• Tidak ada hasil yang ditemukan

Dokumen tips prinsip kerja generator sin

N/A
N/A
Protected

Academic year: 2018

Membagikan "Dokumen tips prinsip kerja generator sin"

Copied!
29
0
0

Teks penuh

(1)

Prinsip Kerja Generator sinkron

Prinsip Kerja Generator sinkron, Prinsip kerja generator

Kecepatan rotor dan frekuensi dari tegangan yang dibangkitkan oleh suatu generator sinkron berbanding lurus. Gambar 1 akan

memperlihatkan prinsip kerja dari sebuah generator AC dengan dua kutub, dan dimisalkan hanya memiliki satu lilitan yang terbuat dari dua penghantar secara seri, yaitu penghantar a dan a’.

Untuk dapat lebih mudah memahami, silahkan lihat animasi prinsip kerja generator.

Gambar 1. Diagram Generator AC Satu Phasa Dua Kutub.

Lilitan seperti disebutkan diatas disebut “Lilitan terpusat”, dalam

generator sebenarnya terdiri dari banyak lilitan dalam masing-masing fasa yang terdistribusi pada masing-masing alur stator dan disebut “Lilitan

terdistribusi”. Diasumsikan rotor berputar searah jarum jam, maka fuks medan rotor bergerak sesuai lilitan jangkar. Satu putaran rotor dalam satu detik menghasilkan satu siklus per detik atau 1 Hertz (Hz).

Bila kecepatannya 60 Revolution per menit (Rpm), frekuensi 1 Hz. Maka untuk frekuensi f = 60 Hz, rotor harus berputar 3600 Rpm. Untuk kecepatan rotor n rpm, rotor harus berputar pada kecepatan n/60 revolution per detik (rps). Bila rotor mempunyai lebih dari 1 pasang kutub, misalnya P kutub maka masing-masing revolution dari rotor menginduksikan P/2 siklus tegangan dalam lilitan stator. Frekuensi dari tegangan induksi sebagai sebuah fungsi dari kecepatan rotor, dan diformulasikan dengan:

Untuk generator sinkron tiga fasa, harus ada tiga belitan yang

(2)

ΦA = Φm. Sin ωt

ΦB = Φm. Sin ( ωt – 120° ) ΦC = Φm. Sin ( ωt – 240° )

Gambar 2. Diagram Generator AC Tiga Fasa Dua Kutub

Besarnya fuks resultan adalah jumlah vektor ketiga fuks tersebut adalah: ΦT = ΦA +ΦB + ΦC, yang merupakan fungsi tempat (Φ) dan waktu (t), maka besar- besarnya fuks total adalah:

ΦT = Φm.Sin ωt + Φm.Sin(ωt – 120°) + Φm. Sin(ωt– 240°). Cos (φ – 240°)

Dengan memakai transformasi trigonometri dari :

Sin α . Cos β = ½.Sin (α + β) + ½ Sin (α + β ),

maka dari persamaan diatas diperoleh :

ΦT = ½.Φm. Sin (ωt +φ )+ ½.Φm. Sin (ωt – φ) + ½.Φm. Sin ( ωt + φ – 240° ) + ½.Φm. Sin (ωt – φ) +½.Φm. Sin (ωt + φ – 480°)

Dari persamaan diatas, bila diuraikan maka suku kesatu, ketiga, dan kelima akan silang menghilangkan. Dengan demikian dari persamaan akan didapat fuksi total sebesar, ΦT = Φm. Sin ( ωt - Φ ) eeber .

Jadi medan resultan merupakan medan putar dengan modulus 3/2 Φ dengan sudut putar sebesar ω. Maka besarnya tegangan masing-masing fasa

adalah :

E maks = Bm. ℓ. ω r Volt

dimana :

Bm = Kerapatan Fluks maksimum kumparan medan rotor (Tesla) ℓ = Panjang masing-masing lilitan dalam medan magnetik (eeber) ω = Kecepatan sudut dari rotor (rad/s)

r = Radius dari jangkar (meter)

Generator Tanpa Beban

(3)

kumparan jangkar stator akan diinduksikan tegangan tanpa beban (Eo), yaitu sebesar:

Eo = 4,44 .Kd. Kp. f. φm. T Volt

Dalam keadaan tanpa beban arus jangkar tidak mengalir pada stator, sehingga tidak terdapat pengaruh reaksi jangkar. Fluks hanya dihasilkan oleh arus medan (If). Bila besarnya arus medan dinaikkan, maka tegangan keluaran juga akan naik sampai titik saturasi (jenuh), seperti diperlihatkan pada gambar 3. Kondisi generator tanpa beban bisa digambarkan rangkaian ekuivalennya seperti diperlihatkan pada gambar 3b.

