Analisis
Analisis
Analisis
Analisis Rangkaian
Rangkaian
Rangkaian
Rangkaian Listrik
Listrik
Listrik
Listrik
di
di
di
di Kawasan
Kawasan
Kawasan
Kawasan Fasor
Fasor
Fasor
Fasor
(Rangkaian Arus Bolak-Balik Sinusoidal Keadaan Mantap) Sudaryatno Sudirham 1
Kuliah Terbuka
ppsx beranimasi tersedia di www.ee-cafe.org 2Buku-e
Analisis
Analisis
Analisis
Analisis Rangkaian
Rangkaian
Rangkaian
Rangkaian Listrik
Listrik
Listrik
Listrik Jilid
Jilid
Jilid 1111
Jilid
tersedia di www.buku-e.lipi.go.id dan www.ee-cafe.org 3
Isi Kuliah:
1. Fasor2. Pernyataan Sinyal Sinus 3. Impedansi
4. Kaidah Rangkaian 5. Teorema Rangkaian 6. Metoda Analisis 7. Sistem Satu Fasa 8. Analisis Daya 9. Penyediaan Daya 10. Sistem Tiga-fasa Seimbang
Fasor
5Mengapa Fasor?
)
cos(
ω
−
θ
=
A
t
y
Sudut fasa Frekuensi sudut AmplitudoAnalisis rangkaian listrik di kawasan waktu melibatkan operasi diferensial dan integral, karena hubungan
arus-tegangan elemen-elemen adalah
dt
di
L
v
L L=
dt
dv
C
i
C C=
=
∫
i
dt
C
v
C C1
Di kawasan waktu bentuk gelombang sinus dinyatakan sebagai
6
Energi listrik, dengan daya ribuan kilo watt, disalurkan menggunakan bentuk gelombang sinus.
Pekerjaan analisis rangkaian, dimana peubah rangkaiannya berbentuk gelombang sinus, akan sangat dipermudah jika
operasi-operasi diferensial dapat dihindarkan. Siaran radio juga dipancarkan dengan menggunakan bentuk
gelombang sinus.
Bentuk gelombang sinus sangat luas digunakan
7
Dalam matematika ada sebuah fungsi yang turunannya berbentuk sama dengan fungsi itu
sendiri, yaitu
Jika sinyal sinus dapat dinyatakan dalam bentuk fungsi eksponensial, maka operasi diferensial
dan integral akan terhindarkan
Fungsi Eksponensial
x xe
dx
de
=
x xAe
dx
dAe
=
8Hal itu dimungkinkan karena
ada hubungan antara fungsi sinus dan fungsi eksponensial yaitu
x j x ejx=cos + sin
Ini adalah fungsi eksponensial kompleks
Berikut ini kita akan melihat ulang bilangan
kompleks
Bagian nyata pernyataan kompleks ini yang digunakan untuk menyatakan sinyal sinus
Identitas Euler
9
Pengertian Tentang Bilangan Kompleks
0 1 2+ = s Tinjau Persamaan: j s= −1= Akar persamaan adalah:Bilangan tidak nyata (imajiner)
0 0.5 1 1.5 2 2.5 3 3.5 0 1 2 3 4 5 6 7 8 9 10 x x
Tak ada nilai
x
untukx
negatif10
Bilangan Kompleks
s
=
a
+
jb
dengan a dan b adalahbilangan nyatabagian nyata dari s Re(s) = a
bagian imajiner dari s Im(s) = b
Re
(sumbu nyata)Im
(sumbu imajiner) a s = a + jb jbBilangan kompleks didefinisikan sebagai
11 |S|cosθ = Re (S) |S| sinθ = Im (S) θ = tan−1(b/a) 2 2 b a S = +
bagian nyata dari S bagian imaginer dari S
Bilangan kompleks S = |S|cosθ + j|S|sinθ a Re Im S = a + jb jb (sumbu nyata) (sumbu imajiner) Re Im S = a + jb θ jb a
Representasi Grafis Bilangan Kompleks
-4 -3 -2 -1 0 1 2 3 4 5 Re Im 4 3 2 1 -1 -2 -3 3 + j4 = 5cosθ+ j5sinθ θ 5
Contoh
13 Penjumlahanjb
a
s
1=
+
)
(
)
(
2 1s
a
p
j
b
q
s
−
=
−
+
−
Perkalian)
)(
(
)
)(
(
s
1s
2=
a
+
jb
p
+
jq
Pembagianjq
p
jb
a
s
s
+
+
=
2 1jq
p
s
2=
+
jb
a
s
1=
+
jq
p
s
2=
+
)
(
)
(
2 1s
a
p
j
b
q
s
+
=
+
+
+
)
(
)
(
ap
−
bq
+
j
aq
+
bp
=
2 2)
(
)
(
q
p
aq
bp
j
bq
ap
+
−
+
+
=
jq
p
jq
p
−
−
×
+--Operasi-Operasi Aljabar Bilangan Kompleks
Pengurangan 144
3
dan
3
2
2 1j
s
j
s
=
+
=
+
25 1 25 18 4 3 ) 9 8 ( ) 12 6 ( 4 3 4 3 4 3 3 2 2 2 2 1 j j j j j j s s + = + + − + + = − − × + + =7
5
)
4
3
(
)
3
2
(
2 1s
j
j
j
s
+
=
+
+
+
=
+
1
1
)
4
3
(
)
3
2
(
2 1s
j
j
j
s
−
=
+
−
+
=
−
−
17 6 ) 9 8 ( ) 12 6 ( ) 4 3 )( 3 2 ( ) )( (1 2 j j j j s s + − = + + − = + + = diketahui: maka:Contoh
15 ) sin (cos ) (τ+ θ = τ θ = τ θ+ θ j e e e e j jFungsi eksponensial bilangan kompleks didefinisikan sebagai
dengan eτadalah fungsi eksponensial riil
jb a S = + ) sin (cos 2 2+ θ+ θ = a b j S θ + = j e b a S 2 2
Dengan identitas Euler ini bilangan komleks yang dituliskan sebagai:
θ + θ = θ sin cos j ej
dan Ini identitas Euler
Penulisan bilangan kompleks di atas adalah penulisan dalam bentuk sudut siku yang juga dapat dituliskan dalam bentuk polar yaitu:
dapat dituliskan sebagai:
Bentuk Sudut Siku dan Bentuk Polar
|S| = 10 sudut fasa: θ = 0,5 rad S = 10 ej0,5 Bentuk Polar
8
,
4
8
,
8
)
48
,
0
88
,
0
(
10
)
5
,
0
sin
5
,
0
(cos
10
j
j
j
S
+
=
+
=
+
=
Bentuk Sudut Siku
rad 93 , 0 3 4 tan1 = = θ − S = 3 + j4 |S |= 32+42 =5 Bentuk Sudut Siku
S = 5ej 0,93 Bentuk Polar 5 4 3 | |S = 2+ 2= 0,93 rad 3 4 tan1 ==== ==== −−−− ==== ∠ ∠ ∠ ∠S θ −−−− S = 3−j4 Bentuk Sudut Siku
