• Tidak ada hasil yang ditemukan

Types of Brittle Deformation

N/A
N/A
Protected

Academic year: 2018

Membagikan "Types of Brittle Deformation"

Copied!
55
0
0

Teks penuh

(1)

Pelatnas IESO Geologi Struktur 2013 Pelatnas IESO Geologi Struktur 2013

Deformasi Rapuh

Deformasi Rapuh

Salahuddin

Salahuddin Husein

Husein

Jurusan

Jurusan TeknikTeknik GeologiGeologi Fakultas

Fakultas TeknikTeknik UniversitasUniversitas GadjahGadjah MadaMada 2013

2013

(2)

Types of Brittle Deformation

shddin © 2012

Pluijm & Marshak (2004)

Types of Brittle Deformation

shddin © 2012

Fossen (2010) common during shallow deformation of

porous rocks and sediments

(3)

Types of Brittle Deformation

shddin © 2012

Fossen (2010)

Intragranular fractures (restricted to single grains) in cataclastically deformed porous sandstone

Intergranular fractures (extend across a number of grains) in metamorphic rock

Tensile Cracks

shddin © 2012

A crack in a crystal lattice. The crack is a plane of finite extent across which all atomic bonds are broken.

(4)

Tensile Cracks

shddin © 2012

Pluijm & Marshak (2004) The importance of preexisting cracks in creating stress concentrations.

Tensile Cracks

shddin © 2012

Pluijm & Marshak (2004) Development of a throughgoing crack in a block under tension.

• When tensile stress (σt) is applied, Griffith cracks open up. • The largest, properly oriented cracks propagate to form a

(5)

Tensile Cracks

shddin © 2012

Pluijm & Marshak (2004) Longitudinal splitting.

Modes of Crack Displacement

shddin © 2012

Mode IV (closing mode) is sometimes used for

(6)

Modes of Crack Displacement

shddin © 2012

Fossen (2010) Extension fractures:

Joints; have little or no macroscopically detectable displacement.

Fissure; when filled with air or fluid.

Veins; mineral-filled extension fractures. •Dikes; magma-filled

fractures.

Stylolites: contraction fracturesor closing fractures (anticracks)

Fracture Growth

shddin © 2012

Pluijm & Marshak (2004) Propagating shear-mode crack and

(7)

Fracture Growth

shddin © 2012

Fossen (2010)

Fault Surface Veins

shddin © 2012

(8)

Fault Surface Veins

shddin © 2012

Fracture formation

shddin © 2012

(9)

Joints

Joints

Joint Morphology

shddin © 2012

(10)

Joint Morphology

shddin © 2012

Fossen (2010)

Joint Morphology

shddin © 2012

Fossen (2010)

(11)

Joint Morphology

shddin © 2012

Fossen (2010)

Elliptically arranged arrest lines

(12)

Plumose Structures

shddin © 2012

Pluijm & Marshak (2004) Straight plume

Curvy plume Multiple

arrest

Joint Arrays

shddin © 2012

(13)

Joint Arrays

shddin © 2012

(14)

Joint Formation Sequence

shddin © 2012

Pluijm & Marshak (2004) Joints form in a random sequence, but with regular spacing.

Stress Shadow

shddin © 2012

Pluijm & Marshak (2004) Stress shadow defines the joint interval.

(15)

Joint Origins: Unroofing Joints

shddin © 2012

Pluijm & Marshak (2004)

(16)

Joint Origins: Fault-related Joints

shddin © 2012

Pluijm & Marshak (2004) Formation of joints in the

hanging-wall block of a

region in which normal faulting is taking place.

Formation of joints

above an irregularity in a (reverse) fault surface.

Pinnate joints along a fault.

Joint Termination

shddin © 2012

(17)

Joint Termination

shddin © 2012

Fossen (2010) Compressive stress

Extenxional stress

Joint Termination

shddin © 2012

Joints terminating without curving when they approach one another.

Joints curving into each other and linking.

(18)

Vein Arrays

shddin © 2012

Pluijm & Marshak (2004) Simple en echelonarray.

Sigmoidal en echelon veins.

Vein Fills

shddin © 2012

(19)

Vein Fills

shddin © 2012

Pluijm & Marshak (2004)

Deformation Bands

shddin © 2012

Cataclastic deformation band, Navajo Sandstone

Cataclastic deformation band, Nubian Sandstone

(20)

Mechanism of Deformation Bands

shddin © 2012

Fossen (2010)

• Develop by shear-related disaggregation of grains by means of grain rolling, grain boundary sliding and breaking of grain bonding cements.

• Disaggregation bands can be almost invisible in clean sandstones, but may be detected where they cross and offset laminae.

Deformation Bands

shddin © 2012

Fossen (2010)

(21)

Deformation Bands

shddin © 2012

Fossen (2010)

Conjugate (simultaneous and oppositely dipping) sets of cataclastic deformation bands in Entrada Sandstone, Utah.

(22)

Fault Terminology

shddin © 2012

Pluijm & Marshak (2004) Fault

Fault zone

Fault splay

Anastomosing fault

(23)

Fault Terminology

shddin © 2012

Fossen (2010)

(24)

Fault Terminology

shddin © 2012

Pluijm & Marshak (2004)

shddin © 2008

(25)

shddin © 2008

Identifikasi Sesar

(26)

Fault Sets

shddin © 2012

Footwall

Hangingwall

Normal fault (extensional) • Older rocks in HW

over younger rocks in the FW.

• Stratigraphic omission

(27)

Footwall

Hangingwall

Reverse (thrust fault)

Reverse (Thrust) Fault Characteristics

shddin © 2012

• Younger rocks in HW over older rocks in the FW.