Gambar 3a dan 3b. Kurva dan Rangkaian Ekuivalen Generator Tanpa Beban Generator Berbeban

Bila generator diberi beban yang berubah-ubah maka besarnya tegangan terminal V akan berubah-ubah pula, hal ini disebabkan adanya kerugian tegangan pada:

• Resistansi jangkar Ra • Reaktansi bocor jangkar Xl • Reaksi Jangkar Xa

a. Resistansi Jangkar

Resistansi jangkar/fasa Ra menyebabkan terjadinya kerugian tegang/fasa (tegangan jatuh/fasa) dan I.Ra yang sefasa dengan arus jangkar.

b. Reaktansi Bocor Jangkar

Saat arus mengalir melalui penghantar jangkar, sebagian fuks yang terjadi tidak mengimbas pada jalur yang telah ditentukan, hal seperti ini disebut Fluks Bocor.

c. Reaksi Jangkar

Adanya arus yang mengalir pada kumparan jangkar saat generator dibebani akan menimbulkan fuksi jangkar (ΦA ) yang berintegrasi dengan fuksi yang dihasilkan pada kumparan medan rotor(ΦF), sehingga akan dihasilkan suatu fuksi resultan sebesar :

(4)

untuk jenis beban yang berbeda-beda.

Gambar 4a, 4b, 4c dan 4d. Kondisi Reaksi Jangkar.

Gambar 4a , memperlihatkan kondisi reaksi jangkar saat generator dibebani tahanan (resistif) sehingga arus jangkar Ia sefasa dengan GGL Eb dan ΦA akan tegak lurus terhadap ΦF.

Gambar 4b, memperlihatkan kondisi reaksi jangkar saat generator dibebani kapasitif , sehingga arus jangkar Ia mendahului ggl Eb sebesar θ dan ΦA terbelakang terhadap ΦF dengan sudut (90 -θ).

Gambar 4c, memperlihatkan kondisi reaksi jangkar saat dibebani kapasitif murni yang mengakibatkan arus jangkar Ia mendahului GGL Eb sebesar 90° dan ΦA akan memperkuat ΦF yang berpengaruh terhadap pemagnetan.

Gambar 4d, memperlihatkan kondisi reaksi jangkar saat arus diberi beban induktif murni sehingga mengakibatkan arus jangkar Ia terbelakang dari GGL Eb sebesar 90° dan ΦA akan memperlemah ΦF yang berpengaruh terhadap pemagnetan.

Jumlah dari reaktansi bocor XL dan reaktansi jangkar Xa biasa disebut

reaktansi Sinkron Xs.

(5)

Gambar 5a, 5b dan 5c. Vektor Diagram dari Beban Generator

Berdasarkan gambar diatas, maka bisa ditentukan besarnya tegangan jatuh yang terjadi, yaitu :

Total Tegangan Jatuh pada Beban:

= I.Ra + j (I.Xa + I.XL) = I {Ra + j (Xs + XL)}

= I {Ra + j (Xs)}

= I.Zs

Menentukan Resistansi dan Reaktansi

Untuk bisa menentukan nilai reaktansi dan impedansi dari sebuah generator, harus dilakukan percobaan (test). Ada tiga jenis test yang biasa dilakukan, yaitu:

• Test Tanpa beban ( Beban Nol ) • Test Hubung Singkat.

• Test Resistansi Jangkar.

Test Tanpa Beban

Test Tanpa Beban dilakukan pada kecepatan Sinkron dengan rangkaian jangkar terbuka (tanpa beban) seperti diperlihatkan pada Gambar 6.

(6)

Gambar 6. Rangkaian Test Generator Tanpa Beban.

Test Hubung Singkat

Untuk melakukan test ini terminal generator dihubung singkat, dan dengan Ampermeter diletakkan diantara dua penghantar yang dihubung singkat tersebut (Gambar 7). Arus medan dinaikkan secara bertahap sampai diperoleh arus jangkar maksimum. Selama proses test arus If dan arus hubung singkat Ihs dicatat.

Gambar 7. Rangkaian Test Generator di Hubung Singkat.

Dari hasil kedua test diatas, maka dapat digambar dalam bentuk kurva karakteristik seperti diperlihatkan pada gambar 8.

Gambar 8. Kurva Karakteristik Tanpa Beban dan Hubung Singkat sebuah Generator.

(7)

, If = konstatn

Test Resistansi Jangkar

Dengan rangkaian medan terbuka, resistansi DC diukur antara dua terminal output sehingga dua fasa terhubung secara seri, Gambar 9. Resistansi per fasa adalah setengahnya dari yang diukur.

Gambar 9. Pengukuran Resistansi DC.

Dalam kenyataannya nilai resistansi dikalikan dengan suatu faktor untuk menentukan nilai resistansi AC efektif , ef R . Faktor ini tergantung pada bentuk dan ukuran alur, ukuran penghantar jangkar, dan konstruksi kumparan. Nilainya berkisar antara 1,2 s/d 1,6 .

