx y 2 ≥ x karena x,y 2 < x,y y,x maka x,x y,yx,y y,x ≥0 jadi y y x y y x x x , , , ,

Definisi : Jika V adalah sebuah ruang hasil kali dalam, maka norma (panjang) vektor

x dinyatakan oleh x dan didefinisikan oleh x = x, x 12. Jika panjang berada pada R maka 2 22

2 1 x

x

x = + sedangkan pada R maka 3

2 3 2 2 2 1 x x x x = + + .

Definisi : Jika V adalah sebuah ruang hasil kali dalam, maka jarak antara dua titik vektor u dan v dinyatakan oleh d

( )

u,v dan didefinisikan oleh d

( )

u,v = uv . Jika jarak dua titik di 2

R maka u=

(

u1, u2

)

dan v=

(

v1, v2

)

dan diberikan

( ) (

u v u v

) (

u v

)

u v

d = − + 2 − 2 2 = −

2 1 1

(22)

II-15

(

u1,u2,u3

)

u= dan v=

(

v1,v2,v3

)

dan diberikan

( ) (

u v u v

) (

u v

) (

u v

)

u v d = − + − + 3 − 3 2 = − 2 2 2 2 1 1 ,

Definisi : Ruang linier X adalah suatu himpunan yang memiliki anggota vektor dan skalar pada lapangan (field) K dengan dua operasi yaitu operasi penjumlahan dan perkalian sebagai berikut:

1. F

(

x+y

)

=F

( ) ( )

x +F y

2. F

( )

kx =kF

( )

x .

Contoh :

Misalkan F=R2 →R3 adalah fungsi yang didefinisikan oleh

( ) (

u v x x y x y

)

F , = , + , − dan jika u=

(

x1, y1

)

dan v=

(

x2, y2

)

maka

(

x1 x2,y1 y2

)

v

u+ = + + . Tunjukkan bahwa F adalah ruang linier.

Jawab :

Diketahui F =R2 →R3 adalah fungsi yang didefinisikan oleh

( ) (

u v x x y x y

)

F , = , + , − dan jika u=

(

x1, y1

)

dan v=

(

x2, y2

)

maka

(

x1 x2,y1 y2

)

v

u+ = + + , akan ditunjukkan bahwa F adalah ruang linier.

untuk menunjukkan bahwa F merupakan ruang linier harus memenuhi 2 aksioma sebagai berikut : 1. F

(

u+v

)

=F

( ) ( )

u +F v

(

) (

) (

) (

) (

)

[

x1+x2 , x1+x2 + y1+y2 , x1+x2 − y1+y2

]

=

(

x1,x1+y1,x1−y1

) (

+ x2,x2 + y2,x2 −y2

)

=

( ) ( )

u F v F + =

(23)

II-16 2. F

( )

kx =kF

( )

x

(

kx1,kx1 +ky1,kx1−ky1

)

=

(

x1,x1 y1,x1 y1

)

k + − =

( )

u kF =

(24)

BAB III

METODOLOGI PENELITIAN

Penulisan skripsi ini penulis menggunakan metodologi studi literatur terhadap referensi-referensi yang berkaitan dengan kekonvergenan pada barisan bilangan riil, kekonvergenan pada ruang hasil kali dalam dan kekonvergenan pada ruang bernorma. Dimulai dengan memahami definisi tentang barisan bilangan riil dan kekonvergenan barisan bilangan riil, memahami definisi tentang ruang hasil kali dalam dan memberikan contoh dan memahami defenisi tentang ruang bernorma serta memberikan contoh. Setelah itu dilanjutkan dengan pembuktian teorema-teorema, lemma dan proposisi yang berhubungan dengan pembahasan dan dilanjutkan dengan melihat kekonvergenan ruang hasil kali dalam kekonvergenan pada ruang bernorma.

Flowchart metodologi penelitian :

Gambar 3.1. Flowchart metodologi penelitian Konvergen barisan bilangan riil

Ruang hasil kali dalam

Konvergen pada ruang bernorma dan ruang hasil kali dalam

Ruang bernorma

Membuktikan teorema-teorema yang berhubungan

(25)

IV-1

BAB IV PEMBAHASAN

Pada bab ini akan dibahas mengenai pembahasan permasalahan yaitu menunjukkan bentuk kekonvergenan pada ruang bernorma dan ruang hasil kali dalam.