S = 5e−j 0,93 Bentuk Polar
Contoh
17 * atau | | * S 2 |S| SS S S = =(
)
( )( )
* * 2 1 2 1S
S
S
S
×
*=
* * * 1 1 2 1 S S S S =      (
)
* * 2 1 2 1 S S S S + *= +Suatu bilangan kompleks dan konjugatnya mempunyai hubungan-hubungan berikut: S = a + jb S* = a−jb Re Im Re Im
Bilangan kompleksSmempunyai konjugatS*
Konjugat dariS = a + jb adalahS*= a - jb
S*= p + jq
S = p−jq
Kompleks Konjugat
18
Dalam Bentuk Fasor
Pernyataan Sinyal Sinus
hanya amplitudo Adan sudut fasa θyang diperhatikan karenaωωωωdiketahui sama untuk seluruh sistem Sinyal Sinus di kawasan waktu :
v
=
A
cos(
ω
t
+
θ
)
Mengingat relasi Euler, fungsi ini bisa dipandang sebagai bagian riil dari suatu bilangan kompleks
A e j(ωt+θ)= A {cos(ωt + θ) + j sin(ωt + θ)} = V v = Re(V) = Re ( A e jωt e j θ)
sehingga dapat ditulis dalam bentuk:
Jika seluruh sistem (rangkaian) mempunyaiω bernilai sama maka ejωtbernilai tetap sehingga tak
perlu selalu dituliskan
V = A e j θ
dapat ditulis dalam bentuk eksponensial kompleks : dan sinyal sinus
v
=
A
cos(
ω
t
+
θ
)
Re dan e jω
tidak ditulis lagi
Inilah yang disebut
Fasor
Fasor
θ
∠
=
=
θA
Ae
jV
V
dituliskan
sin
cos
θ
+
θ
=
θ
∠
=
A
A
jA
V
∠
+
=
+
=
−a
b
b
a
jb
a
2 2tan
1V
Karena hanya amplitudo dan sudut fasa saja yang diperhatikan maka
V |A| θ Im Re a jb
Penulisan dan Penggambaran Fasor
21
Penulisan sinyal sinus dalam bentuk fasor
07 , 7 07 , 7 ) 45 sin( 10 ) 45 cos( 10 atau 45 10 o o 1 o 1 j j − = − + − = − ∠ = V V ) 45 500 cos( 10 ) ( o 1t = t− v ) 30 500 cos( 15 ) ( o 2t = t+ v 5 , 7 99 , 12 ) 30 sin( 15 ) 30 cos( 15 atau 30 15 o o 2 o 2 j j = + + = ∠ = V V menjadi: menjadi: Pada frekuensi ω= 500 1000 cos 4 ) ( 1t t i =− 4 ) 0 sin( 4 ) 0 cos( 4 atau 0 4 o o 1 o 1 − = − − = ∠ − = j I I ) 90 1000 cos( 3 ) ( o 2 t = t− i 3 ) 90 sin( 3 ) 90 cos( 3 atau 90 3 o o 2 o 2 j j − =− + − = − ∠ = I I menjadi: menjadi: Pada frekuensi ω= 1000
Contoh
22 A θ Im Re −−−−A A* −θ a jb −a −jbJika
A
=
A
∠
θ
θ
−
∠
=
A
*
A
(
)
(
180
)
180
o o−
θ
∠
=
+
θ
∠
=
−
A
A
A
maka negatif dari Aadalah
dan konjugat dari Aadalah
jb
a
−
−
=
−
A
jb
a
−
=
*
A
jb
a
+
=
A
Jika
Fasor Negatif dan Fasor Konjugat
23 Perkalian A×B=AB∠(θ1+θ2) ) (1 2 2 1= ∠θ −θ θ ∠ θ ∠ = B A B A B A Pembagian
(
) (
)
(
1 2) (
1 2)
2 1 2 1 sin sin cos cos sin sin cos cos θ − θ + θ − θ = − θ + θ + θ + θ = + B A j B A B A j B A B A B APenjumlahan dan Pengurangan
2
θ
∠
=
B
B
1θ
∠
=
A
A
Jika diketahui : maka :Operasi-Operasi Fasor
24((((
4 0)))) ((((
0 3))))
4 3 2 1 3====I ++++I ==== −−−− ++++j ++++ −−−−j ====−−−− −−−−j I o 1 2 2 3 4 5 216,9 3 tan ) 3 ( ) 4 ( ==== ∠∠∠∠      −−−− −−−− ∠ ∠∠ ∠ −−−− ++++ −−−− ==== −−−− I o o o * 1 1 1====VI ====(10∠∠∠∠−−−−45 )××××(−−−−4∠∠∠∠0 )====−−−−40∠∠∠∠−−−−45 S o o o * 2 2 2====VI ====(15∠∠∠∠30 )××××(3∠∠∠∠90 )====45∠∠∠∠120 S o o o 2 2 2 5 120 90 3 30 15 ∠ = − ∠ ∠ = = I V Z o o o 1 1 1 2.5 45 0 4 45 10 =− ∠− ∠ − − ∠ = = I V Z o 1=10∠−45 V o 2=15∠30 V o 1=−4∠0 I o 2=3∠−90 I Diketahui: maka : Re I3 -4 -3 Im 216,9o 5Contoh
25 26Impedansi
28Impedansi suatu elemen rangkaian di kawasan fasor adalah perbandingan antara fasor tegangan dan fasor arus elemen tersebut
Impedansi di Kawasan Fasor
x x x
Z
I
V
=
impedansi fasor tegangan fasor arus Catatan:θ ω θ + ω
=
=
θ
+
ω
=
j t j Rm t j Rm Rm Re
e
i
e
i
t
i
t
i
)
cos(
)
(
) (+ v
R−
i
R θ ω=
=
j t j Rm R Re
e
Ri
t
Ri
t
v
)
(
)
(
θ
∠
=
R RI
I
R RRI
V
=
R RR
I
V
=
Kawasan fasor Kawasan waktu Impedansiresistansi resistor di kawasan waktu bernilai sama dengan
impedansinya di kawasan fasor
R R
i
v
R
=
Resistor
29i
L+
v
L−
ω θ θ + ω=
=
θ
+
ω
=
j t j Lm t j Lm Lm Le
e
i
e
i
t
i
t
i
)
cos(
)
(
) ()
(
)
(
)
(
θ ωω
=
=
j t j m L Le
e
i
L
j
dt
t
di
L
t
v
θ ∠ = L L I I L L j LI V = ω L j Z L L L= = ω I V Kawasan fasor ImpedansiInduktor
dt
di
L
v
L L=
Kawasan waktuhubungan diferensial hubungan linier
30
i
C+ v
C−
`)
(
)
(
) (ω+θω
=
=
t j Cm C Ce
v
C
j
dt
dv
C
t
i
) ()
cos(
)
(
θ + ω=
θ
+
ω
=
t j Cm Cm Ce
v
t
v
t
v
Kawasan fasor Impedansi C Cj
C
V
I
=
ω
θ
∠
=
C CV
V
C
j
C
j
Z
C C Cω
−
=
ω
=
=
1
1
I
V
Kapasitor
dt
dv
C
i
C C=
Kawasan waktuhubungan diferensial hubungan linier
31
Impedansi dan Admitansi
R R
R
I
V
=
L
j
Z
L L L=
=
ω
I
V
C
j
C
j
Z
C C C=
=
ω
=
−
ω
1
1
I
V
Impedansi: Z Admitansi: Y = 1 / ZR
Y
R1
=
L
j
L
j
Z
Y
L Lω
−
=
ω
=
=
1
1
j
C
Z
Y
C C=
=
ω
1
I
V
=
Z
Perhatikan: relasi ini adalah relasi linier. Di kawasan fasor kita terhindar dari
perhitungan diferensial.