Bila nilai Ra telah diketahui, nilai Xs bisa ditentukan berdasarkan persamaan:

Generator Sinkron Secara Umum

Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak mula (prime mover) yang terkopel dengan rotor generator, sedangkan energi listrik diperoleh dari proses induksi elektromagnetik yang melibatkan kumparan rotor dan kumparan stator. Mesin listrik arus bolak-balik ini disebut sinkron karena rotor berputar secara sinkron atau berputar dengan kecepatan yang sama dengan kecepatan medan magnet putar.

(8)

digunakan pada pembangkit lisrik yang besar biasanya merupakan jenis generator turbo yang beroperasi pada kecepatan tinggi dan dikopel dengan turbin gas atau uap. Sedangkan generator

salient-pole biasanya digunakan untuk pembangkit listrik kecil dan menengah.

Gambar 1 (a) Salient-pole Rotor. (b) Cylindrical-rotor.

Pada generator sinkron, arus searah dialirkan pada kumparan rotor yang kemudian menghasilkan medan magnet rotor. Rotor dari generator akan diputar oleh prime mover, menghasilkan medan magnet putar di dalam mesin. Pada stator generator juga terdapat kumparan. Medan magnet putar menyebabkan medan magnet yang melingkupi kumparan stator berubah secara kontinu. Perubahan medan magnet secara kontinu ini menginduksikan tegangan pada kumparan stator. Tegangan induksi ini akan berbentuk sinusoidal dan besarnya bergantung pada kekuatan medan magnet serta kecepatan putaran dari rotor. Untuk membuat generator tiga fasa, pada stator ditempatkan tiga buah kumparan yang terpisah sejauh 120o satu sama lain, sehingga tegangan

yang diinduksikan akan terpisah sejauh 120o satu sama lain pula.

Komponen Generator Sinkron

Secara umum ada dua komponen utama penyusun generator sinkron yaitu stator dan rotor. Stator merupakan bagian dari generator sinkron yang diam, tempat dimana tegangan induksi

dibangkitkan. Sedangkan rotor merupakan bagian dari generator sinkron yang bergerak dan dialiri arus searah pada kumparannya.

Pada stator, terdapat beberapa komponen utama, yaitu:

 Rangka stator

Rangka luar yang biasanya terbuat dari baja berfungsi untuk menyokong struktur stator dan mempunyai kaki-kaki yang dipasang pada bagian fondasi. Rangka stator ini dibuat kokoh untuk mengatasi perubahan beban secara tiba-tiba atau hubung singkat tiga fasa.

 Inti stator

Inti stator menyediakan jalur permeabilitas yang tinggi untuk proses magnetisasi. Inti stator dibuat berlaminasi untuk mengurangi rugi eddy current dan juga rugi histeresis. Bahan-bahan

(9)

 Slot

Slot merupakan tempat untuk meletakkan kumparan stator yang dibentuk dengan sistem berbuku-buku.

 Kumparan stator

Kumparan stator merupakan tempat terbentuknya tegangan induksi pada generator dan didesain untuk menghasilkan kutub-kutub elektromagnetik stator yang sinkron dengan kutub magnet rotor.

Sedangkan pada bagian rotor terdapat tiga bagian utama, yaitu:

Collector ring atau slip ring

Collector ring merupakan cincin logam yang melingkari poros rotor, tetapi dipisahkan oleh isolasi tertentu. Bagian ini merupakan bagian yang terhubung dengan sumber arus searah yang untuk selanjutnya dialirkan menuju kumparan rotor.

 Kumparan rotor

Kumparan rotor merupakan bagian yang dialiri arus searah sebagai sumber medan magnet melalui sistem eksitasi tertentu.

 Poros

Poros merupakan tempat untuk meletakkan kumparan rotor dan merupakan bagian yang terkopel dengan dan diputar oleh prime mover.

Prinsip Kerja Generator Sinkron

Prinsip kerja generator sinkron dapat dijelaskan dengan menggunakan dua kaidah sederhana. Kaidah pertama untuk rangkaian magnetik dan kaidah yang kedua untuk tegangan yang diinduksi pada sebuah konduktor yang disebabkan karena variasi medan magnet.

Fluks ϕ dalam suatu rangkaian magnet yang mempunyai reluktansi Rm dihasilkan karena adanya

magnetomotive force (mmf) Fm, dimana mmf itu sendiri berasal dari adanya arus I yang mengalir

melalui lilitan berjumlah N.

