• Tidak ada hasil yang ditemukan

Activation of Natural Gas Using Nontraditional Oxidants: Eric McFarland, University of California, Santa Barbara

N/A
N/A
Protected

Academic year: 2017

Membagikan "Activation of Natural Gas Using Nontraditional Oxidants: Eric McFarland, University of California, Santa Barbara"

Copied!
40
0
0

Teks penuh

(1)

March 2016 NAS Workshop 

The Changing Landscape of Hydrocarbon 

 Feedstocks for Chemical Produc<on – Implica<ons for Catalysis 

Today’s prac<ces, challenges, and opportuni<es 

Why not oxygen 

Lots of interes<ng fundamental and prac<cal ques<ons. 

Combining reac<on engineering and catalysis         to make wise use of our methane resources. 

 

 

Ac3va3on of Natural Gas Using Nontradi3onal Oxidants 

 

(2)

The 

Changing Landscape 

of Hydrocarbon 

 Feedstocks for Chemical Produc<on – Implica<ons for Catalysis 

What’s Changing ?   

Vola<lity in price ?  

           

Or  

 

(3)
(4)

Natural Gas 2016 

~ 0.5‐1 ton CO2/ton C 

O= C =O 

C

‐4 

O

‐2 

It has not proven possible to parVally oxidize   alkanes with oxygen at high rates and low cost 

without producing CO2

(5)

The Future of Methane Conversion ? 

Our challenge

:  

low CO

2

 release in electricity and transporta3on

 

 and …………  more sustainable chemical produc6on  

 get value from our resources 

HC’s + Cx + H

 catalysis 

Need New Catalysts for  

DecarbonizaVon of our Shale Gas ! 

NH

3

 

(6)

SelecVve ParVal OxidaVon and OxidaVve Coupling  

of Methane:  free energy and enthalpy of reacVon 

Oxidant 

Reac<on 

ΔG

r

° 

ΔH

r

° 

O

2

 

2CH

4

 + O

2

 

 C

2

H

4

 + 2H

2

‐295 

‐281 

NO

2

 

2CH

4

 + 2NO

2

 

 C

2

H

4

 + 2H

2

O + 2NO 

‐221 

‐165 

Cl

2

 

2CH

4

 + 2Cl

2

 

 C

2

H

4

 + 4HCl 

‐219 

‐169 

SO

3

 

2CH

4

 + 2SO

3

 

 C

2

H

4

 + 2H

2

O +2SO

2

 

‐153 

‐83 

Br

2

 

2CH

4

 + 2Br

2

 

 C

2

H

4

 + 4HBr 

‐57 

‐3 

NO/N

2

 

2CH

4

 + ½ NO+ ¼ N

2

 

C

2

H

4

+ ½ H

2

O +NH

3

 

‐8 

‐31 

I

2

 

2CH

4

 + 2I

2

 

 C

2

H

4

 + 4HI 

131 

183 

heat 

2CH

4

  

 C

2

H

4

 + 2H

2

  

170 

202 

CO

2

 

2CH

4

 + 2CO

2

 

 C

2

H

4

 + 2H

2

O + 2CO 

219 

287 

S

2

 

2CH

4

 + S

2

 

 C

2

H

4

 + 2H

2

235  

332 

(7)

2CH4 + 4 S2  2CS2 + 4H2

(8)
(9)
(10)

2CH

4

 +2CO

 4CO + 4H

2

 

2CO + 4H

2

 C

2

H

4

 + 2H

2

2CH

4

 + 2CO

 C

2

H

4

 + 2H

2

O + 2CO 

 

(11)

Andrussow Process 

Andrussow Process 

CH4 + NH3 + 1.5 O2 → HCN + 3 H2

300 microsecond residence Vme,  Pt catalyst  or else,  CO

(12)

NO

(13)

Hg (III)  Pt (IVII) 

(14)
(15)

ΔH/ΔG 400 C  H2O + ½ C2H4  

I

(94/36kJ/M) 

H+ ½ C2H4  

(106/60kJ/M) 

Heat

 

Par<al Oxida<on of CH

4

 Without CO

2H+ C 

2HBr +2HI+ C 

(‐34/‐128kJ/M) 

I

4HI + C  (60/‐34 kJ/M) 

2HCl+2HI + C 

I

Benchmark SMR + CCS 

O

(16)
(17)

BUT To Suppress Complete OxidaVon 

Halogens

:  flame retardants:

  

      1) Oxida6ve dehydrogena6on +   

 2) Suppresses oxycombus6on

 

‐CH

2

‐CH

Br

‐CH

2

‐ ‐ ‐ ‐ ‐‐‐ ‐ ‐ CH

2

‐CH

2

‐CH

2

‐ 

(18)

Fredrick Rust, Industrial & engineering chemistry    1949 vol:41 iss:11 pg:2595 

This is well known 

Oxyhalogena6on/Dehydrohalogena6on for Par6al Oxida6on 

(19)

Oxychlorina<on (OCL) almost on parity  with SMDS for methane 

Oxyhalogena<on and  

dehydrohalogena<on in one step with I

2

  

Well Known Process (many fundamental ques<ons) 

(20)

Cl  

 Polychlorides,  CO

Front. Chem Sci Eng    2013,  Vol. 7 Issue (3) : 279‐288 

(21)
(22)

       AlF3~ 1000 C  200 kta faciliVes 

MgCl2~750 C 

(23)
(24)

Heat, MX

z

,X

2

,XY

 

  XY= I, Cl, Br

 

+  

H

X/Y

 