4.1 Kekonvergenan pada Ruang Bernorma

Definisi 4.1.1 : Barisan

( )

x di dalam ruang bernorma X dikatakan konvergen lemah n

ke x jika terdapat xX, maka untuk setiap fX' : lim||

( ) ( )

− ||=0

f xn f x

n .

Definisi 4.1.2 : Barisan

( )

x di dalam ruang bernorma X dikatakan konvergen kuat n

ke x jika terdapat xX, sehingga lim|| − ||=0

xn x

n , untuk setiap xX.

Untuk menyatakan konvergen lemah juga bisa ditulis xn →w x, jika untuk setiap ε >0 terdapat K

( )

ε ∈N dan bila n>K

( )

ε maka || f

( ) ( )

xnf x ||<ε.

Contoh :

Terdapat

(

Rm,

)

ruang bernorma, dengan norma 32 2 2 2 1 x x x x = + + . Ambil

( )

                =             = n n n x x x x mn n n n π π π M M 2 1 dan f :RmRmx dengan                 =             =             n n n x x x x x x f mn n n m π π π sin sin sin sin sin sin 2 1 2 1 M M M akan konvergen ke             = 0 0 0 M x .

(26)

IV-2

Jawab :

Akan ditunjukkan bahwa f

( ) ( )

xnf x <δ atau π − xnn sin 1

sin , untuk δ >0, maka 1δ >0.

Misalkan K

( )

δ adalah bilangan asli, dengan menggunakan sifat Archimedes maka diperoleh :

( )

δ δ + > n x K 1 sin 1

, untuk setiap nN dengan

( )

δ

π K n ≥ sin 1 , maka :

( )

δ δ π ≥ > xn + K n sin 1 1 sin 1 δ π > xn + n sin 1 1 sin 1 δ π > xn + n sin 1 sin maka : δ π xn < n sin 1 sin = f

( ) ( )

xnf x

untuk x2n...xmn buktinya analog.

Dengan kata lain untuk setiap i=1,2,...m berlaku lim

( ) ( )

− =0

∞ → in i n f x f x Diperoleh lim

( ) ( )

− =0 ∞ → f xm f x n ≤lim

[

( ) ( )

1n − 1 +

( ) ( )

2n − 2 +...+

( ) ( )

mnm

]

=0 n f x f x f x f x f x f x =0+0+...+0 =0 atau lim

( ) ( )

− =0 ∞ → f xm f x n

(27)

IV-3

4.2 Kekonvergenan pada Ruang Hasil Kali Dalam

Definisi 4.3 : Barisan

( )

x pada ruang hasil kali dalam X dikatakan konvergen lemah n

ke x jika terdapat xX,sehingga untuk setiap ε >0 terdapat K

( )

ε ∈N dan bila

( )

ε K

n> , maka untuk setiap fX': f

( ) ( )

xnf x,y <ε untuk setiap yX.

Definisi 4.4 : Jika barisan

( )

x pada ruang hasil kali dalam X dikatakan konvergen n

kuat ke x, jika : lim − , =0

xn x y

n , untuk setiap yX.

Dari pembahasan di atas, maka selanjutnya adalah suatu pernyataan yang berbentuk proposisi yang menyatakan hubungan antara kekonvergenan pada ruang bernorma dan kekonvergenan pada ruang hasil kali dalam.

4.

3 Kekonvergenan pada Ruang Bernorma dan Ruang hasil Kali Dalam

Proposisi 4.1 : Jika barisan

( )

x pada ruang bernorma X konvergen kuat, maka n

barisan

( )

x konvergen lemah ke x pada ruang hasil kali dalam. n

Bukti :

Diketahui

( )

x barisan pada ruang bernorma konvergen kuat. n

Akan ditunjukkan bahwa barisan yang konvergen kuat pada ruang bernorma merupakan konvergen lemah pada ruang hasil kali dalam.

Dari ketaksamaan segitiga didapat : || , || . || || | , | xnx yxnx y y

karena

( )

x konvergen kuat ke x maka n ||xnx||=0 0

|| ||xnx =

| xnx,y |≤0

(28)

IV-4 sehingga diperoleh f

( ) ( )

xnf x,y →0, yang merupakan konvergen lemah.

Proposisi 4.2 : Jika

( )

x pada ruang hasil kali dalam X konvergen lemah ke x dan n '

x , maka x= x', dimana x dan 'x anggota X.