ϕ = Fm / Rm (1)

dan

(10)

Bagian magnetik dan elektrik yang utama dari generator salient-pole dapat dilihat pada gambar berikut:

Gambar 2. Prinsip Kerja Generator Sinkron

Pada gambar 2 (a), arus searah dialirkan menuju kumparan rotor melalui brush dan collector ring. Produk antara arus medan I dan jumlah lilitan N menghasilkan Fm, sedangkan adanya

reluktansi rangkaian magnet akan menghasilkan fluks magnet. Jalur fluks magnet ini ditunjukkan oleh garis putus-putus pada gambar 2 (b). Ketika rotor diputar, jalur fluks yang dibentuk karena adanya mmf Fm juga ikut berputar bersama putaran rotor. Hal ini diilustrasikan pada gambar

kedua dari gambar 2 (b). Ketika fluks magnet ϕ memotong rangkaian magnetik dengan luas penampang A, maka kepadatan fluks B dapat dinyatakan sebagai berikut:

B=ϕ/A (3)

Gambar 2 (a) juga menunjukkan stator dengan lilitan tunggal sepanjang l. Ketika rotor berputar, fluks magnet rotor akan memotong lilitan stator dengan kecepatan v, sehingga electromotive force(emf)eind akan muncul, sesuai dengan persamaan:

eind =(v x B) . l (4)

Dengan arah yang sesuai dengan aturan tangan kanan Fleming sebagaimana yang ditunjukkan oleh gambar 2 (a) di atas. Melalui penurunan matematis secara lanjut akan dihasilkan persamaan tegangan rms pada stator sebagai berikut:

eind =kϕω (5)

(11)

Oleh karena itu, besar emf induksi atau tegangan V akan bervariasi terhadap waktu sesuai dengan variasi kepadatan fluks di sekitar rotor. Hasil variasi ini dapat digambarkan sebagai berikut:

Gambar 3.Gelombang Tegangan Induksi

Bentuk seperti gambar 3 akan terus berulang setiap kali rotor berevolusi. Frekuensi dari bentuk gelombang sinusoidal ini dapat ditentukan dengan menggunakan persamaan:

Dengan :

f = frekuensi (Hz)

ns = kecepatan sinkron (rpm)

p = jumlah kutub

Oleh karena itu, untuk menghasilkan frekuensi sebesar 50 Hz, generator berkutub dua harus berputar dengan kecepatan sebesar 3000 rpm, generator berkutub empat dengan kecepatan 1500 rpm, dan seterusnya.

(12)

Gambar 4. Pembangkitan Tiga Fasa

Rangkaian Ekivalen Generator Sinkron

Jika eind pada persamaan (4) di artikel sebelumnya dilambangkan dengan EApada bagian ini,

maka tegangan terminal generator satu fasa Vϕ akan sama dengan EA hanya jika generator

beroperasi dalam keadaan tanpa beban. Untuk kondisi berbeban, maka dua nilai tegangan ini akan berbeda. Ada beberapa faktor yang menyebabkan perbedaan antara nilai EA dan Vϕ, antara

lain:

1. Distorsi kepadatan fluks (medan magnet) celah udara oleh karena arus yang mengalir pada stator yang disebut armature reaction (reaksi jangkar).

2. Induktansi diri dari lilitan jangkar 3. Resistansi dari lilitan jangkar.

Penyebab pertama yang menyebabkan perbedaan antara tegangan induksi EA dan tegangan

keluaran generator Vϕ, dan biasanya merupakan sumber utama terjadinya perbedaan nilai

tersebut adalah reaksi jangkar. Ketika rotor generator diputar, tegangan EA akan diinduksikan

pada kumparan stator. Jika beban dipasang pada terminal generator, arus akan mengalir menuju beban. Akan tetapi, arus tiga fasa stator yang mengalir akan menimbulkan medan magnet di sekitar kumparan stator tersebut. Medan magnet stator yang menambah medan magnet rotor menyebabkan perubahan tegangan keluaran generator. Peristiwa ini disebut dengan reaksi jangkar karena arus jangkar (stator) mempengaruhi medan magnet yang pada mulanya memproduksi arus jangkar tersebut.

(13)

Pada gambar 5 (a), digambarkan bahwa rotor berkutub dua diputar di dalam stator tiga fasa. Karena tidak ada beban yang terpasang, maka medan magnet BR akan menghasilkan tegangan

induksi EA, dengan nilai maksimum yang berimpitan dengan arah BR.

Jika diasumsikan sebuah beban induktif dipasang pada terminal generator, maka arus maksimum akan tertinggal dari tegangan induksi maksimum. Pengaruh ini digambarkan pada gambar 5 (b).

Arus yang mengalir pada kumparan stator menghasilkan medan magnetnya sendiri. Medan magnet stator ini disebut dengan BS dan mempunyai arah yang ditunjukkan pada gambar 5 (c).

Medan magnet BS menghasilkan tegangan sendiri, dan tegangan ini disebut dengan Estat dalam

gambar 5 (c).

Dengan adanya dua tegangan yang muncul pada kumparan stator, tegangan total merupakan penjumlahan tegangan induksi EA dengan tegangan reaksi jangkar Estat.

