• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:EJQTDE:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:EJQTDE:"

Copied!
13
0
0

Teks penuh

(1)

Electronic Journal of Qualitative Theory of Differential Equations 2009, No.40, 1-13;http://www.math.u-szeged.hu/ejqtde/

Positive solutions for a multi-point eigenvalue

problem involving the one dimensional

p-Laplacian

∗†

Youyu Wang1‡ Weigao Ge2 Sui Sun Cheng3

1. Department of Mathematics, Tianjin University of Finance and Economics, Tianjin 300222, P. R. China

2. Department of Mathematics, Beijing Institute of Technology, Beijing 100081, P. R. China

3. Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan 30043.

AbstractA multi-point boundary value problem involving the one dimensionalp-Laplacian and

depending on a parameter is studied in this paper and existence of positive solutions is established

by means of a fixed point theorem for operators defined on Banach spaces with cones.

KeywordsPositive solutions; Boundary value problems; One-dimensionalp-Laplacian

1. Introduction

In this paper we study the existence of positive solutions to the boundary value problem

(BVP) for the one-dimensionalp-Laplacian

(φp(u′))′+λq(t)f(t, u) = 0, t∈(0,1), (1.1)

u′(0) =

n−2 X

i=1

αiu′(ξi), u(1) = nX−2

i=1

βiu(ξi), (1.2)

whereφp(s) =|s|p−2s,p >1,ξi∈(0,1) with 0< ξ1< ξ2<· · ·< ξn−2<1 andαi, βi, f satisfy

(H1)αi, βi∈[0,∞) satisfy 0< nP−2

i=1

αi<1, and nP−2

i=1

βi<1;

(H2)f ∈C([0,1]×[0,∞),[0,∞));

This work is sponsored by the National Natural Science Foundation of China (No. 10671012).

2000 Mathematics Subject Classification 34B10, 34B15

Email: wang

(2)

(H3) q(t)∈C(0,1)∩L1[0,1] withq >0 on (0,1). The numberλ is regarded as a parameter

and is to be determined among positive numbers.

The study of multipoint boundary value problems for linear second-order ordinary differential

equations was initiated by Il’in and Moiseev [1,2]. Since then there has been much current attention

focused on the study of nonlinear multipoint boundary value problems, see [3,4,5,7]. The

meth-ods include the Leray-Schauder continuation theorem, nonlinear alternatives of Leray-Schauder,

coincidence degree theory, and fixed point theorem in cones. For example,

In [6], R. Ma and N. Castaneda studied the following BVP

      

x′′(t) +a(t)f(x(t)) = 0, 0t1,

x′(0) =mP−2

i=1

αix′(ξi), x(1) = mP−2

i=1

βix(ξi),

where 0< ξ1<· · ·< ξm−2 <1,αi, βi ≥0 with 0<P m

i=1αi <1 andP m

i=1βi<1. They showed

the existence of at least one positive solution iff is either superlinear or sublinear by applying the

fixed point theorem in cones.

The authors in [7] considered the multi-point BVP for one dimensionalp-Laplacian

(φp(u′))′+f(t, u) = 0, t∈(0,1),

φp(u′(0)) = n−2 X

i=1

αiφp(u′(ξi)), u(1) = n−2 X

i=1

βiu(ξi).

Using a fixed point theorem in a cone, we provided sufficient conditions for the existence of multiple

positive solutions to the above BVP.

In paper [8], we investigated the following more general multi-point BVPs

(φp(u′))′+q(t)f(t, u, u′) = 0, t∈(0,1),

u(0) =

n−2 X

i=1

αiu(ξi), u′(1) = nX−2

i=1

βiu′(ξi),

u′(0) =

n−2 X

i=1

αiu′(ξi), u(1) = nX−2

i=1

βiu(ξi).

The main tool is a fixed point theorem due to Avery and Peterson[9], we provided sufficient

conditions for the existence of multiple positive solutions.

In view of the common concern about multi-point boundary value problems as exhibited in

[6,7,8] and their references, it is of interests to continue the investigation and study the problem

(3)

Motivated by the works of [7] and [8], the aim of this paper is to show the existence of positive

solutionsu to BVP(1.1) and (1.2). For this purpose, we consider the Banach space E =C[0,1]

with the maximum norm kxk= max

0≤t≤1|x(t)|. By a positive solution of (1.1) and (1.2), we means

a function u∈ C1[0,1],(φp(u′))′(t)∈ C(0,1)∩L[0,1] which is positive on [0,1] and satisfies the

differential equation (1.1) and the boundary conditions (1.2).