V
I
=
Y
)
(
)
(
ω
+
ω
=
R
jX
Z
(
)
(
)
       + ω ω − ω + + ω = ω + ω + ω = + 1 1 ) / 1 ( ) / 1 ( 2 2 2 // RC C R L j RC R C j R C j R L j ZL R C• Perhatian : Walaupun impedansi merupakan pernyataan yang
berbentuk kompleks, akan tetapi impedansi bukanlah fasor. Impedansi dan fasor merupakan dua pengertian dari dua konsep yang berbeda.
– Fasor adalah pernyataan dari sinyal sinus – Impedansi adalah pernyataan elemen.
Impedansi Secara Umum
33 34
Kaidah Rangkaian
L j R ZRLseri= + ω(
)
I VRLseri= R+jωL R + VR− I + VL− jωLC
j
R
Z
RCseri=
−
ω
I
V
1
ω
+
=
C
j
R
seri RC + VC − R − j/ωC + VR− IHubungan Seri
36I
V
ω
−
ω
=
C
j
L
j
seri LC
ω
−
ω
=
C
L
j
Z
LCseri1
−j/ωC jωL + VL− + VC − I n seri total seri total seri total Z Z Z Z Z + ⋅⋅ ⋅⋅ + + = = 2 1 I V total seri total k k Z Z V V = ×Kaidah Pembagi Tegangan
37 V V I k k k Y Z = = V V I I total n k k n k k total=
∑
=∑
Y =Y = =1 1 n n k k total Z Z Z Y Y 1 1 1 2 1 1 + ⋅⋅ ⋅⋅ + + = =∑
= total total k k k Y Y YV I I = = Itotal I3 R jωL −j/ωC I1 I2Kaidah Pembagi Arus
38
Diagram Fasor
IL VL Re Im Arus 90odi belakang tegangan L = 0,5 H , iL(t) = 0,4cos(1000t) AArus dan Tegangan pada Induktor
Ω = × × =j 1000 0,5 j500 ZL V 90 200 0 4 , 0 90 500 0 4 , 0 ) 500 ( o o o o ∠ = ∠ × ∠ = ∠ × = =ZL L j L I V
Arus dijadikan referensi (sudut fasa = 0) Di kawasan waktu: -200 -150 -100 -50 0 50 100 150 200 0 0,002 0,004 0,006 0,008 100 iL(t) vL(t) V A detik Misalkan 40
C = 50 pF , iC(t) = 0,5cos(106t) mA
Arus dan Tegangan pada Kapasitor
V 90 10 ) 0 10 5 , 0 ( ) 90 10 20 ( k 20 ) 10 50 ( 10 1 o o 3 o 3 12 6 − ∠ = ∠ × × − ∠ × = = Ω − = × × − = ω = − − C C C C Z j j C j Z I V IC VC Re Im arus 90omendahului tegangan
Arus dijadikan referensi (sudut fasa = 0) detik Di kawasan waktu: -10 -5 0 5 10 0 0,0005 0,001 0,0015 0,002 10 iC(t) V mA vC(t) Misalkan 41 A 40 5 dan V 10 120∠ o = ∠ o = I V Ω − = − + − = Ω − ∠ = ∠ ∠ = = 12 8 , 20 ) 30 sin( 24 ) 30 cos( 24 30 24 40 5 10 120 o o o j j ZB I V
Pada sebuah beban : v(t) =120cos(314t +10o) V i(t) = 5cos(314t + 40o) A I V Re Im arus mendahului tegangan
Beban Kapasitif
42Pada sebuah beban :
v(t) =120cos(314t + 20o) V i(t) = 5cos(314t −40o) A Ω + = + = Ω ∠ = − ∠ ∠ = = 8 , 20 12 ) 60 sin( 24 ) 60 cos( 24 60 24 40 5 20 120 o o o o o j j ZB I V I V Re Im arus tertinggal dari tegangan
A
40
5
dan
V
20
120
∠
o=
∠
−
o=
I
V
Beban Induktif
43 Ω − ∠ = − ∠ + = Ω − = + − = − 87 , 36 125 100 75 tan ) 75 ( ) 100 ( 75 100 25 100 100 o 1 2 2 j j j Ztot A 36,87 2 87 , 36 125 0 250 o o o ∠ = − ∠ ∠ = = tot s Z V I 100Ω −j100Ω j25Ω Vs= 250∠0oV + − I V Re Im 100Ω + − 20µF 50mH vs(t) = 250 cos500t V Transformasi rangkaian ke kawasan fasorBeban RLC seri ini bersifat kapasitif |ZC| > |ZL| arus mendahului tegangan
25 ; 100 100 ; 0 250 o Ω = Ω − = Ω = ∠ = j Z j Z Z L C R s V
Beban
RLC Seri, kapasitif
i(t) = 2 cos(500t + 36,87o) A
Jika kita kembali ke kawasan waktu
100Ω −j100Ω j25Ω Vs= 250∠0oV + − VL= jXLI VR= RI Vs Re Im VC=−jXCI I V 26,87 1 0 5 0 250 87 , 36 125 90 25 V ,13 3 5 200 0 250 87 , 36 125 90 100 V 36,87 200 0 250 87 , 36 125 100 o o o o o o o o o o o ∠ = ∠ − ∠ ∠ = − ∠ = ∠ − ∠ − ∠ = ∠ = ∠ − ∠ = L C R V V V A 36,87 2 87 , 36 125 0 250 o o o ∠ = − ∠ ∠ = = tot s Z V I 87 , 36 125 75 100− = ∠− o Ω = j Ztot
Fasor tegangan rangkaian mengikuti hukum Kirchhoff
L C R
s V V V
V= + +
Fasor Tegangan Tiap Elemen
45 V 0 250 100 25 100 o ∠ = Ω = Ω − = Ω = s L C R j Z j Z Z V Ω ∠ = ∠ + = Ω + = + − = − 87 , 36 125 100 75 tan ) 75 ( ) 100 ( 75 100 100 25 100 o 1 2 2 j j j Ztot A 36,87 2 87 , 36 125 0 250 o o o − ∠ = ∠ ∠ = = tot s Z V I 100Ω −j25Ω j100Ω Vs= 250∠0oV + − I V Re Im
Pada beban kapasitif |ZL| > |ZC|
arus tertinggal dari tegangan
Beban
RLC seri, induktif
46 . 0 250 01 . 0 04 . 0 01 . 0 o ∠ = Ω − = Ω = Ω = s L C R j Y j Y Y V
Beban
RLC Paralel