VΦ =EA + Estat

Medan magnet total Bnet juga merupakan penjumlahan medan magnet rotor dan stator.

Bnet = Bs + Br

Karena sudut EA sama dengan sudut BR, dan sudut Estat juga sama dengan sudut BS, maka medan

magnet Bnet akan beririsan dengan Vϕ. Tegangan dan arus hasil reaksi jangkar ini ditunjukkan oleh

gambar 5 (d).

Pengaruh reaksi jangkar dapat direpresentasikan secara matematis dengan memperhatikan bahwa tegangan Estat terletak 90o dibelakang arus IA, dan juga dengan memperhatikan bahwa besarnya

Estat berbanding lurus dengan arus IA. Jika X adalah konstanta proporsionalitas, maka tegangan

reaksi jangkar dapat dituliskan sebagai berikut:

VΦ =EA – jXIA

lain yang berpengaruh terhadap besarnya tegangan keluaran generator Vϕ adalah adanya

induktansi diri dan resistansi lilitan stator. Jika induktansi diri stator disebut LA(sehingga

reaktansinya disebut XA), sedangkan resistansinya dilambangkan dengan RA, maka perbedaan

total antara Vϕ dengan EA diberikan oleh persamaan berikut:

VΦ =EA – jXIA – jXAIA – RAIA

Jika diasumsikan bahwa reaktansi akibat reaksi jangkar dan reaktansi akibat induktansi diri disebut dengan reaktansi sinkron XS, maka persamaan akhir untuk tegangan keluaran Vϕ menjadi:

VΦ =EA - jXSIA – RAIA

(14)

Gambar 6. Rangkaian Ekivalen Generator Sinkron Tiga Fasa

Gambar 6 menunjukkan sebuah sumber arus searah yang menyuplai rangkaian medan rotor yang dimodelkan dengan induktansi dan resistansi lilitan yang dipasang seri. Radj juga dipasang secara

seri dengan RF untuk mengendalikan besar aliran arus medan. Sedangkan gambar lainnya

merupakan representasi dari masing-masing fasa. Masing-masing fasa mempunyai tegangan induksi yang dirangkai seri terhadap induktansi sinkron XS dan resistansi seri RA. Tegangan dan

arus dari rangkaian tiga fasa dalam kondisi yang seimbang mempunyai besar yang sama, tapi terpisah pada sudutnya sejauh 120o satu sama lain.

Rangkaian tiga fasa dapat merupakan konfigurasi Y atau Δ. Jika konfigurasi rangkaian tiga fasa berbentuk Y, maka tegangan terminal VT bernilai:

(15)

Gambar 7.Rangkaian Ekivalen Generator dengan Konfigurasi (a) Y dan (b) Δ

Karena tiga fasa dari generator sinkron identik dalam semua hal kecuali sudut fasanya dalam kondisi seimbang, maka akan lebih mudah menganalisa rangkaian ekivalen generator sinkron dengan menggunakan rangkaian ekivalen tiap fasa yang ditunjukkan oleh gambar berikut:

Gambar 8. Rangkaian Ekivalen Per-fasa Generator Sinkron

Diagram Fasor Generator Sinkron

Fasor digunakan untuk menggambarkan hubungan antara tegangan-tegangan arus bolak-balik. Gambar 9 menunjukkan hubungan diantara tegangan-tegangan arus bolak balik tersebut ketika generator mensuplai beban resistif murni (faktor daya nol). Total tegangan EA berbeda dari

tegangan terminal Vϕ karena adanya tegangan jatuh resistif dan induktif. Semua tegangan

direferensikan terhadap Vϕ yang diasumsikan bersudut 0o.

Gambar 9.Diagram Fasor Generator Sinkron dengan Faktor Daya Satu

Gambar 10 mengilustrasikan diagram fasor untuk generator yang beroperasi pada faktor daya

lagging dan leading. Perlu dicermati bahwa, untuk tegangan fasa dan arus jangkar yang sama, beban lagging membutuhkan tegangan induksi EA yang lebih besar daripada beban leading. Oleh

(16)

Gambar 10. Diagram Fasor Generator Sinkron pada Faktor Daya (a) Lagging dan (b) Leading

Pada mesin sinkron, besarnya resistansi RA sangatlah kecil dibandingkan dengan reaktansi

sinkron XS. Jika resistansi sinkron diabaikan, maka sebuah persamaan penting untuk

memperkirakan daya keluaran generator dapat diturunkan.