Bukti :

Diketahui

( )

x konvergen lemah ke x dan 'n x .

Akan ditunjukkan bahwa x=x', untuk x dan 'x anggota X.

Jika xn,yx,y maka pada saat yang sama xn,yx',y ,untuk setiap

X y x, ∈ .

Dari keunikan limit pada barisan bilangan riil, didapat :

y x y x, = ',

( )

x y f

( )

x y f , = ', n

( ) ( )

xf x',y =0 f , untuk setiap x,yX .

( ) ( )

xf x' =0 f

( ) ( )

x f x' f =

( ) ( )

x f x' f = , maka x=x'

Lemma 4.1: Pada ruang hasil kali dalam jika xnx dan yny maka

y x y

(29)

IV-5

Bukti :

Akan ditunjukkan bahwa jika xnx dan yny maka xn,ynx,y , dari

ketaksamaan Schwarz, didapat :

y x y x y x y x y x y xn, n − , = n, nn, + n, − , y x x y y xn, n − + n − , ≤

karena xnx→0 dan yny→0 dimana n→∞, maka didapat ≤ xn yny + xnx y →0 0 , ,yx yxn n y x y xn, n → ,

(30)

V-2

BAB V

KESIMPULAN DAN SARAN

Mengakhiri penulisan ini dapat diambil kesimpulan dan saran dari pembahasan dan analisa yang telah dipaparkan pada bab sebelumnya.

5.1 Kesimpulan

Di dalam barisan bilangan riil berlaku sifat kekonvergenan, baik konvergen kuat maupun konvergen lemah. Begitu juga dalam ruang bernorma dan ruang hasil kali dalam.

Bentuk kekonvergenan pada barisan bilangan riil, pada ruang bernorma dan ruang hasil kali dalam adalah sebagai berikut :

1. Konvergen lemah dalam barisan bilangan riil :

untuk setiap ε >0 terdapat K

( )

ε ∈N, bila nK

( )

ε dan f adalah fungsi pada bilangan riil sehingga | f

( ) ( )

xnf x |<ε.

2. Konvergen kuat dalam barisan bilangan riil : untuk x

( )

xn sehingga berlaku : lim| − |→0

xn x

n .

3. Konvergen lemah dalam ruang bernorma : untuk setiap ' X f ∈ : lim||

( ) ( )

− ||=0 ∞ → f xn f x n .

4. Konvergen kuat dalam ruang bernorma : 0 || || lim − = ∞ → xn x n , untuk setiap xX.

5. Konvergen lemah dalam ruang hasil kali dalam :

untuk setiap untuk setiap fX' berlaku f

( ) ( )

xnf x,y <ε.

6. Konvergen kuat dalam ruang hasil kali dalam : 0 , lim − = ∞ → xn x y n , untuk setiap yX.

(31)

V-2 Selain itu juga berlaku juga konvergen lemah pada ruang bernorma merupakan konvergen kuat pada ruang hasil kali dalam.

5.2 Saran

Dalam skripsi ini hanya dibahas tentang kekonvergenan pada ruang bernorma dan ruang hasil kali dalam, bagi yang tertarik untuk melanjutkan skripsi ini dapat mengembangkan tentang kekonvergenan pada ruang bernorma-n dan ruang hasil kali dalam-n atau ruang bernorma- k2 dan ruang hasil kali dalam- k2 .

(32)

KEKONVERGENAN PADA RUANG BERNORMA DAN

RUANG HASIL KALI DALAM

TUGAS AKHIR

Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada

Jurusan Matematika

Oleh :

WINA DIANA

10554001597

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS ISLAM NEGERI SULTAN SYARIF KASIM RIAU

PEKANBARU

(33)

DAFTAR PUSTAKA

Anton, Howard, Elementary Linear Algebra, The United State of Amerika, 1994.

Bartle, R.G dan Sherbert, D.R, Introduction to Real Analysis, John Wiley and sons, Inc, USA, 2000.

Gunawan, Hendra, “On Convergen in n-Inner Product Space”, Buletin of the

Malaysian Mathematical Sience Sosiety, Malaysia, 2002.

Http://personal.fmipa.itb.ac.id/hgunawan/files/2009/bab0-b.pdf, “Pengantar Analisis

Fourier dan Teori Aproksimasi”, Diakses pada tanggal 25 februari 2010.