03 . 0 01 . 0 01 . 0 04 . 0 01 . 0 j j j Ytot + = Ω − + = 100Ω −j25Ω j100Ω Vs= 250∠0oV + − I o 1 2 2 6 . 71 9 . 7 5 . 2 5 . 7 tan 5 . 7 2.5 5 . 7 5 . 2 ) 03 . 0 01 . 0 ( 250 ∠ = + = + = + × = = − j j Y V I I V Re Im 47 48Teorema Rangkaian
49Prinsip Proporsionalitas
X
Y
=
K
Y = fasor keluaran, X = fasor masukan,K = konstanta proporsionalitas yang pada umumnya merupakan bilangan kompleks
50
Prinsip Superposisi selalu berlaku di kawasan waktu dan
berlaku di kawasan fasor
bila frekuensi sama
Prinsip Superpossi
51 20cos4t V+_ 8Ω io 3cos4t A 3H 20∠0o +_ 8Ω −j6Ω Io1 j12Ω 8Ω 3∠0o −j6Ω Io2 j12ΩContoh
A 9 , 36 2 9 , 36 10 0 20 6 8 0 20 6 12 8 0 20 o o o o o o1 − ∠ = ∠ ∠ = + ∠ = − + ∠ = j j j I A 4 , 19 32 , 4 0 3 9 , 36 10 3 , 56 4 , 14 0 3 6 8 12 8 0 3 ) 12 8 /( 1 ) 6 /( 1 ) 6 /( 1 o o o o o o o2 ∠ = ∠ × ∠ ∠ = ∠ × + + = ∠ × + + − − = j j j j j I 24 , 0 7 , 5 44 , 1 1 , 4 2 , 1 6 , 1 o2 1 o o=I +I = −j + +j = +j I o o=5,7∠2,4 I () 5,7cos(4 2,4o) o t = t+ i 52T N T N N N T T Z Y Y Z ; = ; = 1 = I I V V RT A B vT +− VT ZT A B + −
Kawasan waktu Kawasan fasor
Teorema Thévenin
53 V 3 , 39 9 , 19 45 20 7 , 5 995 , 0 45 20 100 10 100 V 90 10 90 1 , 0 100 o o o o o ∠ = ∠ × − ∠ = ∠ × − − = − ∠ = − ∠ × = j j B A V V(
15,4 12,6)
15,6 22,6 V 10 3 . 39 9 , 19 90 10 o o j j j B A T − − = + − − = ∠ − − ∠ = − =V V V Ω − = − − × + = 109,9 0,99 100 10 ) 100 ( 10 100 j j j ZT + − −j100Ω 10Ω 100Ω 0,1∠−90oA 20∠45oV ` A B + − VT ZT A BContoh Rangkaian Ekivalen Thévenin
54
Metoda Analisis
−j9Ω −j3Ω + − 14∠0 V 12Ω A B C D 9Ω 3Ω Ix j3Ω I1 I2 I3 I4 + vx − + − 14cos2t V 12Ω A B C D 9Ω 3Ω ix 3/2 H 1/6 F 1/18 FMetoda Keluaran Satu Satuan
t i K x x x 2 cos 5 , 0 0 5 , 0 28 0 14 28 1 28 1 o o A A = → ∠ = ∠ = = → = = I V V I A ) 0 1 ( Misalkan Ix= +j
(
12 9)
28 V 1 3 4 − =       + + = B j j A V V V 3 j C= V V 1 3 I =VC =j 4(
1 j1)
A x+ = + = 4 3 I I I( )
− 3 = 3− 3(
1+ 1)
=3 V + = C j j j j B V I3 V A 3 1 9 2= = B V I 1 A 3 4 1 2 3       + = + =I I j I 56A ) 8 , 73 2 cos( 3 ) 9 , 36 4 cos( 2 sehingga A ) 8 , 73 2 cos( 3 dan A ) 9 , 36 4 cos( 2 o o o2 o1 o o 2 o o 1 o + + − = + = + = − = t t i i i t i t i
Karena sumber berbeda frekuensi maka fasor Io1dan Io2tidak dapat langsung dijumlahkan. Kembali ke kawasan waktu, baru kemudian dijumlahkan
20cos4t V+_ 9Ω io 3cos2t A 3H 20∠0o + _ 9Ω − j6Ω Io1 j12Ω 9Ω 3∠0o −j12Ω Io2 j6Ω
Metoda Superposisi
A 9 , 36 2 9 , 36 10 0 20 6 8 0 20 6 12 8 0 20 o o o o o o1 − ∠ = ∠ ∠ = + ∠ = − + ∠ = j j j I A 8 , 73 3 0 3 9 , 36 10 9 , 36 10 0 3 6 8 6 8 0 3 ) 6 8 /( 1 ) 12 /( 1 ) 12 /( 1 o o o o o o o2 ∠ = ∠ × − ∠ ∠ = ∠ × − + = ∠ × + + − − = j j j j j I 57 + −−−− 18cos2t V i 6Ω 2Ω 2Ω 1H A B 2H 1/8 F V 1 2 9 0 18 4 6 2 2 o j j ht T=V = + + × ∠ = + V A 2 cos 1 A 0 1 ) 1 2 ( 2 ) 4 7 ( ) 1 2 ( ) 1 2 ( 9 4 2 o t i j j j j j j j ZT T = ⇒ ∠ = + − + + × + = − + = V I + − 18∠0oV 6Ω 2Ω A B −j4Ω j2Ω j4Ω I 2Ω + − 18∠0oV 6Ω 2Ω A B j4Ω 2Ω((((
))))
Ω 1 2 4 7 4 8 8 12 8 16 4 6 2 4 6 2 2 j j j j j j j ZT ++++ ++++ ==== ++++++++ ++++ ++++ ==== ++++ ++++++++ ++++ ==== + − VT I A B −j4Ω ZT j2ΩMetoda Rangkaian Ekivalen Thévenin
58 − + i1 = 0.1cos100t A v = 10sin100t V 200µF 1H 50Ω ix? A B A − + B I1= 0.1∠0oA V= 10∠−90oV −j50Ω j100Ω 50Ω Ix
Sumber tegangan dan sumber arus berfrekuensi sama, ω= 100. Tetapi sumber tegangan dinyatakan dalam sinus, sumber arus dalam cosinus. Ubah kedalam bentuk standar, yaitu bentuk cosinus melalui kesamaan sinx = cos(x−90)
sumber tegangan tersambung seri dengan resistor 50 Ωparalel dengan induktor j100 Ω
Simpul B hilang. Arus Iyyang sekarang
mengalir melalui resistor 50Ω, bukanlah arus Ixyang dicari; Iykali 50Ωadalah
tegangan simpul A, bukan tegangan simpul B tempat Ixkeluar
Iy A I2 −j50Ω j100Ω 50Ω I1= 0.1∠0oA Iy −j50Ω j100Ω 50Ω I1−I2
Metoda Reduksi Rangkaian
59
Metoda Tegangan Simpul