Gambar 11.Diagram Fasor yang Disederhanakan

Daya keluaran generator dirumuskan sebagai berikut:

Dari diagram fasor pada gambar 11 terlihat bahwa

(17)

Pengaruh Perubahan Beban pada Generator yang Beroperasi Sendiri

Ketika beban meningkat, daya aktif dan / atau daya reaktif yang diambil dari generator akan meningkat. Peningkatan beban akan meningkatkan arus beban yang diambil dari generator. Jika arus medan tidak diubah (fluks ϕ bernilai konstan) dan jika prime mover dijaga agar berputar pada kecepatan mekanik yang konstan (sehingga frekuensinya tetap), maka besar dari tegangan induksi (EA) akan bernilai konstan.

Jika generator beroperasi pada faktor daya lagging dan beban tambahan diberikan pada faktor daya yang sama, maka besarnya IA akan meningkat dengan sudut θ di antara IA dan Vϕ yang tetap

konstan dan oleh karenanya, tegangan reaksi jangkar jXSIA juga akan meningkat dengan tetap

menjaga konstan sudutnya.

Karena

jXSIA bertambah, sedangkan besar dari EA tetap konstan (gambar 12 (a)). Maka, ketika beban

dengan faktor daya lagging bertambah, tegangan Vϕ turun dengan cukup tajam. Gambar 12 (b)

mengilustrasikan pengaruh ketika generator ditambah beban berfaktor daya satu dan terlihat bahwa Vϕ turun sedikit. Gambar 12 (c) menggambarkan pengaruh ketika generator diberi beban

(18)

Gambar 12.Pengaruh Penambahan Beban (a) Lagging, (b) Resistif Murni dan (c) Leading terhadap Tegangan Terminal

Dalam kondisi operasi normal, diinginkan agar tegangan tetap konstan sekalipun beban berubah-ubah. Variasi tegangan terminal dapat diatasi dengan memvariasikan besar EA, yaitu dengan

memvariasikan medan magnet (dan juga fluks) generator. Sebagai contoh, ketika beban lagging

ditambahkan pada generator, tegangan terminal akan turun. Dengan memperbesar arus medan IF

melalui pengaturan sistem eksitasi maka EA akan meningkat karena meningkatnya fluks

sehingga, pada akhirnya tegangan terminal juga akan meningkat. Proses ini akan terbalik untuk menurunkan tegangan terminal.

Pengaruh perubahan beban terhadap tegangan terminal generator secara ringkas dapat dilihat pada gambar berikut ini

Gambar 13. Kurva Karakteristik Generator dalam Kondisi Berbeban

Sinkronisasi Generator dengan Jaringan Listrik

(19)

Gambar 14.Sinkronisasi Generator ke Jaringan Listrik

Urutan fasa generator harus sama dengan

urutan fasa jaringan listrik.

Besar tegangan sinusoidal yang dihasilkan

generator harus sama dengan besar tegangan

sinusoidal jaringan listrik.

Frekuensi tegangan sinusoidal yang dihasilkan

oleh generator harus sama dengan frekuensi

tegangan sinusoidal jaringan listrik.

Beda sudut fasa antara tegangan yang

dihasilkan oleh generator dan tegangan yang

dihasilkan oleh jaringan harus bernilai nol.

(20)

Gambar 15. Synchroscope

Posisi jarum penunjuk synchroscope, yang mengindikasikan perbedaan sudut fasa antara

tegangan generator dengan tegangan jaringan, akan berada pada posisi vertikal atau berada pada posisi pukul 12.00 jika perbedaan fasa antar keduanya bernilai nol.

Kecepatan rotasi jarum penunjuk mengindikasikan perbedaan frekuensi dari dua tegangan. Jarum penunjuk akan berotasi pada arah slow ketika frekuensi generator lebih rendah dari frekuensi jaringan. Sebaliknya, jarum penunjuk akan berotasi pada arah fast ketika frekuensi generator lebih tinggi daripada frekuensi jaringan.

Dalam prakteknya, synchronizing breaker ditutup ketika posisi jarum penunjuk sedikit berada pada arah fast, yaitu ketika frekuensi generator sedikit lebih tinggi daripada frekuensi jaringan, untuk memberikan waktu bagi penutupan breaker dan memastikan generator tidak berperilaku sebagai motor sesaat setelah breaker ditutup.

Operasi Paralel Generator pada Infnnite Bus

(21)

Gambar 16.Kurva (a) Frekuensi Vs. Daya dan (b) Tegangan Terminal Vs Daya Reaktif pada Infinite Bus

Jika generator telah diparalelkan dengan infinite bus, generator akan mensuplai sejumlah kecil daya nyata dengan sedikit atau tidak mensuplai daya reaktif. Hal ini dapat digambarkan dalam

house diagram seperti gambar 17

Gambar 17. Diagram Frekuensi Vs Daya Sesaat Setelah Diparalelkan

Jika generator yang telah diparalel mempunyai frekuensi yang lebih rendah daripada frekuensi sistem (gambar 18), frekuensi no-load generator akan lebih kecil daripada frekuensi operasi sistem. Pada keadaan ini, daya yang disuplai oleh generator bernilai negatif (generator