Http://en.wikipedia.org/wiki/Inner_Product_Space, Diakses pada tanggal 4 Maret 2010.

(34)

xiv

DAFTAR GAMBAR

Halaman

3.1 Flowchart metodologi penelitian ... III-1

(35)

xiv

DAFTAR LAMBANG

. : Ruang Bernorma

. : Ruang Hasil Kali Dalam

ε

: Epsilon

∋ : Sehingga

(36)

xiv

DAFTAR RIWAYAT HIDUP

Penulis dilahirkan pada tanggal 06 Februari 1987 di Desa Kota Intan, Kabupaten Rokan Hulu sebagai anak pertama dari tiga bersaudara pasangan Bapak Murni dan Ibu Nurlisan.

Penulis menyelesaikan Pendidikan Formal pada Sekolah Dasar Negeri 002 Desa Kota Intan sampai kelas tiga, kemudian pindah ke Sekolah Dasar Negeri 007 Pagarantapah

Darussalam sampai selesai pada tahun 1999. Pada tahun 2002 menyelesaikan Pendidikan Lanjutan Tingkat Pertama di SLTP Negeri 04 Ngaso, Ujungbatu dan menyelesaikan Pendidikan Menengah Atas dengan jurusan Ilmu Pengetahuan Alam (IPA) di SMA Negeri 1 Ujungbatu pada tahun 2005. Setelah menyelesaikan pendidikan SMA, pada tahun yang sama penulis melanjutkan Pendidikan ke Perguruan Tinggi di Universitas Islam Negeri Sultan Syarif Kasim Pekanbaru Riau dan lulus di Fakultas Sains dan Teknologi dengan Jurusan Matematika.

Pada tahun 2008 penulis mengikuti Kuliah Kerja Nyata (KKN) di Desa Sungai Pinang Kecamatan Tambang Kabupaten Kampar. Pada tahun 2009, tepatnya pada semester VIII penulis melaksanakan Kerja Praktek di SMP Negeri 01 Pagarantapah Darussalam, dengan judul Aplikasi Paired Comparison untuk

Membandingkan Tingkat Kecerdasan Siswa“ dibawah bimbingan Ibu

Rahmadeni S.Si dan Ibu Elwis Asmel, S.Pd dari tanggal 01 April 2009 sampai 30 April 2009 dan diseminarkan pada tanggal 18 Juni 2009.

Penulis dinyatakan lulus dalam ujian sarjana dengan judul ”Kekonvergenen pada Ruang Bernorma dan Ruang Hasil Kali Dalam” dibawah bimbingan Ibu Fitri Ariyani, M.Sc. pada tanggal di Fakultas Sains dan Teknologi Jurusan Matematika.

Gambar

Gambar 3.1. Flowchart metodologi penelitian Konvergen barisan bilangan riil

Referensi

Dokumen terkait

Beberapa akun dalam laporan laba rugi konsolidasian untuk periode yang berakhir pada 31 Maret 2005 telah direklasifikasi agar sesuai dengan penyajian laporan keuangan

Pra produksi kemasan didahului dengan pengamatan terhadap produk yang akan dikemas meliputi fisik produk, karakter produk, serta alur pemasarannya. Setelah melakukan

Penerapan permainan tradisional seperti permainan jamuran dapat meningkatkan kemampuan sosial pada anak, diharapkan pendidik dapat menerapkan permainan jamuran

(3) Pihak lain dalam melakukan usaha pemanfaatan sumber daya alam sebagaimana dimaksud pada ayat (1) wajib bekerjasama dengan badan usaha milik masyarakat Hukum

Dengan memiliki orientasi kewirausahaan yang cukup tinggi akan memudahkan perusahaan untuk menganalisis lingkungan dan memformulasikan serta melaksanakan strategi

Seandainya dalam mengutip perlu menghilangkan beberapa bagian kalimat, maka pada bagian yang dihilangkan diganti tanda titik 3 buah, misalnya: “…an online program is

DEFINISI 5.1.1 Suatu hasil kali dalam (inner product) pada suatu ruang vektor V atas field F adalah suatu fungsi yang membawa setiap pasang vektor (x, y) dari elemen- elemen V ke

• Fakta geometrik bahwa jumlah panjang dari dua sisi segitiga setidak-tidaknya sama seperti panjang sisi ketiga.. Sudut vektor di Ruang Hasil