      − =             − − − →       =             − − 30 10 1 2 0 1 2 2 : Gauss eliminasi 10 10 1 1 1 2 2 B A B A V V V V j j j j j j V V V V V V I − = − = + + − + − B A B B A 1 : B 0 50 100 50 : A j j         ∠ ∠ =               − + − o o B A 90 10 0 1 , 0 1 1 50 1 100 1 50 1 V V j j       ∠ = + − − = + − + = + = − ∠ = − ∠ = − = + − − = − − − = V 4 , 18 6 , 12 1 5 , 0 10 10 1 5 , 0 15 10 10 6 , 26 0,268 V; 6 , 26 4 , 13 6 12 5 ) 1 2 ( 30 1 2 30 o B A o o B j j j j j j j j j x V V I V − + I1= 0,1∠0oA V= 10∠−90oV −j50Ω j100Ω 50Ω Ix=? A B 60
− + I = 0,1∠0oA V=10∠−90oV −j50Ω 50Ω A B I1 I2 I3 ( ) ( ) ( ) ( ) ( ) ( )         − =                     + − − + − 0 10 1 . 0 100 50 100 0 100 100 50 50 0 0 1 3 2 1 j j j j j j j I I I ( ) ( ) ( ) ( ) ( ) ( )         − =                     + − − 0 1 1 . 0 2 1 2 0 10 5 5 0 0 1 3 2 1 j j j j j j I I I ( ) ( ) ( ) (( ))         − − =                     − − 3 5 . 1 1 . 0 10 5 0 0 10 5 0 0 0 1 3 2 1 j j j j j I I I A 2 , 53 3 , 0 5 10 5 , 1 A; 6 , 26 27 , 0 10 5 3 A; 0 1 , 0 3 o 2 o 3 0 1 = ∠− + − = − ∠ = − − = ∠ = j j j j j I I I I
Metoda Arus Mesh
61 62
Analisis Daya
vi p t I i t V v= mcos(ω +θ) ; = mcosω ; =(
)
(
t)
V I t I V t I V t I V I V t t t I V t t I V vi p m m m m m m m m m m m m m m ω       θ − ω +       θ = ω θ − ω θ + θ = ω θ ω − θ ω = ω θ + ω = = 2 sin sin 2 2 cos 1 cos 2 2 sin sin 2 2 cos cos 2 cos 2 cos sin sin cos cos cos ) cos( Nilai rata-rata = VrmsIrmscosθ Nilai rata-rata = 0 -1 1 0 15t pb Komponen ini memberikan alih energi netto; disebut daya nyata: PKomponen ini tidak memberikan alih energi netto; disebut daya reaktif: Q
Tinjauan Daya di Kawasan Waktu
Tegangan, arus, di kawasan fasor: i rms i rms v rms I I V ∠θ = ∠θ = ∠−θ = I I∗ V ; ; besaran kompleks Daya Kompleks : ) ( * i v rms rmsI V S=VI = ∠ θ −θ ϕ = ϕ = ϕ = ϕ = + = sin sin cos cos rms rms rms rms I V S Q I V S P jQ P S Re Im ϕ P jQ Segitiga daya * I V = S * I I V
Tinjauan Daya di Kawasan Fasor
65
Faktor Daya dan Segitiga Daya
S
P
=
θ
=
cos
f.d.
S =VI* jQ P Re Im θ V I (lagging) I* Re Im θ −jQ P Re Im θ S =VI* V I (leading) I* Re Im θFaktor daya lagging
Faktor daya leading
66 I V I V B B Z Z = atau =
(
)
2 2 2 2 * * rms B rms B rms B B B B I jX I R I jX R Z Z S + = + = = = = I I I VI 2 2 RBIrms jXBIrms jQ P S + = + = 2 2 dan rms B rms B I X Q I R P = =Daya Kompleks dan Impedansi Beban
67 seksi sumber seksi beban A B I
A(rms)
105
75
,
8
dan
V(rms)
75
480
o o AB=
∠
+
I
=
∠
+
V
VAR 2100 dan W 3640 = = Q P 866 , 0 ) 30 cos( daya faktor = − = VA 2100 3640 30 sin 4200 30 cos 4200 30 4200 105 75 , 8 75 480 o o o o o * j j S − = − = − ∠ = − ∠ × + ∠ = =VI Ω = = = 47,5 ) 75 , 8 ( 3640 2 2 rms B I P R Ω − = − = = 27,4 ) 75 , 8 ( 2100 2 2 rms B I Q XContoh
68Dalam rangkaian linier dengan arus bolak-balik keadaan mantap, jumlah daya kompleks yang diberikan oleh sumber bebas,
sama dengan jumlah daya kompleks yang diserap oleh elemen-elemen dalam rangkaian
Alih Daya
69 50Ω − + I1= 0,1∠0oA V=10∠−90oV −j50Ω j100Ω I3 B A C I2 I4 I5 [ ] [ ] o A C o A C 0 10 2 1 2 atau 0 0 1 , 0 50 1 50 1 100 1 50 1 ∠ − = − + = ∠ +       − −       − + + j j j j j V V V V [ ] V 6 12 1 2 30 0 10 ) 90 90 ( 10 2 1 2 C o o o C j j j + − = + − = ⇒ ∠ − = + ∠ × − + V V [ ] VA 4 , 0 2 , 1 0 1 , 0 10 6 12 ) ( * o 1 j j j Si C A − − = ∠ × − + − = − =V V I A 24 , 0 18 , 0 0 1 . 0 24 , 0 08 , 0 A 24 , 0 08 , 0 50 ) 6 12 ( 90 10 50 o 1 2 3 o 2 1 2 3 j j j j j j C A + − = ∠ − + − = − = ⇒ + − = − + − − ∠ = − − = − = I I I V V I I I I VA 8 , 1 4 , 2 ) 24 , 0 18 , 0 ( 90 10 o * 3 j j Sv + − = − − × − ∠ = =VI VA 4 , 1 6 , 3 8 , 1 4 , 2 4 , 0 2 , 1 j j j S S Stot i v + − = + − − − = + = V 90 10 90 10 o o A=−V=− ∠− = ∠ VBerapa daya yang diberikan oleh masing-masing sumber dan berapa diserap R = 50 ΩΩΩΩ?