(22)

Gambar 18. Diagram Frekuensi Vs Daya Jika Frekuensi No-Load Lebih Rendah daripada Frekuensi Sistem

(23)

Gambar 19. Pengaruh Peningkatan Governor Setpoint pada (a) House Diagram dan (b) Diagram Fasor

Dari diagram fasor pada gambar 19 (b) terlihat bahwa besar EA tetap konstan karena IFdan ω

tidak berubah, sedangkan EA sin δ (yang besarnya proporsional terhadap daya keluaran generator

sepanjang VT tetap konstan) meningkat. Ketika governor setpoint ditingkatkan, frekuensi no-load

dan daya keluaran generator akan kembali meningkat. Seiring peningkatan daya, besarnya EA

akan tetap konstan, sedangkan EA sin δ akan terus meningkat.

(24)

Daya aktif akan tetap bernilai konstan sekalipun besar arus medan diubah-ubah karena hal berikut:

Besar daya masukan generator adalah

P

in

=

τ

ind

ω

m

Prime mover

mempunyai karakteristik

torsi-kecepatan yang tetap untuk

governor setting

yang tertentu, dan kurva karakteristik ini

hanya akan berubah jika

governor set point

diubah.

Karena generator dihubungkan dengan

infinite

bus

, kecepatannya tidak dapat berubah. Jika

kecepatan generator tidak berubah dan

governor set point

tidak diubah, daya yang

disuplai generator akan tetap konstan.

Karena daya yang disuplai tidak berubah

ketika arus medan disesuaikan nilainya, maka

I

A

cosθ

dan

E

A

sin δ

(yang proporsional

terhadap daya) tidak akan berubah.

Oleh karena hal tersebut di atas ketika arus medan ditingkatkan, fluks ϕ meningkat, sehingga EA

meningkat. Jika EA meningkat, tetapi EA sin δ tetap konstan, maka fasor EA akan bergeser

sepanjang garis daya konstan sebagaimana terlihat pada gambar 20 . Karena Vϕ bernilai konstan,

sudut dari jXSIA berubah, sehingga besar IA akan berubah. Jika diperhatikan, maka hasil akhir dari

peningkatan arus medan adalah jarak yang proporsional terhadap Q (IA sinθ) akan meningkat.

(25)

Gambar 20. Pengaruh Peningkatan Arus Medan Generator

Sistem Eksitasi Generator Sinkron

Sistem eksitasi merupakan sistem pemberian arus searah pada kumparan medan yang terdapat pada rotor generator guna menghasilkan tegangan induksi pada kumparan jangkar yang terdapat pada stator generator.

Berdasarkan cara penyaluran arus searah pada rotor generator sinkron, sistem eksitasi dapat dibagi menjadi dua jenis, yaitu sistem eksitasi dengan menggunakan sikatdan sistem eksitasi tanpa sikat. Sistem eksitasi dengan menggunakan sikat terdiri dari:

1.

Sistem eksitasi dengan menggunakan

generator arus searah

2.

Sistem eksitasi statis

Sedangkan sistem eksitasi tanpa sikat terdiri dari:

1.

Sistem eksitasi tanpa menggunakan

pilot

exciter

2.

Sistem eksitasi dengan menggunakan

pilot

(26)

Sistem Eksitasi dengan Generator Arus

Searah

Sistem eksitasi dengan menggunakan generator arus searah merupakan sistem eksitasi

konvensional, dimana arus searah yang dialirkan pada kumparan rotor diperoleh dari generator arus searah yang terkopel dalam satu poros dengan generator sinkron.

Arus searah yang dihasilkan oleh generator arus searah ini dialirkan pada kumparan rotor melalui sikat dan slip ring untuk menghasilkan tegangan induksi pada kumparan stator (jangkar)

generator sinkron.

Gambar 21.Sistem Eksitasi dengan Generator Arus Searah

Sistem eksitasi dengan menggunakan generator arus searah ini mempunyai beberapa kelemahan, antara lain:

Generator arus searah yang terkopel pada

poros yang sama dengan generator sinkron

menjadi beban tambahan bagi

prime mover

.

Penggunaan sikat untuk menyalurkan arus

searah pada rotor generator sinkron maupun

sikat yang terdapat pada generator arus

searah itu sendiri mengakibatkan adanya

(27)

Penggunaan sikat dan

slip ring

membutuhkan

perawatan yang tinggi karena sikat harus

diperiksa secara teratur.

Selain itu, generator arus searah sendiri

mempunyai keandalan yang rendah.

Oleh karena masalah-masalah tersebut, maka dikembangkan sistem eksitasi lain, yaitu sistem eksitasi statis, untuk meningkatkan sistem eksitasi yang masih menggunakan sikat ini.