Our Approach Preserva<on of Methane Chemical Poten<al in 

an Op<mally Efficient Chemical Processing Plaoorm 

C

H

 

‐(C

H

2

)‐ 

 

C

 

H

2  

Q/eV

  

H

2

O + 

Q

/

eV

  

O

2

,Ox

 

(25)

React for Show, Separate for Dough 

CH

4  

+ XY 

     H

3

C‐X/H

n

C

m

 

  

   +     HY

    

XY 

HY 

O

2    

 

CH

  N

2

, CO

x   

CH

y

O

 

H

2

CH

4   

CH

3

SH

   

CS

 

H

2

NO

CH

4   

N

2

, NO, CO

 

H

2

SO

CH

4   

 SO

2

 CH

3

SO

3

H

2

O   SO

2

 H

2

SO

4

 

(26)

1981 Jack Kilby, Texas Instruments 

HI/HBr/O2 Fuel Cells 

HBr 

Br2 out 

HBr  Br2 

H

X

 has a carrier role in “an electron world”; 

it has value! 

 

(27)

Cataly<c Oxida<on HBr + O

2  

less well studied academically (than HCl, Deacon) 

but proven in lab and pilot studies  

(excess water equilibrium limit at high temp)

 

 

Can Make Heat or Electricity 

2HX + ½ O

2

 

  H

2

O +

 

X

(28)

Bromination

T~400 C

Catalytic Coupling

T~ 400 C

Br

2

 

  

2H

Br

  

  

Solid Oxide

Chem. Com. 2004, 2100 

Catalysis Today 200498, 317 

Chem.Com. 2004, 566, 658 

Phys. Chem.Chem.Phys. 2011, 13,2550 

Bromine Mediated Dehydrogena6on in Two‐Phase Reactor System

 

keep HC away from O

(29)

29 

Clarence Chang and Tony Silvetsri, Mobil 1970’s

CH3OH

-HBr -HBr -HBr -HBr

CH3Br

CH3Br CH3Br CH3Br CH3Br

(30)

Methane

Ethane

!

Propane

!

C6+

!

Methanol/DME"

Olefins! BTX+!

Ethanol" Glycol"

Ethylene!

BTX+!

Olefins"

Ethoxylates"

Propanol"

Propylene!

BTX!

O2/Electricity/Photons  H2O / H2 

GRT/UCSB Demonstrated Br

2

/HBr Plaoorm 

Ethylbromide  ethylene (99.5% selecVvity)  Propylbromide  propylene (99.2% selecVvity) 

Butylbromide  butene (99.1 % selecVvity)   

(31)

Ac<va<on: 

Methane

Aromatics

Light Olefins

2002: Bromine Mediated DehydrogenaVon 

Regenerable Solid Reactant (Br carrier)  NiBr2 



 NiO

 

Bromine Containing Components 

Remain at Temperature 

(32)

Unsolved (Unsolvable?) Issues 

Regenerability of solid reactants 

 sintering 

Capacity of supported solids 

Hydrocarbon stability over solids 

(33)

Bromination

T~400 C

Catalytic Coupling

T~ 400 C

Br

2

 

  

2H

Br

  

  

Catalytic Oxidation

In The Absence Of A Regenerable Solid,

More Conventional Separations Were Used

(34)

34

Methane

Aromatics

Light Olefins Alkanes

Where Prior Methane/Br Work Stopped 

Major Issues (that made capital too high):

 

(35)

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0%

Cost (ISBL) by Equipment Type

For Propane Dehydrobromination

Cost Dominated By Indirect Heat Exchange  

(36)

Change Our Approach:   

separa<on in molten salt: MO(H

2

O)/MOH + HBr 

MBr

Halogens Remain Hot 

(37)
(38)

Hydrogen as the ul<mate  sustainable electron 

acceptor   CH

 C + 2H

 

CH+ 2O2  CO2 + 2H2O 

CH C + 2H2  2H+ O2  2H2O 

(39)

Hydrogen as the ul<mate  sustainable electron 

acceptor   CH

 C + 2H

 

(40)

Barriers and Opportuni<es 

~ 0.5‐1 ton CO2/ton HC 

@$100/ton CO2  ~ 10% inc feed 

Enable New low C Fuels, H2, NH New routes to fix C 

Process IntegraVon/Cost reducVon   IntegraVon OpportuniVes (C e‐

Referensi

Dokumen terkait

It can be stated, that cell growth and product formation in batch operation under vacuum condition were have a similar tendency to the fermentation at

The samples of cempaka-madu gemstone used in this study were obtained from Aceh Tengah (Takengon) and Nagan Raya districts, Aceh Province, Indonesia (figure 1).. The

A New Process of Capturing Carbon Dioxide Gas From The Atmosphere Using Solid & Aqueous Sorbents in Pilot Plant Akash Talapatra* Department of Petroleum & Mining Engineering, Cuet

The purpose of this scoping review is to map the available evidence related to the optimum conditions of analysis of alcohol content in a food product by gas chromatography and obtain

Whereas these previous applications of Activity Theory as a research tool were highly descriptive in nature, a much more categorical approach to data analysis was used in this study

Thus, in order to present the more accurate numerical results in this study, discrete ordinates DO approach was used to simulate the natural convection and heat radiation in a cavity

More specifically, Andreoni’s model of charitable giving for a threshold public good has multiple equilibria, and in the absence of seed money there exists a Nash equilibrium with zero

Interestingly, the input of phosphorus fertilizer only had a significant effect on the garlic production level of farmers who used certified seeds in both the conventional SPF and