Contoh
70
Dengan Cara Penyesuaian Impedansi
+ − VT ZT = RT+ jXT ZB = RB+ jXB A B 2 2 2 2 ) ( ) (T B T B B T B B X X R R R R P + + + = =I V (maksimum) 4 Jika 2 B T B B T R P R R = ⇒ =V dan : adalah maksimum daya alih adinya untuk terj syarat Jadi T B B T R X X R = =− 2 2 ( ) ) ( T B T B T X X R R + + + = V I 2 2 ) (T B B T B R R R P + = V B T -X X = Jika
Alih Daya Maksimum
71 V 5 5 10 1 1 1 0 10 50 100 50 50 o j j j j j j T + × =−− − = ∠ × − + − = V Ω − = + + − + − = 25 75 100 50 50 ) 100 50 ( 50 j j j j j ZT Ω + =25 j75 ZB 4 25 0,5 W 5 5 4 2 2 = × − − = = j R P B T MAX V A 135 02 , 0 50 5 5− = ∠− o − = + = j Z ZT B T B V I B + − 50Ω j100Ω −j50Ω A 10∠0oV 25 + j 75 A 0 1 , 0 75 25 50 ) 75 25 )( 50 ( 100 50 0 10 o = ∠ o + + − + − + + ∠ = j j j j j s I W 1 ) 02 , 0 ( 25 ) 1 , 0 ( 50 25 50 2 2 2 2 = × + × = + = s B s P I I
Contoh
72Dengan Cara Sisipan Transformator B B
Z
N
N
Z
2 2 1
=
′
impedansi yang terlihat di sisi primerθ
′
+
θ
′
=
′
Bcos
Bsin
BZ
j
Z
Z
T T T BR
X
Z
Z
′
=
2+
2=
B T Z Z N N = 2 1Z
B + − ZT VT N1 N2(
) (
2)
2 2sin
cos
cos
θ
′
+
+
θ
′
+
θ
′
=
B T B T B T BZ
X
Z
R
Z
P
V
0
=
′
B BZ
d
dP
Alih Daya Maksimum
73 + − 50Ω j100Ω −j50Ω A B 10∠0oV 25 + j 60 1028 , 1 60 25 75 25 2 2 2 2 2 1 = + + = = = B T Z Z N N a
(
) (
)
(
25 1,216 25) (
75 1,216 60)
0,49 W 25 216 , 1 50 2 2 2 2 2 2 2 2 = × + − + × + × × = + + + = B T B T B T B X a X R a R R a P V Seandainya diusahakan ZB=(25−j60)Ω(
) (
)
0,06 W 60 216 , 1 75 25 216 , 1 25 25 216 , 1 50 2 2+− − × = × + × × = B PTidak ada peningkatan alih daya ke beban.
V 5 5 j T=−− V ZT=25−j75 Ω
Dari contoh sebelumnya:
Contoh
74
Fasor adalah pernyataan sinyal sinus yang fungsi waktu ke dalam besaran kompleks, melalui relasi Euler.
Dengan menyatakan sinyal sinus tidak lagi sebagai fungsi waktu, maka pernyataan elemen elemen rangkaian harus disesuaikan.
Dengan sinyal sinus sebagai fungsi t elemen-elemen rangkaian adalah
R, L, C.
Dengan sinyal sinus sebagai fasor elemen-elemen rangkaian menjadi
impedansi elemen R, jωL, 1/jωC.
Impedansi bukanlah besaran fisis melainkan suatu konsep dalam analisis. Besaran fisisnya tetaplah R = ρl/A, dan C = εA/d
Dengan menyatakan sinyal sinus dalam fasor dan elemen-elemen dalam inpedansinya, maka hubungan arus-tegangan pada elemen menjadi hubungan fasor arus - fasor tegangan pada impedansi elemen.
Hubungan fasor arus dan fasor tegangan pada impedansi elemen merupakan hubungan linier.
Rangkuman Mengenai Fasor
75
Dengan menyatakan arus dan tegangan menjadi fasor arus dan fasor
tegangan yang merupakan besaran kompleks maka daya juga menjadi daya kompleks yang didefinisikan sebagai S = V I*.
Besaran-besaran kompleks dapat digambarkan di bidang kompleks sehingga kita mempunyai digram fasor untuk arus dan tegangan serta segitiga daya untuk daya.
Hukum-hukum rangkaian, kaidah-kaidah rangkaian, serta metoda analisis yang berlaku di kawasan waktu, dapat diterapkan pada
rangkaian impedansi yang tidak lain adalah transformasi rangkaian
ke kawasan fasor.
Sesuai dengan asal-muasal konsep fasor, maka analisis fasor dapat diterapkan hanya untuk sinyal sinus keadaan mantap.
Rangkuman
(lanjutan)Penyediaan Daya
77
Dalam penyaluran daya listrik banyak digunakan
transformator berkapasitas besar dan juga bertegangan tinggi. Dengan transformator tegangan tinggi, penyaluran daya listrik dapat dilakukan dalam jarak jauh dan susut daya pada jaringan dapat ditekan.
Di jaringan distribusi listrik banyak digunakan transformator penurun tegangan, dari tegangan menengah 20 kV menjadi 380 V untuk distribusi ke rumah-rumah dan kantor-kantor pada tegangan 220 V.
Transformator daya tersebut pada umumnya merupakan transformator tiga fasa; namun kita akan melihat transformator satu fasa lebih dulu
Transformator
78 + E2 − N2 N1 If φ V1 + E1 − + −−−−Transformator Dua Belitan Tak Berbeban
o 1 1=E∠0 E efektif nilai adalah 44 . 4 2 2 1 1 1 maks fN maks N f E= π Φ = Φ Belitan primer: maks N f E2=4.44 2Φ Belitan sekunder: I2= 0 t maks ω Φ = φ sin Jika
FasorE1sefasa dengan E2karena
diinduksikan oleh fluksi yang sama.
o 2 2=E∠0 E t N dt d N e1= 1 φ= 1Φmaksωcosω masi transfor rasio 2 1 2 1= ≡a= N N E E 79 + E2 − N2 N1 If φ V1 + E1 − + −−−− 1 1 1 I E V = fR+ Arus magnetisasi yang membangkitkanφ Resistansi belitan primer E1=E2 Iφ φ Ic If IfR1 V1 Diagram fasor dengan
mengambil rasio transformasia=1, sedangkan E1sefasa E2
Arus magnetisasi Ifdapat
dipandang sebagai terdiri dari Iφ(90odibelakang E
1)
yang menimbulkan φ
dan IC(sefasa dengan E1)
yang mengatasi rugi-rugi inti.