Sistem Eksitasi Statis

Sistem eksitasi statis menggunakan peralatan eksitasi yang tidak bergerak, yang berarti bahwa peralatan eksitasi tidak ikut berputar bersama rotor generator sinkron. Pada sistem eksitasi ini, generator tambahan tidak lagi diperlukan dan sebagai gantinya, sumber eksitasi berasal dari keluaran generator sinkron itu sendiri yang disearahkan terlebih dahulu dengan menggunakan

rectifiier.

Gambar 22. Sistem Eksitasi Statis

Sistem eksitasi statis mempunyai kualitas yang lebih baik daripada sistem eksitasi konvensional dengan menggunakan generator arus searah. Namun, penggunaan sikat masih menjadi

(28)

Sistem Eksitasi tanpa Sikat tanpa

Pnilot

Excniter

Sistem eksitasi ini menyalurkan arus searah pada kumparan rotor tanpa menggunakan sikat. Sistem eksitasi ini terdiri dari sebuah generator arus bolak-balik yang mempunyai kumparan medan yang terletak pada stator dan kumparan jangkar yang terletak pada poros rotor.

Sejumlah kecil arus tiga fasa disearahkan dan digunakan untuk mensuplai kumparan medan pada

exciter yang terletak di stator. Keluaran kumparan jangkar exciter (pada rotor)disearahkan menjadi arus searah dengan menggunakan rectifier tiga fasa yang juga terpasang pada poros rotor dan kemudian dialirkan ke kumparan medan utama. Besarnya arus medan yang dialirkan menuju rotor generator utama dapat dikendalikan dengan sejumlah kecil arus medan exciter yang terletak pada stator.

(29)

Sistem eksitasi tanpa sikat membutuhkan perawatan yang lebih sedikit dibandingkan dengan sistem eksitasi dengan menggunakan sikat karena tidak adanya kontak mekanis antara rotor dengan stator.

Sistem Eksitasi tanpa Sikat dengan

Menggunakan

Pnilot Excniter

Sistem eksitasi tanpa sikat dapat dibuat sama sekali tidak bergantung pada sumber listrik eksternal dengan menggunakan pilot exciter berukuran kecil. Pilot exciter terdiri dari sebuah generator arus bolak-balik dengan magnet permanen yang terpasang pada poros rotor dan

kumparan tiga fasa pada stator. Pilot exciter menghasilkan daya yang dibutuhkan oleh rangkaian medan exciter yang digunakan untuk mengendalikan rangkaian medan generator utama. Ketika

pilot exciter digunakan, generator dapat beroperasi tanpa sumber listrik dari luar.

Gambar

Gambar 4d, memperlihatkan kondisi reaksi jangkar saat arus diberi beban induktif murni sehingga mengakibatkan arus jangkar Ia terbelakang dari GGLEb sebesar 90° dan ΦA akan memperlemah ΦF yang berpengaruh terhadap pemagnetan.
Gambar 8. Kurva Karakteristik Tanpa Beban dan Hubung Singkat sebuah
Gambar 1 (a) Salient-pole Rotor. (b) Cylindrical-rotor.
Gambar 2. Prinsip Kerja Generator Sinkron
+7

Referensi

Dokumen terkait

4.4.1 Perbandingan Tegangan Percobaan Beban Nol Generator Induksi Dengan Kapasitor Eksitasi 20mF Terhadap Tegangan Percobaan Beban Nol Gnerator Induksi Dengan Kapasitor

kerja dari mesin tersebut, yaitu kumparan yang mengalirkan penguatan DC (membangkitkan medan magnet, biasa disebut sistem eksitasi) dan sebuah kumparan (biasa disebut jangkar)

Eksitasi dibutuhkan untuk menghasilkan medan magnet pada kumparan rotor yang nantinya akan menginduksikan tegangan pada stator untuk menghasilkan energi

Jika generator shunt tidak mendapatkan arus eksitasi, maka sisa megnetisasi tidak akan ada, atau jika belitan eksitasi salah sambung atau jika arah putaran terbalik, atau

Hasil simulasi yang diperlihatkan pada Tabel 2 s/d Tabel 4 memperlihatkan bahwa tanggapan tegangan sistem eksitasi generator tipe arus searah tanpa pengendali

Medan putar stator akan memotong konduktor yang terdapat pada sisi rotor, akibatnya pada kumparan rotor akan timbul tegangan induksi ggl sebesar E2s = 44,4fnØ.. Karena kumparan

Hasil simulasi yang diperlihatkan pada Tabel 2 s/d Tabel 4 memperlihatkan bahwa tanggapan tegangan sistem eksitasi generator tipe arus searah tanpa pengendali

Arus jangkar pada generator ber ubah ubah ,dalam grafik di bab 4 terdapat perbandingan yaitu Grafik perubahan arus eksitasi terhadap arus jangkar yang mana semakin tinggi arus eksitasi