Our main results will depend on the following Guo-Krasnoselskii fixed-point theorem .

Theorem A[10][11].LetE be a Banach space and letK⊂Ebe a cone inE. Assume Ω1,Ω2

are open subsets ofE with 0∈Ω1,Ω1⊂Ω2, and let

T :K∩(Ω2\Ω1)→K

be a completely continuous operator such that either

(i)kT xk ≤ kxk, x∈K∩∂Ω1 andkT xk ≥ kxk, x∈K∩∂Ω2, or

(ii)kT xk ≥ kxk, x∈K∩∂Ω1 andkT xk ≤ kxk, x∈K∩∂Ω2.

ThenT has a fixed point inK∩(Ω2\Ω1).

In section 3, we shall present some sufficient conditions withλbelonging to an open interval to

ensure the existence of positive solutions to problems (1.1) and (1.2). To the author’s knowledge,

no one has studied the existence of positive solutions for problems (1.1) and (1.2) using the

Guo-Krasnoselskii fixed-point theorem.

2. The preliminary lemmas

Let

C+[0,1] ={ω∈C[0,1] :ω(t)≥0, t∈[0,1]}.

Lemma 2.1Let (H1)−(H3) hold. Then forx∈C+[0,1], the problem

(φp(u′))′+λq(t)f(t, x(t)) = 0, t∈(0,1), (2.1)

u′(0) =

n−2 X

i=1

αiu′(ξi), u(1) = nX−2

i=1

βiu(ξi), (2.2)

has a unique solution

u(t) =Bx−

Z 1

t

φ−1p

Ax−λ

Z s

0

q(τ)f(τ, x(τ))dτ

(4)

whereAx, Bxsatisfy

then we have

(5)

The zero point theorem guarantees that there exists anx0∈[x, x] such thatH(x0) = 0.

If there exist two constantsx1, x2∈[x, x] satisfyingH(x1) =H(x2) = 0, then

Case 1. x1= 0.

i.e., H(0) = 0,

nP−2

i=1

βiφp(ri) = 0. So, βiφp(ri) = 0, (i = 1,2,· · ·, n−2), then, riφ−1p (βi) =

0, (i= 1,2,· · ·, n−2).Therefore,

H(x) = φp(x)− nX−2

i=1

βiφp(x+ri)

= φp(x)− nX−2

i=1

φp φ−1p (βi)x+φ−1p (βi)ri

= φp(x)− nX−2

i=1

βiφp(x) = 1− nX−2

i=1

βi

!

φp(x).

Obviously, there exists a uniquex= 0 satisfyingH(x) = 0.So,x1=x2= 0.

Case 2. x16= 0.

(i) Ifx1∈(−∞,0), then

H(x1) = φp(x1)−

n−2 X

i=1

βiφp(x1+ri)

≤ φp(x1)−

n−2 X

i=1

βiφp(x1)

= 1−

nX−2

i=1

βi

!

φp(x1)<0.

So, when,x1∈(−∞,0), H(x1)6= 0.

(ii) Ifx1∈(0,+∞), then

H(x1) = φp(x1)−

n−2 X

i=1

βiφp(x1+ri)

= φp(x1) "

1−

nX−2

i=1

βiφp

1 + ri x1

#

= φp(x1)He(x1),

where

e

H(x) = 1−

nX−2

i=1

βiφp

1 + ri x

.

As H(x1) = 0 and x1 6= 0, so there must existi0 ∈ {1,2,· · ·, n−2}, such that βi0φp(ri0) >0.

Thus, we getHe(x) is strictly increasing on (0,+∞).

IfH(x1) =H(x2) = 0, thenHe(x1) =H(xe 2) = 0. So,x1=x2 sinceH(x) is strictly increasinge

(6)

Therefore,H(x) = 0 has a unique solution on (0,+∞). Combining case 1, case 2, we obtain

, then there exists a unique real number Ax that

satisfies (2.4). Furthermore,Axis contained in the interval

Proof The equation is equivalent to

φ−1p (−Ax) =

By Lemma 2.2, we can easily obtain

−Ax ∈

So the conclusion is obvious.