E2
∼∼∼∼
V1 φl1 If φ E1=E2 Iφ φ Ic If IfR1 V1 φl jIfXl Representasi fluksi bocor di belitan primer1 1 1 1 1 1 1
E
I
fR
E
lE
I
fR
j
I
fX
V
=
+
+
=
+
+
ada fluksi bocor di belitan primer
Fluksi Bocor di Belitan Primer
81 φ γ V2 I2 I’ 2 If I1 I2R2 jI2X2 E2 E1 I1R1 jI1X1 V1 beban resistif ,a> 1 2 2 2 2 2 2 2 2 2 2 R j X R l I I V E I V E + + = + + = 1 1 1 1 1 1 1 1 1 1 R j X R l I I E E I E V + + = + + = φ V1 φl1 I1
∼
φl2 V2 I2 RBTransformator Berbeban
82 Z R′2 ∼ If B jX′2 R1 jX1 I1 I′2 V1 E1 V′2=aV2 2 1 2 2 2 2 2 1 1 1 1 1 1 1 I I I I I V E I I E V ′ + = ′ ′ + ′ ′ + = + + = f X j R a X j R I′′′′2, R′′′′2, dan X′′′′2adalah arus, resistansi, dan reaktansi sekunder yang dilihat dari sisi primer
R′2 ∼ If B jX′2 R1jX1 I1 I′2 V1 E1 V′2=aV2 jXc Rc Ic Iφ
Rangkaian Ekivalen Transformator
83
∼
B jXe=j(X1+ X′2) Re= R1+R′2 I1=I′2 V1 V′2 I′2 I′2Re jI′2Xe V′2 V1Arus magnetisasi hanya sekitar 2 sampai 5 persen dari arus beban penuh Jika If diabaikan terhadap I1
kesalahan yang terjadi dapat dianggap cukup kecil
Rangkaian Ekivalen yang Disederhanakan
10 kW f.d. 0,8 lagging 8 kW f.d. 0,75 lagging 380 V rms Penyediaan Daya
Contoh
kVA 5 , 7 10 sin cos sin 1 1 1 1 1 1 1 1 1 1 j P j P S j P jQ P S= + = + = + θ = + θ θ kVA 7 8 sin cos sin | | 2 2 2 2 2 2 2 2 j P j P S j P S θ = + θ + = θ + = kVA 5 , 14 18 7 8 5 , 7 10 2 1 12 S S j j j S = + = + + + = +Impedansi saluran diabaikan
lagging 78 . 0 5 , 14 18 18 cos 2 2 12 = + =
θ Faktor daya total
tidak cukup baik
85 Im Re jQ beban (induktif) −−−−jQ kapasitor P beban kVA beban tanpa kapasitor kVA beban dengan kapasitor
Perbaikan faktor daya dilakukan pada beban induktif dengan menambahkan kapasitor yang diparalel dengan beban, sehingga
daya reaktif yang harus diberikan oleh sumber menurun tetapi daya rata-rata yang diperlukan beban tetap dipenuhi
Daya yang harus diberikan oleh sumber kepada beban turun dari |S| menjadi |S1|. kapasitor
paralel dengan beban
Perbaikan Faktor Daya
86 S12 jQ12 P12 -jQ12C S12C 10 kW f.d. 0,8 lagging 8 kW f.d. 0,75 lagging 380 V rms 50 Hz
C
kVA 5 , 14 18 12 j S = + cosθ12=0.78 laggingContoh
kVA 9 , 5 18 ) 95 . 0 tan(arccos 18 18 12 j j S C= + = + lagging C 0.95 cosθ12 = kVAR 58 , 8 5 , 14 9 , 5 12 j j j jQ C= − =− − F 190 380 100 8580 2 µ π× = = C(
C)
X Q C C C C= = −ω 2 2 V V diinginkan kVA 5 , 7 10 ) 8 , 0 tan(arccos 10 10 1 j j S = + = + kVA 7 8 ) 75 , 0 tan(arccos 8 8 2 j j S = + = + 2 C C Q C V ω − = 87 beban 1 10 kW cos ϕ= 1 beban 2 8 kW cos ϕ= 1 0,2 + j2 Ω 0,2 + j2 Ω Vs | V | = 380 V rms kVA 0 10 1 j S= + A 0 21 A 0 21 0 380 0 8000 o 2 o o * 2 = ∠ → = ∠ ∠ + = I I j kVA 9 , 0 09 , 0 ) 2 2 , 0 ( ) 2 2 , 0 ( 2 2 2 j j j Ssal + = × + = × + = I2 I2 kVA 9 , 0 09 , 8 2 2 2 S S j Stot = sal+ = + V 4 , 6 6 , 387 V 9 , 42 2 , 385 0 21 900 8090 o o * 2 2 1 ∠ = + = ∠+ = =Stot j j I V A 4 , 6 8 , 25 4 , 6 6 , 387 0 10000 o o * 1 1 1 = ∠ − ∠ + = =S j V I A 5 , 3 73 , 46 88 , 2 64 , 46 0 21 4 , 6 8 , 25 o o o 2 1 ∠ = + = ∠ + ∠ = + = j s I I I kVA 37 , 4 44 , 0 73 , 46 ) 2 2 , 0 ( ) 2 2 , 0 ( 2 2 1 j j j Ssal s + = × + = × + = I kVA 27 , 5 53 , 18 9 , 0 09 , 8 10 37 , 4 44 , 0 2 2 1 1 j j j S S S S Ss sal sal + = + + + + = + + + = V 4 , 19 412 3,5 46,73 9 , 15 19265 3,5 46,73 5270 18530 o o o o * ∠− = ∠ ∠ = − ∠ + = =S j s s s I V kVA 0 8 2 j S= +Contoh
88Diagram Satu Garis
Sistem Tiga Fasa Seimbang
89 u s vs(t) 1/jωC R jωL Vs∼
u s vs(t) vs(t) vs(t)Sebuah kumparan dipengaruhi oleh medan magnet yang berputar dengan kecepatan perputaran konstan
B A C N VAN VBN VCN
∼
∼
∼
Tegangan imbas yang muncul di kumparan memberikan sumber tegangan bolak-balik, sebesar Vs
Tiga kumparan dengan posisi yang berbeda 120o satu sama lain berada dalam medan magnet yang berputar dengan kecepatan perputaran konstan
Tegangan imbas di masing-masing kumparan memberikan sumber tegangan bolak-balik. Dengan hubungan tertentu dari tiga kumparan tersebut diperoleh sumber tegangan tiga fasa
Sumber Satu Fasa dan Tiga Fasa
90 B A C N VAN VBN VCN −+ + − − +
Dalam pekerjaan analisis rangkaian kita memerlukan referensi sinyal. Oleh karena itu tegangan bolak balik kita
gambarkan dengan tetap menyertakan referensi sinyal Untuk sumber tiga fasa, referensi sinyal tegangan adalah sebagai berikut
A, B, C: titik fasa
N: titik netral
VAN, VBN,VCN besar tegangan fasa ke netral
dituliskan pula sebagai Vfn atauVf
besar tegangan antar fasa adalah
VAB, VBC,VCA dituliskan pula sebagai Vff
≈≈
Simbol sumber tiga fasa:
Referensi Sinyal
91 Sumber terhubung Y VAN = |VAN|∠0o VBN= |VAN|∠-120o VCN= |VAN|∠-240o Keadaan Seimbang |VAN| = |VBN| = |VCN| B A C N VAN VBN VCN −+ + − − + VAN VBN VCN Im Re Diagram fasor tegangan 120o 120oDiagram Fasor Sumber Tiga Fasa