• Stratigraphic repetition

Slip and Separation

shddin © 2012

Slip - actual relative displacement between two points that occupied the same location before faulting

(28)

Fault Terminology

shddin © 2012

Fossen (2010)

Fault Terminology

shddin © 2012

(29)

Fault Symbols

shddin © 2012

Pluijm & Marshak (2004)

Normal faults sense of drag

(30)

Normal Fault Zone

shddin © 2012

Chiang Muan, Thailand

(31)

Rotational Faults

shddin © 2012

(32)

Duplexes are imbricate fault systems linked on both sides by major faults, all faults must have been active synchronously

Duplex Faults

shddin © 2012

(33)

Fault Offsets

shddin © 2012

Pluijm & Marshak (2004)

(34)

Fault Bends

shddin © 2012

Pluijm & Marshak (2004) Restraining

bend

Releasing bend

Fault Anatomy

shddin © 2012

(35)

Fault Anatomy

shddin © 2012

Fossen (2010)

Fault Anatomy

shddin © 2012

(36)

Fault Displacement

shddin © 2012

Pluijm & Marshak (2004) Fault displacement is about 3% of fault length.

Stick-Slip Behaviour

shddin © 2012

Pluijm & Marshak (2004)

(37)

Fault Displacement

shddin © 2012

Fossen (2010)

(38)

Fault Terminations

shddin © 2012

Pluijm & Marshak (2004) A. Fault merging

B. Fault horsetailing

C. Transfer onto ductile deformation

Fault Terminations

shddin © 2012

(39)

Fault Terminations

shddin © 2012

Pluijm & Marshak (2004) Tip line: boundary between the slipped and unslipped region at the end of a fault.

Damage Zone

shddin © 2012

(40)

Damage Zone

shddin © 2012

Fossen (2010)

Hanging-wall rollover (fault-bend fold) related to bend in the main fault. The damage zone is unusually wide due to the complications posed by the fault bend. Synthetic and antithetic shear bands are separated by color.

Damage Zone

shddin © 2012

Fossen (2010)

(41)

Subsidiary Faults

shddin © 2012

Pluijm & Marshak (2004)

(42)

Fault Systems

shddin © 2012

Pluijm & Marshak (2004) Imbricate

Duplex

Fault Systems

shddin © 2012

(43)

Fault Population

shddin © 2012

Fossen (2010)

The development of curved fault systems in unconsolidated sand.

(44)

Fault Population

shddin © 2012

Fossen (2010)

• The Wasatch fault zone near Salt Lake City, Utah, crudely indicated by white dashed line.

• Note the curved fault geometry, indicating a history of segment linkage.

• Sketches of various stages of plaster extension experiment indicate how such fault zones can form.

Overlap Zones

shddin © 2012

(45)

Fault Rocks

shddin © 2012

Sibson (1977)

(46)

Fault-related Folds

shddin © 2012

Pluijm & Marshak (2004) Folding in a fault zone Folding in a fault zone

Detachment fold Drape fold over faulted basement

Change with Depth

shddin © 2012

(47)

Fault and Stress

shddin © 2012

Pluijm & Marshak (2004) Anderson’s theory of faulting

(high-angle) normal faults (low-angle) reverse faults (vertical) strike-slip faults

(48)

Conjugate Fractures

shddin © 2012

Norway

(49)

Conjugate Faults

shddin © 2012

Jerudong, Brunei Darussalam

(50)

Listric Faults

Listric Faults

(51)

Listric Fault Geometry

shddin © 2012

(52)

Listric Fault Geometry

shddin © 2012

(53)

Fault Growth

shddin © 2012

• Faulting preferentially initiated in sandstone unit.

• Mechanical contrasts due to changes in lithology are enormously important to

understanding structural style in numerous ways.

Fault Growth

shddin © 2012

Two end members for fault growth:

• Radial tip propagation (a) • Segment linkage (b)

(54)

Growth of Boundary Fault

shddin © 2012

(55)

Referensi

Dokumen terkait

Tidak terdapat interaksi dan pengaruh pemberian IAA dan BAP terhadap variabel tinggi tanaman, jumlah daun, dan diameter batang pada aklimatisasi plantlet dengan 3

Namun jika melihat dari hasil pengukuran terdapat penurunan nilai tegangan baik output, arus, daya dan frekuensi, penurunan nilai tegangan tersebut kemungkinan disebabkan oleh

Dalam waktu yang telah ditentukan sesuai dengan sinyal kotak yang dihasilkan dari perbandingan dua buah osilator, MOSFET akan bekerja untuk mengubah tegangan

gossypii cenderung lebih tinggi pada tanaman cabai merah keriting (90,67 ekor/100 tanaman) apabila dibandingkan dengan populasi pada tanaman cabai rawit (58 ekor/100

sequence diagram dan class diagram. Perancangan basis data untuk menyimpan data-data yang dibutuhkan pada sistem yang dibangun serta perancangan antarmuka aplikasi yang

Agar siswa memiliki kesempatan untuk perbaikan lempar tangkap bola kasti maka dilanjutkan ke siklus II dengan menggunakan modifikasi media pembelajaran bolakasti

Berdasarkan uraian tersebut diatas tentang program Jaminan sosial tenaga kerja yang terdiri dari jaminan hari tua, jaminan kecelakaan kerja, jaminan kematian dan jaminan

Analisis permasalahan dibuat dengan menggunakan kerangka PIECES untuk dapat menemukan kelemahan yang ada pada sistem yang sedang berjalan dilihat dari aspek kinerja,