Lemma 2.4 Let (H1)−(H3) hold. If x∈ C+[0,1] andλ > 0, then the unique solution of

problem (2.1)-(2.2) satisfiesu(t)≥0 fort∈[0,1].

Proof: According to Lemmas 2.1 and 2.3, we first have

(7)

Ift∈(0,1), we have

u(t) = Bx−

Z 1

t

φ−1p

Ax−λ

Z s

0

q(τ)f(τ, x(τ))dτ

ds

= u(1) +

Z 1

t

φ−1p

−Ax+λ

Z s

0

q(τ)f(τ, x(τ))dτ

ds

≥ u(1) +

Z 1

t

φ−1p

λ

Z s

0

q(τ)f(τ, x(τ))dτ

ds

≥ 0.

Sou(t)≥0, t∈[0,1].

Lemma 2.5 Let (H1)−(H3) hold. If x∈ C+[0,1] andλ > 0, then the unique solution of

problem (2.1)-(2.2) satisfies

min

t∈[0,1]u(t)≥γkuk,

where

γ=

Pn−2

i=1 βi(1−ξi)

1−Pni=1−2βiξi

.

Proof: Clearlyu′(t) =φ−1

p

Ax−λR t

0q(s)f(s, x(s))ds

=−φ−1p

−Ax+λR t

0q(s)f(s, x(s))ds

0. This implies that

kuk=u(0) and min

t∈[0,1]u(t) =u(1).

Furthermore, it is easy to see thatu′(t

2)≤u′(t1) for anyt1, t2∈[0,1] witht1≤t2. Henceu′(t) is

a decreasing function on [0,1]. This means that the graph of u′(t) is concave down on (0,1). For

eachi∈ {1,2,· · ·, n−2} we have

u(ξi)−u(1)

1−ξi

≥ u(0)−u(1)

1 ,

i.e.,

u(ξi)−ξiu(1)≥(1−ξi)u(0)

so that

nX−2

i=1

βiu(ξi)− n−2 X

i=1

βiξiu(1)≥ nX−2

i=1

βi(1−ξi)u(0)

and, by means of the boundary conditionu(1) =

nP−2

i=1

βiu(ξi), we have

u(1)≥

Pn−2

i=1 βi(1−ξi)

1−Pni=1−2βiξi

u(0).

(8)

Now we define

By Lemmas 2.1 and 2.3, we knowTλxis well defined. Furthermore, we have the following result.

Lemma 2.6[Lemma 2.4, 7] T:K→K is completely continuous.

Let

3. Main results

We now give our results on the existence of positive solutions of BVP(1.1) and (1.2).

Theorem 3.1Let (H1)−(H3) hold and minf∞>0,maxf0<∞. If

then the problem (1.1)(1.2) has at least one positive solution.

Proof. Define the operatorTλ as (2.5). Under the condition (3.1), there exists anε >0 such

(9)
(10)

Therefore,

kTλxk= (Tλx)(0) =

1

1−

nP−2

i=1

βi n−2 X

i=1

βi

Z 1

ξi φ−1p

−Ax+λ

Z s

0

q(τ)f(τ, x(τ))dτ

ds

+

Z 1

0

φ−1p

−Ax+λ

Z s

0

q(τ)f(τ, x(τ))dτ

ds

≥ [λ(minf∞−ε)]q−1γkxk

1

1−

nP−2

i=1

βi nX−2

i=1

βi

Z 1

ξi φ−1p

Z s

0

q(τ)dτ

ds

+ [λ(minf∞−ε)]q−1γkxk Z 1

0

φ−1p

Z s

0

q(τ)dτ

ds

= N[λ(minf∞−ε)]

q−1

γkxk

≥ kxk.

SokTλxk ≥ kxk.

Therefore, by the first part of Theorem A,Tλ has a fixed pointx∗ ∈K∩(Ω2\Ω1) such that

H1≤ kx∗k ≤H2. It is easily checked thatx∗(t) is a positive solution of problems (1.1) and (1.2).

The proof is complete.