C B A N VAN VBN VCN −+ + − − + VAB VBC VCA IA IB IC Tegangan fasa-netral Tegangan fasa-fasa Arus saluran Sumber Tiga Fasa
Terhubung Y Saluran ke beban
Sumber Tiga Fasa dan Saluran ke Beban
93
Hubungan Fasor-Fasor Tegangan
BN AN NB AN AB V V V V V = + = − o o o
210
3
90
3
30
3
−
∠
=
−
∠
=
∠
=
fn CA fn BC fn ABV
V
V
V
V
V
Tegangan fasa-fasa: fasa -fasa tegangan nilai : 3 netral -fasa tegangan nilai : fn ff CA BC AB fn CN BN AN V V V V V V V V V = = = = = = = CN BN NC BN BC V V V V V = + = − AN CN NA CN CA V V V V V = + = −Dalam keadaan seimbang:
VAN VBN VCN VAB VBC VCA Re Im 30o 30o 30o Tegangan Fasa-netral 120o −VBN 94
Arus di penghantar netral
dalam keadaan seimbang bernilai nol
B A C N VAN VBN VCN −+ + − − + N A B C Beban terhubung Y Beban terhubung ∆ Sumber terhubung Y A B C Arus saluran IA IC IB Arus fasa Arus fasa
Arus Saluran dan Arus Fasa
Beban Tiga Fasa
97 N A B C Z IA IC IB IN Z Z θ θ θ = ∠− = ∠− ∠ ∠ = = f AN AN AN A Z Z Z I V V V I o 0Beban Terhubung Y
3 3 * * * 3 θ θ ∠ = ∠ = + + = f ff A AN C CN B BN A AN f S I V I V I V I V I V 0 = + + B C A I I I Keadaan seimbang ) 120 ( ) 120 ( 120 o o o − − ∠ = − − ∠ = ∠ − ∠ = = θ θ θ f BN BN BN B Z Z Z I V V V I ) 240 ( ) 240 ( 240 o o o − − ∠ = − − ∠ = ∠ − ∠ = = θ θ θ f CN CN CN C Z Z Z I V V V I IA VBN VCN VAN Re Im θ IB θ IC θ referensi 98 V 220 3 380 3 = = = ff fn V V V 240 220 V 120 220 referensi) sebagai ( V 0 220 o o o − ∠ = − ∠ = ∠ = CN BN AN V V V A 44 A 8 , 276 44 A 8 , 156 44 ) 120 8 , 36 ( 44 A 8 , 6 3 44 8 , 36 5 0 220 4 3 0 220 o o o o o o o o = − ∠ = − ∠ = − − ∠ = − ∠ = ∠ ∠ = + ∠ = = I I I V I C B AN A j Z kVA 8 , 36 29 8 , 36 44 0 220 3 3 o o o * 3 ∠ = ∠ × ∠ × = × = AN A f S V I kW 2 , 23 8 . 36 cos 29 o 3f = = P kVAR 4 , 17 8 . 36 sin 29 o 3f= = Q Z = 4 + j 3 Vff = 380 V (rms) VAN referensi N A B C Z IA IC IB IN Z Z VBN VCN VAN Re Im IA θ IB θ IC θContoh
99 Z AB AB V I = CA AB A I I I = −Beban Terhubung
∆∆∆∆
Z V Z V Z ff ff AB AB ∠θ = ∠−θ ∠ = = o 0 V I ) 270 ( 3 ) 270 ( 3 ) 150 ( 3 ) 150 ( 3 ) 30 ( 3 ) 30 ( 3 o o o o o o − θ − ∠ = − θ − ∠ = − θ − ∠ = − θ − ∠ = − θ − ∠ = − θ − ∠ = f CA C f BC B f AB A I I I I I I I I I θ ∠ = θ ∠ × ∠ × = × =3 * 3 0o 3 3f AB AB Vff If VffIA S V I sin sin 3 cos cos 3 3 3 3 3 θ = θ = θ = θ = f A ff f f A ff f S I V Q S I V P IB IA IC B C A IBC ICA IAB Z Z Z VBC VCA VAB Re Im IAB θ IBC θ ICA θ −−−−ICA I A Z Z CA CA BC BC V I V I = ; = o o 240 ; 120 = ∠− − − − ∠ = AB θ CA AB θ BC I I I I BC CA C AB BC B I I I I I I = − ; = − 100A B C IA IB IC IAB IBC ICA Z = 4 + j 3 Vff = 380 V (rms) VAN referensi o o o o 240 220 ; 120 220 ; 0 220 0 3 380∠ = ∠ = ∠− = ∠− = BN CN AN V V V o o) 380 30 30 ( 3∠ + = ∠ = AN AN AB V θ V A 8 , 6 76 8 , 36 5 30 380 3 4 30 380 o o o o − ∠ = ∠ ∠ = + ∠ = = j Z AB AB V I A 8 , 36 6 . 131 8 , 36 3 76 ) 30 8 , 6 ( 3∠− o− o= ∠− o= ∠− o =AB A I I kVA 52 3 , 69 8 . 36 64 . 86 8 . 6 76 30 380 3 3 o o o * 3 j Sf ABAB + = ∠ = + ∠ × ∠ × = = V I kVAR 52 ) 76 ( 3 3 3 kW 3 , 69 ) 76 ( 4 3 3 2 2 3 2 2 3 = × × = × × = = × × = × × = AB f AB f X Q R P I I IAB VBN VCN VAN IBC ICA Re Im V AB o o 210 380 ; 90 380∠− = ∠− = CA BC V V A 8 , 246 76 240 8 , 6 76 A 8 , 126 76 120 8 , 6 76 o o o o o o − ∠ = − − ∠ = − ∠ = − − ∠ = CA BC I I A 8 . 276 6 , 131 ) 240 8 , 36 ( 6 . 131 A 8 , 156 6 , 131 ) 120 8 , 36 ( 6 . 131 o o o o o o − ∠ = − − ∠ = − ∠ = − − ∠ = C B I I
Contoh
101 102Pada dasarnya analisis daya pada sistem tiga
fasa tidak berbeda dengan sistem satu fasa
Analisis Daya Pada Sistem 3 Fasa
Y
50 kVA f.d. 0,9 lagging VLL= 480 V Is = ? RB = ? XB = ? A 60 3 480 50000 3 3 = = = = ff f f s S V I I 03 , 2 16 , 4 ) 60 ( 1000 ) 3 , 7 15 ( 2 2 j j S Z f fasa per = + × = + = I ; kW 45 9 , 0 50 cos 3 = × = =Sf ϕ P kVA 8 , 21 45 S3f= +j ⇒ 3 3 S3f = VfnIf =VffIf ⇒ 3 * 3f fn f S = V I =3×Vfn∠θv×If∠−θi=3VfnIf∠(θv−θi) kVAR 8 , 21 436 , 0 50 sin 3 = × = =Sf ϕ Q kVA 3 , 7 15 3 3 j S S f fasa per = = + ⇒ . 03 , 2 ; 16 , 4 = Ω = Ω ⇒ R XContoh
104ϕ = =100 kW Bcos B S P A 15 3 8 , 0 4800 100 3 cos = × × = → ϕ = B B B B I I V P kVA 5 , 13 35 , 1 15 ) 20 2 ( 3 j 2 j Ssal= × + × = + kVA 5 , 134 5 , 88 35 , 101 kVA 5 , 88 35 , 101 2 2+ = = + = + = Sumber sal B Sumber S j S S S rms V 5180 3 15 1000 5 , 134 3 3 3 = × = = ⇒ = = B S S B S S S Sumber S S I V I V I V kVA 75 100 j SB= + b e b a n VS VB Z = 2 + j20 Ω
≈≈
IS IB 100 kW 4800 V rms cosϕ= 0,8 lag|S
sumber| = ?
V
sumber= ?
kVAR 75 6 , 0 125 sin = × = = B ϕ B S Q kVA 125 8 , 0 100= = B SContoh
105Kuliah Terbuka
Analisis Rangkaian Listrik Di Kawasan Fasor
(Rangkaian Arus Bolak-Balik Sinusoidal Keadaan Mantap)