Theorem 3.2. Let (H1)−(H3) hold and minf0>0,maxf∞<∞. If

1 γp−1minf

0·Np−1

< λ < 1

(k+ 1) maxf∞·Mp−1

. (3.5)

then the problem (1.1)(1.2) has at least one positive solution.

Proof. Under the condition (3.5), there exists anε >0 such that

1 γp−1(minf

0−ε)·Np−1 ≤

λ≤ 1

(k+ 1)(maxf∞+ε)·Mp−1

. (3.6)

(i). Since minf0>0, there exists anH1>0 such that forx: 0≤x≤H1,

f(t, x)≥(minf0−ε)φp(x). (3.7)

Let Ω1={x∈E:kxk< H1}, then forx∈K∩∂Ω1, we have

−Ax+λ

Z s

0

q(τ)f(s, x(τ))dτ ≥ λ

Z s

0

q(τ)f(τ, x(τ))dτ

≥ λ(minf0−ε) Z s

0

q(τ)φp(x(τ))dτ

≥ λφp(γ)(minf0−ε)φp(kxk)

Z s

0

(11)

So,

There are two cases : Case 1,f is bounded, and Case 2,f is unbounded.

(12)
(13)

REFERENCES

1. V. A. Il’in, E. I. Moiseev, Nonlocal boundary value problem of the first kind for a Sturm-Liouville

operator in its differential and finite difference aspects, Differential Equations, 23 (1987) 803-810.

2. V. A. Il’in, E. I. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville

operator, Differential Equations, 23 (1987) 979-987.

3. W. Feng, On an m-point boundary value problem, Nonlinear Anal. 30 (1997) 5369-5374.

4. W. Feng, J. R. L. Webb, Solvability of m-point boundary value problem with nonlinear growth, J.

Math. Anal. Appl. 212 (1997) 467-480.

5. C. P. Gupta, A generalized multi-point boundary value problem for second order ordinary differential

equations, Appl. Math. Comput. 89 (1998) 133-146.

6. R. Ma and N. Castaneda, Existence of solutions of nonlinear m-point boundary-value problems, J.

Math. Anal. Appl. 256 (2001) 556-567.

7. Y. Wang and C. Hou, Existence of multiple positive solutions for one dimensionalp-Laplacian, J.

Math. Anal. Appl. 315 (2006) 144-153.

8. Y. Wang and W. Ge, Multiple positive solutions for multi-point boundary value problem with one

dimensionalp-Laplacian, J. Math. Anal. Appl. 327 (2007) 1381-1395.

9. R. I. Avery, A. C. Peterson, Three positive fixed points of nonlinear operators on ordered Banach

spaces, Comput. Math. Appl. 42 (2001) 313-322.

10. D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New

York, (1988).

11. M.A. Krasnosel’skii, Positive Solutions of Operator Equations, Noordhoff, Gronignen, (1964).

Referensi

Dokumen terkait

[r]

7.974.839.000,- (Tujuh Milyar Sembilan Ratus Tujuh Puluh Empat Juta Delapan Ratus Tiga Puluh Sembilan Ribu Rupiah), Kelompok Kerja Jasa Konstruksi Penataan

[r]

Kelompok Kerja Pemilihan Penyedia Barang/Jasa Pekerjaan Reinstalasi AFL System yang dibentuk berdasarkan Surat Keputusan Kepala Unit Layanan Pengadaan Wilayah X Makassar

Berdasarkan Hasil Evaluasi Kualifikasi, dengan ini diumumkan bahwa E-lelang Pemilihan Langsung untuk Pekerjaan Pembangunan Pagar Penumpukan Kantor UPP Kelas III Rembang Tahun

Untuk mempengaruhi dan mengubah perilaku remaja yang memiliki kecenderungan menjadi anggota geng motor agar terhindar dari aksi negatif geng tersebut dibutuhkan

Dalam Kurikulum yang berorientasi pada pencapaian kompetensi, tujuan kurikuler tergambarkan pada standar isi setiap mata pelajaran atau bidang studi yang harus

Pada hari ini Jumat tanggal Empat bulan Agustus tahun Dua Ribu Tujuh Belas (Jumat, 04-08-2017) , bertempat di ruang Pertemuan Kantor Kesyahbandaran dan